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Numerous mutations in the mitochondrial genome are associated with maternally transmitted diseases and syndromes
that affect muscle and other high energy-demand tissues. The mitochondrial genome encodes 13 polypeptides, 2 rRNAs
and 22 interspersed tRNAs via long bidirectional polycistronic primary transcripts, requiring precise excision of the tRNAs.
Despite making up only ~10% of the mitochondrial genome, tRNA genes harbor most of the pathogenesis-related
mutations. tRNase Z endonucleolytically removes the pre-tRNA 3’ trailer. The flexible arm of tRNase Z recognizes and
binds the elbow (including the T-loop) of pre-tRNA. Pathogenesis-related T-loop mutations in mitochondrial tRNAs could
thus affect tRNA structure, reduce tRNase Z binding and 3’ processing, and consequently slow mitochondrial protein
synthesis. Here we inspect the effects of pathogenesis-related mutations in the T-loops of mitochondrial tRNAs on pre-
tRNA structure and tRNase Z processing. Increases in KM arising from 59A.G substitutions in mitochondrial tRNAGly and
tRNAIle accompany changes in T-loop structure, suggesting impaired substrate binding to enzyme.

Introduction

Numerous maternally transmitted diseases and syndromes affect-
ing muscle (myopathies, including cardiomyopathies) and other
high energy-demand tissues (e.g., defects in vision and hearing;
a form of epilepsy) arise from mutations in the mitochondrial
genome. The 16,569 bp mitochondrial genome encodes 13
polypeptides (essential components of respiratory transport chain
complexes), two rRNAs and 22 tRNAs via long bidirectional
polycistronic transcripts.1 Several thousand other proteins
required for mitochondrial metabolism are nuclear encoded and
transported from the cytoplasm. In contrast, few RNAs are known
to be imported into human mitochondria.

A set of mitochondrially encoded tRNAs, one for each of 18
amino acids, two for tRNALeu [(UUR) and (CUN)] and two for
tRNASer [(UCN) and (AGY)], is sufficient for translation of
mitochondrial messages. Of over 220 mutations in the mitochon-
drial genome related to maternally transmitted diseases, more than
150 are located in tRNA genes (see ref. 2 for a compilation).
Almost every tRNA harbors at least one pathogenesis-related
mutation, suggesting that all 22 are required for efficient
mitochondrial protein synthesis and for mitochondrial function
(reviewed in ref. 3).

Molecular mechanisms by which pathogenesis arises from
mutations in mitochondrial tRNAs remain largely unknown and
the mutations don’t fall into obvious categories (for reviews,
see refs. 3, 4). Neutral polymorphisms have been described

in conserved regions and pathogenesis-related mutations in
nonconserved ones, suggesting absence of a common theme.5

Thorough examination of all mutations may thus be required to
understand their mechanisms; it will be useful to select a subset
and look for correlations and patterns between the distributions
of mutations in different tRNAs, positions in the tRNAs, and
mitochondrial pathologies. For example, mutations in tRNASer

(UCN) are often associated with non-syndromic deafness (reviewed
in ref. 6), and the symptoms arising from mutations in tRNAIle

(mainly ophthalmoplagias and cardiomyopathies) correlate with
the reduction in aminoacylation efficiency.4

Mitochondrial tRNAs punctuate the mitochondrial genome
and must be precisely excised for function of the mitochondrial
mRNAs and rRNAs7,8 (reviewed in ref. 9). 5' ends of human
mitochondrial tRNAs are produced by mitochondrial RNase P,
a protein-only enzyme consisting of three polypeptides.10 3' ends
are cut on the 3' side of the discriminator (the last unpaired
nucleotide following the acceptor stem) by tRNase Z, leaving a
3'-OH prepared for CCA addition.9 Since CCA at the 3' end of
mature tRNAs is not transcriptionally encoded, CCA-adding
activity is essential11 and tRNase Z cleavage is central to tRNA
maturation.

All tRNAs undergo post-transcriptional modification, and
intron-containing tRNAs require splicing. Although important,
these reactions were not investigated here. tRNAs engage in
numerous additional interactions including the aminoacylation
cycle, the Tu/Ts cycle (or the equivalent in eukaryotes and
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organelles) and other aspects of translation (e.g., decoding,
peptidyl transfer, translocation). Ability of a mutant pre-tRNA
to undergo tRNase Z reaction would thus not be an exclusive
indicator of molecular deficiency, but tRNase Z reaction
combined with tRNA secondary structure probing can effectively
report the type and degree of harm caused by pathogenesis-related
mutations.6,9,12-16

tRNase Z is encoded by two separate genes in some eukaryotes
including humans17,18: a short form (tRNase ZS) and a long form
(tRNase ZL) that may have arisen from tandem duplication of the
short form followed by adaptation.18-20 Archaea and bacteria have
only tRNase ZS. S. cerevisiae, C. elegans and D.melanogaster have
only tRNase ZL. tRNase Z homologs in fungi and higher plants
were recently thoroughly characterized using a bioinformatics
approach.21-23 D. melanogaster tRNase Z demonstrably functions
in vivo in both nuclear and mitochondrial pre-tRNA matura-
tion.24,25 tRNase ZL is the better candidate for an essential
function in human tRNA (including mitochondrial tRNA)
maturation due to its ~2,000x higher reaction efficiency15 and
dual localization26-28; tRNase ZS function is unknown.

The flexible arm (FA) of tRNase Z, a unique recognition and
binding domain. Enzymes involved in general tRNA metabolism
would not be expected to distinguish between tRNAs, despite
the noncanonical structure of organellar tRNAs,29 but must
distinguish tRNAs from other RNAs. Up to 25 y ago, tRNA
end processing enzymes including RNase P, tRNase Z and CCA-
adding enzyme were shown to utilize the same deleted substrate
consisting of a half-tRNA minihelix (coaxially stacked acceptor
stem and T arm30-32), suggested to be the primary recognition
determinant for all three enzymes.

tRNase Z and CPSF-73 (the pre-mRNA 3' end endo-
nuclease33) are both members of the β-lactamase superfamily
of metal-dependent hydrolases,34,35 and their metal-binding and

active sites are virtually superimposable.33,36,37 The active site of
CPSF-73 is covered by a large flap (the β-CASP region33) and a
battalion of accessory proteins is required for cleavage, presumably
to recognize the cleavage site, open the flap and activate the
endonuclease.

In contrast, tRNase Z has a flexible arm (FA) which recognizes
the elbow that caps the coaxially stacked acceptor stem/T arm
common to tRNAs,38 and requires no accessory proteins for
tRNA binding or cleavage. The FA, located far from the active
site, consists of a globular aaββ hand extruded from the body
of the enzyme by a structured polypeptide stalk (Fig. 1,
cf19,20,36,38-41). Deleting the FA hand causes close to a 100-fold
increase in KM with little change in kcat,20 quantifying its substrate
recognition/binding function.

A structure change in the T loop of tRNA could interfere with
precursor binding to tRNase Z and impair tRNA maturation.
Previous work31,42 suggests that structural determinants for
tRNase Z activity are present in the T-loop, effects of substitu-
tions in the D-loop being modulatory and less definitive. This
investigation of mutant mitochondrial tRNAs was therefore
limited to the T-loop. Thirteen pathogenesis-related mutations
in the T-loops of 11 different mitochondrial tRNAs (compiled
from Mitomap2) are presented in Table 1. To investigate effects
on tRNase Z processing kinetics and tRNA structure arising
from T loop substitutions, six pathogenesis-related T-loop sub-
stitutions were chosen for analysis (enclosed in ellipses in
Table 1); secondary structures are presented in Figure 2 (adapted
from Mamit,43 supported by references from 2). The in vitro
effects of these mutations on tRNase Z processing, supported
by changes in T-loop structure of the mitochondrial tRNAs,
suggest a contributing molecular mechanism for mitochondrial
pathology.

Results

Mitochondrial tRNAs with T loop substitutions
selected for processing analysis. The rationale for
analyzing the effects of pathogenesis-related T-loop
substitutions in mitochondrial tRNAs is given in
Introduction, a compilation of the substitutions is
presented in Table 1 and tRNA secondary structures
are shown in Figure 2. tRNALeu(UUR) has the conserved
D and T loop sequences with the potential for
canonical tertiary contacts. tRNAIle is next closest to
canonical with the T loop sequence pyrimidine-
pyrimidine-pyrimidine-purine (YYYR—) and the
potential for tertiary pairing with the D-loop se-
quence AA corresponding to the canonical G18G19.
Next is tRNAHis with the T-loop sequence YYYR—
but no obvious D loop pairing partners and tRNAGly

has the least canonical T-loop length and sequence
and no obvious pairing potential with the D-loop
apart from one U which could pair with a non-
canonical A at T-loop position 55 or 56. Application
of Leontis-Westhof pairing rules44 for non-Watson-
Crick appositions is beyond the scope of this project.

Figure 1. The Flexible Arm (FA) of tRNase Z binds the elbow (D/T loops) of tRNA. The
structure of tRNA complexed with B. subtilis tRNase Z was redrawn from Li et al., 2006
(PDB#2FK6). Inset: the FA hand and elbow of the tRNA.
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Mitochondrial tRNA precursor 3' end processing. tRNase Z

reaction kinetics was performed using wild type and variant
precursors with a mature 5' end and a natural sequence 3' trailer.
Processing data for wild type tRNALeu(UUR) and tRNALeu(UUR) with
the 56C.A substitution are shown in Figure 3; the arrow in
Figure 4C indicates the tRNase Z cleavage site. Figure 3C and D
show the fit to Michaelis-Menten kinetics and the effects of the
substitution on tRNase Z processing relative to wild type. The
complete data set for tRNase Z processing is presented in Table 2.
The greatest increases in KM relative to wild-type tRNAs, in
tRNAIle 59A.G and tRNAGly 59A.G, consistent with
impaired substrate binding, are highlighted.

Wild type kinetics varies with tRNA substrate. KMs for four
wild type tRNAs cover a range of less than a factor of 2.5 centered
on 30 nM, in close agreement with previous results.14,16 kcat covers
a range of more than an order of magnitude; tRNALeu(UUR) and
tRNAHis have the highest kcat and tRNAGly and tRNAIle have the
lowest. The only published kcat from this set of mitochondrial
tRNAs, for tRNAIle 16, was a bit higher than results reported here.

The tRNALeu(UUR) 56C.A substitution causes a slight reduc-
tion in kcat accompanied by a slight increase in KM, producing a
~2x reduction in processing efficiency (kcat/KM) relative to wild
type. tRNALeu(UUR)57A.G causes a slightly greater reduction in
kcat, a slight increase in KM, and a ~2.4x reduction in processing

efficiency. tRNALeu(UUR) 60U.C causes a ~2x reduction in kcat,
a slight increase in KM, and a ~2.5x reduction in processing
efficiency.

tRNAIle 59A.G causes a slight increase in kcat, a 3.5x increase
in KM, and ~2x reduction in processing efficiency. tRNAGly

59A.G causes a slight increase in kcat, a 3–4x increase in KM,
and a ~3x reduction in processing efficiency. tRNAHis 59G.A
causes a slight increase in kcat, a slight increase in KM, and a slight
reduction in processing efficiency relative to wild type.

Effects of the T-loop substitutions on tRNA precursor struc-
ture. Four nucleases were used to probe for structure changes
caused by the substitutions. V1 and If display alternating patterns,
generally consistent with the stem-loop cloverleaf structure of
canonical tRNAs. The 3' trailer is also structured, as previously
reported.13,14 Wild-type tRNALeu(UUR) displays broad nuclease If
sensitivity suggesting a floppy D-stem and anticodon arm, as
previously noted.14

Wild type tRNALeu(UUR) shows pronounced V1 sensitivity at
U54 and C56 (Fig. 4). The 56C.A substitution sharply reduces
V1 susceptibility at these positions and increases susceptibility at
U55. U54 becomes more susceptible to If cleavage, U55 becomes
more susceptible to RNase A and A56 is less susceptible to RNase
A than C56 in wild type (Fig. 4). tRNALeu(UUR) 57A.G shows
increased V1 susceptibility at A58, as well as decreased sensitivity

Figure 2. Secondary structures of selected human mitochondrial tRNAs
with pathogenesis-related T-loop mutations (Reference Mamit with updates
from Mitomap). The T-loop substitutions are assigned canonical nt #s with
the mitochondrial reference sequence numbers in (). (A) tRNALeu(UUR) 56C.A
(3287C.A), 57A.G (3288A.G), 60U.C (3291U.C); (B) tRNAIle 59A.G
(4317A.G); (C) tRNAGly 59A.G (10044C.G); (D) tRNAHis 59G.A
(12192G.A).

Table 1. Pathogenesis-related mutations in the T-loops of human mito-
chondrial tRNAs including their positions and related illnesses

The table was assembled from Mamit and Mitomap. NT#: canonical
nucleotide numbers for each tRNA. Mutation: nucleotide numbers based
on the reference (Cambridge) sequence. Symptom abbreviations (from
Mitomap): SNHL, Sensorineural Hearing Loss; MM, Mitochondrial Myo-
pathy; MERRF, Myoclonic Epilepsy and Ragged Red muscle Fibers; CIPO,
Chronic Intestinal Pseudo Obstruction with myopathy; EI, Exercise Intoler-
ance; AR, Axenfeld-Rieger anomaly; FICP, Fatal Infantile Cardiomyopathy
Plus a MELAS-associated cardiomyopathy; EM, Encephalomyopathy; CM,
Cardiomyopathy; MELAS, Mitochondrial Encephalomyopathy, Lactis
Acidose, and Stroke-like episodes; LA, Lactis Acidose; PR, Pigmentary
Retinopathy; PRF, Progressive Respiratory Failure. Ellipses indicate specific
mutations selected for further analysis (dotted: tRNALeu[UUR] nt 56, 57 and
60; dashed: nt 59 substitutions in tRNAIle, Gly and His).
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Figure 4. Structure probing of tRNALeu(UUR)

WT and 56C.A, 57A.G, and 60U.C
variants. (A, B) Electrophoresis gel with
data for WT and 56C.A, respectively.
Abbreviations: 0, no enzyme added;
AL, Alkaline Ladder; SDT1, semi-denatur-
ing T1; NT1, Native T1; A, RNase A;
If, nuclease If; V1, nuclease V1.
(C, D, E) Superimposed V1, If, and RNase A
traces, respectively, allow structural com-
parison between WT and the variants.
Open arrows pointing down indicate
decreased sensitivity and solid arrows
pointing up indicate increased sensitivity
of the variants. (F) Secondary structure
shown for the 56C.A variant. Arrow
pointing toward the discriminator
indicates the tRNase Z cleavage site.
Ribonuclease sites differing from WT are
shown on the secondary structure with
dotted arrows indicating decrease in
sensitivity, and solid arrows indicating
increase in sensitivity.

Figure 3. Processing kinetics of tRNALeu(UUR) wild type
and 56C.A mutant. (A, B) Electrophoresis gel.
Designations at right: S-pre-tRNA substrate; P-tRNase Z
product. (C, D) Data (from A, B) analyzed with
ImageQuant were used to create Michalis-Menten
kinetic plots using SigmaPlot.
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to If cleavage at U54, U55, and C56. tRNALeu(UUR) 60U.C shows
increased V1 susceptibility at C62.

Increased V1 susceptibility of tRNALeu(UUR)57A.G at A58

(Fig. 4) shows that the T loop is more structured at this position.
Decreased sensitivity to If at U54, U55 and C56 suggests tighter
structure at the start of the T-loop. Combining the two
observations suggests that the tRNALeu(UUR) 57A.G substitution
starts a wave of increasing structure that spreads in both directions
through the T-loop. tRNALeu(UUR)60U.C shows increased V1
susceptibility at C62 (Fig. 4C) which, as the second base in the
T-stem, is expected to already be structured.

tRNAIle 59A.G displays decreased If sensitivity at C54

(Fig. 5), suggesting a more structured T-loop which could impair
tRNA-tRNase Z binding, increasing KM. tRNAGly 59A.G
displays decreased V1 sensitivity at C62 and C58 as well as
decreased RNase A sensitivity at C58 (Fig. 6). A.G substitution
at this position disrupts the CA step. RNase A cleaves after
unstructured pyrimidines, thus there are eight possible dinucleo-
tide sequences that could be cleaved by RNase A (C or U followed
by any of the four nucleotides). The CA step is especially
susceptible to RNase A (reviewed in 45). Four instances of
changes involving a CA step were observed: tRNALeu(UUR) C56

↓A
becomes A56A in 56C.A; the C56

↓A step becomes CG in
tRNALeu(UUR) 57A.G; tRNAGly C↓A59 becomes CG in 59A.G;
tRNAHis CG59 becomes C↓A in 59G.A. As expected, in the
first three cases the RNase A susceptibility decreases and in the
last one it increases.

tRNAHis 59G.A displays decreased V1 susceptibility at G50

(Fig. 7) within the T-stem near the V-loop boundary, a structural
disruption beyond the T loop. C58 becomes more susceptible to

RNase A because 59G.A produces a C↓A59 step (see above).
Position A58 was the most sensitive in a survey of nuclear encoded
tRNAArg with D and T loop substitutions.42 These changes may
impair the tRNA-tRNase Z interaction, as suggested by the
increases in KM (Table 2).

Discussion

All the pathogenesis related T-loop substitutions reduce tRNase
Z processing efficiency (Table 2). Most notably, KM increases
more than 3-fold with tRNAIle 59A.G and tRNAGly 59A.G,
consistent with weaker binding between the flexible arm of
tRNase ZL and the T-loops of these variant tRNAs, and com-
patible with the observed structural changes. T-loop substitutions
often cause both kcat and KM to increase (Table 231,42), which
could be explained if product release is the overall rate-limiting
step in catalysis and the substitution reduces inhibition by
product, as previously suggested.31,46

Most of the observed structure changes are within the T-loop.
Since tRNALeu(UUR) has the canonical T-loop sequence and GG at
the corresponding positions in the D-loop (nt 18, 19), compatible
with D/T loop tertiary contacts, it was reasonable to look for
corresponding structure changes in the D loop, which were not,
however, observed (data not shown). Because the canonical
T-loop is internally structured with a U-turn and a T54-A58 base
pair across the loop, the observed structure changes could arise
principally from local rearrangements. Additionally, three of the
tRNAs analyzed have a structurally weak T-stem (a C/A mismatch
in tRNAIle and tRNAHis and four out of five A/U pairs in
tRNAGly. Structure changes triggered by T-loop substitutions

Table 2. tRNase ZL processing kinetics with mitochondrially encoded wild-type tRNALeu(UUR), tRNAHis, tRNAGly, and tRNAIle and pathogenesis-related mutant
T loop substrates

tRNA kcat (min21) KM (nM)
kcat/KM

(X 108 M21min21)
kcat Re WT KM Re WT kcat/KMre WTa

tRNALeu(UUR)

WT 15.0 ± 1.9 24 ± 6 9.3 ± 2.9 N/A N/A N/A

56C.A 11.1 ± 1.8 32 ± 11 4.8 ± 1.2 0.81 ± 0.15 1.4 ± 0.3 0.52 ± 0.09

57A.G 6.0 ± 0.7 17 ± 6 4.4 ± 1.1 0.47 ± 0.05 1.3 ± 0.3 0.42 ± 0.10

60U.C 6.9 ± 1.0 17 ± 5 5.4 ± 1.7 0.53 ± 0.01 1.3 ± 0.1 0.40 ± 0.01

tRNAIle

WT 1.1 ± 0.3 48 ± 14 0.25 ± 0.06 N/A N/A N/A

59A.G 1.3 ± 0.3 169 ± 39 0.078 ± 0.01 1.5 ± 0.4 3.5 ± 1.0 0.46 ± 0.13

tRNAGly

WT 2.1 ± 0.2 29 ± 5 0.74 ± 0.04 N/A N/A N/A

59A.G 2.7 ± 1.0 103 ± 12 0.26 ± 0.07 1.2 ± 0.3 3.6 ± 0.1 0.35 ± 0.10

tRNAHis

WT 14.2 ± 3.8 18 ± 1 7.6 ± 2.3 N/A N/A N/A

59G . A 21.7 ± 1.3 33 ± 1 6.9 ± 1.9 1.6 ± 0.3 1.8 ± 0.4 0.87 ± 0.01

are WT (n-fold reduction re wild type) refers to the ratio of processing efficiencies: the mean kcat/KM (Mutant) / kcat/KM (WT) obtained in parallel kinetic
experiments; N/A, Not Applicable; Averages of two or more Michaelis-Menten experiments with each variant are presented; wild-type and variant
experiments were performed the same day. ± indicates standard error. kcat/KM re WT for the variants is the n-fold reduction relative to wild type. The two
mutations with greatest increase in KM, tRNAIle 59A.G and tRNAGly 59A.G, are highlighted.
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could thus propagate laterally beyond the T-loop into the already
weak T-stems.

All the mutations analyzed cause structure changes and reduce
the catalytic efficiency of tRNase Z. Analysis of mitochondrial
tRNAs with pathogenesis-related T-loop substitutions reveals a
previously unnoticed richness of internal T-loop structure. The
most consistently observed patterns are changes in susceptibility
to RNase A at C↓A steps and association of structure changes
with increases in KM in the 59A.G substitutions with tRNAIle

and tRNAGly. Effects of the mutations on tRNase Z processing
are mild, but the window of pathogenicity model (reviewed
in ref. 9) argues that the most damaging mutations would
seldom be observed in human patients due to lethality. If the
effective concentration of tRNase Z is limiting in human
mitochondria, the reduced processing efficiency could contribute

to the pathomechanism of mutation. Observed structure changes
could also affect other steps in tRNA maturation, aminoacylation
or function of the tRNAs in the translation cycle.

Methods

Selection and preparation of tRNA precursors. Three pathogenesis-
related T loop mutations are found in tRNALeu(UUR) [56C.A,

Figure 5. Structure probing of tRNAIle WT and 59A.G variant.
Designations are the same as in Figure 4 .

Figure 6. Structure probing of tRNAGly WT and 59A.G variant.
Designations are the same as in Figure 4 .
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associated with encephalopathy47; 57A.G, associated with
mitochondrial myopathy48 and 60U.C, associated with Mito-
chondrial Encephalopathy, Lactic Acidosis, and Stroke-like
episodes (MELAS)49; Fig. 2A] and three have a substitution at
nucleotide 59 in different tRNAs (tRNAIle 59 A.G, associated
with Fatal Infantile Cardiomyopathy plus a MELAS-associated
cardiomyopathy [FICP47]; tRNAGly 59A.G—associated with
Sudden Infant Death Syndrome [SIDS51], and tRNAHis

59G.A, associated with Maternal Inherited Cardiomyopathy49

and Optic Neuropathy50; Fig. 2B-D).
Three of the four T-loops are canonical in length. tRNAGly is

short by one nucleotide; the numerical ambiguity thus caused
may be resolved by numbering from the 5' side (54-55-56) and

from the 3' side (60-59-58) with the missing nucleotide in the
middle (57).

Ten mitochondrially encoded pre-tRNA genes (wild types and
the pathogenesis-related variants of tRNALeu(UUR), tRNAIle, tRNAGly

and tRNAHis; see Figure 2 for secondary structures) were con-
structed using long overlapping oligonucleotide primers (Sigma-
Genosys). A natural sequence was included at the 3' end of each
precursor long enough to distinguish between the tRNase Z
substrate and product using gel assays: 38 nt for tRNALeu(UUR),
25 nt for tRNAHis, and 20 nt for tRNAIle and tRNAGly, with SmaI
runoff sites for tRNALeu(UUR) and tRNAIle, DraI for tRNAGly and PstI
for tRNAHis (see C panels of Fig. 4–7 for the precursor sequences).

For T7 transcription and to use a cis-acting hammerhead
ribozyme to cleave at +1 of the tRNAs,52 constructs begin with a
T7 promoter followed by strong start (GGGAGA), a 5–7 nt
hybridization box to target the hammerhead to +1, the hammer-
head, tRNA gene, 3' trailer and runoff site. A short universal
forward primer consisting of the EcoRI subcloning site, T7
promoter and strong start and a short tRNA-specific reverse
primer consisting of the BamHI subcloning site, runoff site and
enough tRNA sequence to anneal specifically were used for primer
extension/amplification with VENT DNA polymerase (New
England Biolabs). Inserts were subcloned into the small high copy
vector pHC624 and confirmed by sequencing (Genewiz).

Unlabeled transcripts were prepared from cloned runoff tem-
plates with T7 RNA polymerase accompanied by hammerhead
self-cleavage as previously described15,54 with additional separate
hammerhead reactions if necessary. tRNA precursors were gel
purified, extracted by diffusion and recovered by ethanol preci-
pitation. tRNA concentrations were determined by A260 using a
conversion factor of 950,000 A260 M21 for tRNALeu(UUR) and
875,000 A260 M21 for tRNAs with shorter 3' trailers. tRNA
precursors were 5' end-labeled with T4 polynucleotide kinase
and [c-32P]ATP for 30 min at 37°C, gel purified, visualized by
phosphorimaging and recovered.

3' Processing. Human tRNase ZL was baculovirus-expressed
and affinity purified as described.15 Twenty-five microliter pro-
cessing reactions were performed in a buffer containing 25mM
K-MOPS pH 6.75, 2mM MgCl2 (3mM CaCl2 for tRNALeu

(UUR)), 1mM dithiothreitol, 4 units/ml RNasin, and 100 mg/ml
bovine serum albumin at 37°C. Five ml samples were taken after
5, 10, and 15min of incubation, added to 2.5 ml formamide
marker dye mix, and electrophoresed on denaturing 6% poly-
acrylamide gels. The gels were dried and exposed overnight using
phosphor storage plates, scanned with a Typhoon imager (GE Life
Sciences), and analyzed using ImageQuant software.

To determine processing efficiencies, reactions were performed
at several different enzyme concentrations with a variant and
simultaneously with the corresponding wild type pre-tRNA
using a trace amount of labeled RNA and no added unlabeled
substrate. Under these conditions, the % product/min of reaction
(V/[S]) approximates the first order rate constant kcat/KM. Steady-
state kinetic experiments were performed at a tRNase ZL

concentration of 10 pM using 2, 5, 10, 20, and 50 nM unlabeled
substrate with a constant (trace) concentration of labeled sub-
strate for visualization. For tRNAIle 59A.G, both tRNase ZL

Figure 7. Structure probing of tRNAHis WT and 59G.A variant.
Designations are the same as in Figure 4 .
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concentration and the substrate range were 5X higher than for the
other reactions. Michaelis-Menten plots (SigmaPlot) were used to
determine kcat, KM, and processing efficiencies (kcat/KM; Fig. 3;
Table 2) and the same parameters relative to wild type for each
variant. Concentrations of tRNase Z and unlabeled tRNA were
independently checked using fluorescently stained protein and
RNA gels with appropriate standards and corrections were
introduced for calculation of kinetic parameters. Experiments
were repeated until acceptable standard errors were obtained for
all kinetic parameters.

Structure Probing. Structure probing was performed as
previously described (13). Under non-denaturing conditions, T1
cleaves after unstructured Gs, RNase A after unstructured
pyrimidines, If in unstructured regions and V1 in stems and
otherwise structured regions. Although not strictly confined to
structured RNA regions,53 nuclease V1 is reliable enough to make
useful comparisons between wild type and variant.

Reactions were terminated with 5 ml formamide marker dye
mix and placed at -20°C. Concentrations of 32P-labeled tRNAs
were sufficient for visualization on overnight exposure. Six
microliter samples were loaded directly and electrophoresed on
6% and 8% denaturing urea-polyacrylamide gels. Imaging and
analysis were performed as described above. A RNA refolding
protocol did not affect results.
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