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Abstract

Myoferlin (MYOF) is a mammalian ferlin protein with homology to ancestral Fer-1, a nematode protein that regulates
spermatic membrane fusion, which underlies the amoeboid-like movements of its sperm. Studies in muscle and endothelial
cells have reported on the role of myoferlin in membrane repair, endocytosis, myoblast fusion, and the proper expression of
various plasma membrane receptors. In this study, using an in vitro human breast cancer cell model, we demonstrate that
myoferlin is abundantly expressed in invasive breast tumor cells. Depletion of MYOF using lentiviral-driven shRNA
expression revealed that MDA-MB-231 cells reverted to an epithelial morphology, suggesting at least some features of
mesenchymal to epithelial transition (MET). These observations were confirmed by the down-regulation of some
mesenchymal cell markers (e.g., fibronectin and vimentin) and coordinate up-regulation of the E-cadherin epithelial marker.
Cell invasion assays using Boyden chambers showed that loss of MYOF led to a significant diminution in invasion through
Matrigel or type I collagen, while cell migration was unaffected. PCR array and screening of serum-free culture supernatants
from shRNAMYOF transduced MDA-MB-231 cells indicated a significant reduction in the steady-state levels of several matrix
metalloproteinases. These data when considered in toto suggest a novel role of MYOF in breast tumor cell invasion and a
potential reversion to an epithelial phenotype upon loss of MYOF.
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Introduction

Breast cancer is the second leading cause of cancer mortality in

women [1], with the majority of the deaths due to metastatic

rather than localized disease [2]. Unrestrained cell division elicited

by somatic and/or germline mutations in several oncogenes and

tumor suppressor genes such as TP53 and Rb, and resistance to

programmed cell death are hallmarks of tumorigenesis [3,4]. For

tumor cells to efficiently metastasize, they often undergo a

pernicious transformation characterized by dramatically increased

migration and invasive capacity. Specifically, the spread of cancer

from a localized, self-contained tumor through tissue stroma and

into distant organs requires that cells achieve atypical, robust

motility and the capacity to aggressively degrade extracellular

matrix (ECM), enabling them to invade surrounding tissues and

vessels of the blood and lymphatic systems, and subsequently

establish nascent, secondary tumors [5,6].

The enhanced migration and invasive capacity of metastatic

tumor cells are the subject of intense investigation, and it is now

appreciated that several forms of cancer cell motility exist (i.e.,

single-cell, mesenchymal and amoeboid, protease-dependent,

protease-independent, and collective migration) [7,8]. Consider-

able progress has been made in identifying the potential molecular

components that mediate cell migration, and there is growing

evidence that intracellular vesicle trafficking of key proteins is

crucial for efficient migration [9]. In tumor cell migration, the

recycling of focal adhesion proteins (i.e., integrin receptor

recycling) through endocytosis/exocytosis is now thought to

contribute to the maintenance of polarized movement [10,11].

Moreover, endocytosis/exocytic trafficking has been implicated in

the delivery of proteolytic enzymes - including matrix metallopro-

teinases (MMPs) - to invadopodia, specialized protrusions utilized

by cells for degradation of ECM [12,13].

Ferlin proteins, an evolutionarily ancient family of large

integral membrane proteins [14], have been implicated in

vesicle trafficking in a variety of physiological settings. All

mammalian ferlins derive their names based on homology to

the C. elegans protein FER-1 (FERtilization defective-1). In

roundworms, fer-1 is required for the fusion of specialized

vesicles (membranous organelles) with the plasma membrane at

the leading edge of cell migration in spermatozoa; in the
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absence of functional FER-1 protein, the normal amoeboid

locomotion of sperm is impaired, and infertility results [15].

Human patients harboring FER1L1 (FER-1-like 1, dysferlin)

mutations manifest one of two autosomal recessive forms of

muscular dystrophy - limb girdle muscular dystrophy type 2B

and Myoshi myopathy [16], due to the inability of skeletal

muscle fiber sarcolemma to repair damaged muscle cells during

the normal course of biomechanical wear and tear [17–19].

Mutations in FER1L2 (otoferlin) result in non-syndromic

deafness (DFNB9), due to the failure of synaptic vesicles to

fuse and exocytose their cargo at the presynaptic plasma

membrane [20,21]. FER1L3 (myoferlin, MYOF), historically

considered to be a muscle-specific protein, has not yet been

directly associated with a distinct mammalian disorder, but

recent studies have indicated that its deletion results in impaired

mouse myoblast fusion into mature skeletal myotubes [22].

Furthermore, MYOF has been shown to mediate caveolae-

dependent endocytosis in human endothelial cells [23].

Recent reports indicate that MYOF is critically involved in the

function and/or stability of plasma membrane receptor tyrosine

kinases (RTKs). Bernatchez et al. demonstrated that ablation of

MYOF in vascular endothelial cells resulted in instability and

rapid degradation of the vascular endothelial growth factor

receptor 2 (VEGFR-2) [24]. Further research demonstrated that

the expression of another angiogenic tyrosine kinase receptor, Tie-

2, is also attenuated upon MYOF depletion in endothelial cells

[25]. Finally, Demonbreun et al. reported that knockout of MYOF

in mouse muscle resulted in diminished insulin-growth factor-1

receptor (IGFR) response and accumulation of the receptors in

vesicles targeted for degradation [26].

The studies reported above when considered in toto suggest

that MYOF may be a regulator of vesicle fusion events that

deliver essential cargos (e.g., growth factor receptors, cell

adhesion molecules, and other cell-surface proteins) to and/or

from the plasma membrane. Inasmuch as tumor cell metastatic

dissemination involves the convergence of receptors, signal

transduction pathways, adhesion and matrix proteolytic mole-

cules at the leading edge of a tumor cell, we proposed that

MYOF (and perhaps other ferlin proteins) may be involved in

one or more steps in tumor progression and/or spread.

Microarray and proteomic studies in the cancer literature have

reported MYOF expression in breast cancer specimens and

relevant cell lines [27–29]. For example, in one microarray

study, MYOF was 1 of 39 genes found to be over-represented

in breast carcinoma [28]. These observations prompted us to

hypothesize that MYOF may be an important protein in breast

cancer cells for their mobilization during cellular migration

and/or invasion.

We recently reported on the mathematical modeling of the

role of MYOF in breast cancer cell invasion [30]. In the

current manuscript, we present novel data confirming the

computational modeling and show, in addition, that MYOF-

deficient MDA-MB-231 human breast cancer cells exhibit a

more epithelial shape compared to the mesenchymal morphol-

ogy of wild-type MDA-MB-231 cells, suggesting that some

features of a mesenchymal-to-epithelial transition (MET) phe-

notype [31] may exist in the absence of functional MYOF

protein. Matrigel and collagen I based invasion assays demon-

strated that depletion of MYOF diminished the invasive ability

of cancer cells. In congruence with the mathematical modeling

results, we report that the decreased invasive capacity is due, at

least in part, to the down-regulation of MMP expression in

MYOF-deficient cells.

Results

Myoferlin in Breast Cancer Cells Correlates with Cell
Invasiveness

To correlate the expression of MYOF with the invasive capacity

of breast cancer cells, we analyzed five mammary cell lines: MCF-

10A, MCF-7, T47D, BT549, and MBA-MB-231. The MCF-10A

line was chosen as a model for non-cancerous, non-invasive

mammary epithelial [32]. MCF-7 and T47D cells model non2/

low-invasive breast cancers, while BT549 and MDA-MB-231 have

high invasive capacity [33].

Examination of MYOF mRNA expression in each of the cell

lines indicated that MYOF expression was 2.44-fold higher in the

invasive lines (BT549 and MDA-MB-231) relative to non2/low-

invasive cells (MCF-10A, MCF-7, and T47D) (Figure 1A and B).

In congruence, higher MYOF protein expression was observed by

immunoblotting in the highly-invasive breast cancer cell lines

relative to those with low invasive potential (Figure 1C). To

expand upon this, we examined the transcriptional profiling data

available on 51 established breast cancer lines generated by Neve

and colleagues (http://cancer.lbl.gov/breastcancer/data) [34].

Those 14 cell lines which clustered into the invasive, basal B-like

subset exhibited statistically significantly greater MYOF expression

compared to the 25 cell lines of the luminal phenotype as

determined by two MYOF probesets (201798_s_at and

211864_s_at, Figure S1).

Building on these observations, we mined published microarray

data available through the ArrayExpress database (www.ebi.ac.

uk/arrayexpress) [35]. Our query returned microarray data

(accession: E-TABM-276) from Cheng et al. [36] consisting of a

panel of 23 microdissected primary invasive ductal carcinoma

tissues, 28 adjacent stromal tissues, and 10 healthy controls. When

MYOF expression was categorized by disease state, we observed

significantly higher MYOF mRNA expression in tissues from

patients with invasive ductal carcinoma compared with samples

from healthy individuals (Figure S2). Collectively, these data

suggest a potential correlation between MYOF over-expression

and invasive breast carcinoma.

Myoferlin Knockdown Promotes a Mesenchymal to
Epithelial Change

Given a possible association between MYOF expression and

invasive potential, we examined whether MYOF contributed to

breast cancer cell invasion. We selected the MDA-MB-231 cells

for these experiments since they exhibited high levels of MYOF

protein expression in our survey, and were previously shown to

have the greatest invasive capacity compared to a large panel of

breast cancer cell lines [34]. Stable lines of MYOF-deficient

MDA-MB-231 cells (231MYOF-KD) were generated using lentivi-

rus-based delivery of short hairpin ribonucleic acids (shRNAs)

targeting human MYOF (Figure S3). Control cell lines (231LTV-ctrl)

were generated in parallel using a non-human gene targeting

construct. Selective knockdown of MYOF protein expression was

confirmed by immunoblotting (Figure 1D). Of the three constructs

initially screened (#10628, 10630, and 1522), #10628 yielded the

most efficient knockdown (mean 94% compared with controls,

n = 4) and was used in subsequent experiments.

An unexpected, but interesting shape change appeared in the

231MYOF-KD cells, wherein they exhibited a more epithelial-like

(cobblestone) morphology which diverged from the fibroblastic,

spindle shape of the wild type and 231LTV-ctrl cells (Figures 2 and

3). The 231MYOF-KD morphology was stable, and was maintained

after 10 continual passages in culture (data not shown). By

immunofluorescent microscopy, we noted that 231MYOF-KD cells

Myoferlin in Breast Cancer EMT & Invasion
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formed more cell clusters relative to control cells. When examined

in greater detail using atomic force and scanning electron

microscopy, the morphological divergence between 231MYOF-KD

and control cells was very prominent (Figure 3). At the cellular

level, 231LTV-ctrl cells often appeared elongated with tapering

cytoplasmic poles, having one or more small lamellipodia and

relatively short filopodia, and actin filaments oriented along the

long axis of the cell (Figure 3). In contrast, 231MYOF-KD cells

exhibited a flattened, polygonal shape with broad lamellipodia,

and elongated filopodia that tended to orient toward neighboring

cells. Collectively, these results suggested a potential reversion of

epithelial-mesenchymal transition, i.e., mesenchymal-epithelial

transition (MET), at the morphology level.

The MET-like morphological changes prompted us to examine

whether the expression of common epithelial-mesenchymal

transition (EMT) markers (e.g. vimentin, fibronection, N-cadherin,

and E-cadherin) was affected by MYOF depletion. By immuno-

blotting, 231MYOF-KD cells expressed higher levels of the epithelial

marked E-cadherin, and lower levels of mesenchymal markers,

fibronectin and vimentin, than 231LTV-ctrl cells (Figure 4). MDA-

MB-231 cells do not natively express N-cadherin, so it was not

surprising that N-cadherin was undetectable in 231LTV-ctrl and

231MYOF-KD cells (data not shown). The results of this screen of

EMT markers suggest that the morphologic shift associated with

MYOF-depletion may be correlated with MET changes at the

molecular level. In a survey using a qRT-PCR-based array of

Figure 1. Myoferlin expression in breast cancer. (A) Quantitative RT-PCR results of MYOF mRNA levels in a panel of breast cancer cell lines,
normalized to 18 S and compared to the nonmalignant breast epithelial cell line MCF-10A (mean 6 s.d., n = 3 per cell type). No statistical significance
was detected in comparing pairs of cell lines (Kruskal-Wallis with Dunn’s multiple comparison test). (B) Representation of the data in subpanel A
grouped by known invasive capacity of the cells (2 tailed, p = 0.003, Mann Whitney). (C) Immunoblotting for MYOF in breast cancer cell lines.
Densitometry measurements was done by normalizing the density of MYOF to respective GAPDH or actin staining, and further normalized to the
nonmalignant mammary epithelial cell line MCF-10A (n = 4, no statistical significance detected by Kruskal-Wallis with Dunn’s multiple comparison
test). An immunoblot image is shown in the subpanel. (D) Myoferlin knockdown in breast cancer cells. Immunoblot showing the expression of MYOF
in MDA-MB-231 wild type (WT), lentiviral transduction control (LTV-ctrl), and MYOF knockdown cell lysates using three Sigma-Aldrich MISSIONH
shRNA constructs (#1522, 10628, and 10630).
doi:10.1371/journal.pone.0039766.g001
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EMT markers, we found that the mRNA levels appeared to

correlate with the Western results in that fibronection mRNA was

down-regulated 3.46-fold while that of E-cadherin was up-

regulated 2.58-fold in 231MYOF-KD cells compared with controls,

although no significant change was found for vimentin (Table S1).

Myoferlin Depletion Does Not Alter Cell Proliferation or
Cell Cycle Distribution

We next subjected 231LTV-ctrl and 231MYOF-KD cells to

proliferation assays. First, to assess general proliferative status,

MTS assays were conducted on wild-type, 231LTV-ctrl, and

231MYOF-KD cells. We observed no change in the growth rates

of the three cell types (Figure S4A), indicating that MYOF does

not profoundly alter tumor cell growth. To verify this result, we

then carried out cell cycle analysis on the three cell types. Again,

we detected no change in cell cycle activity in MYOF-depleted

cells compared to wild-type or 231LTV-ctrl cells (Figure S4B).

Myoferlin Depletion Attenuates Cell Invasiveness
MYOF deficiency was not associated with a change in

chemotaxis (Figure 5A) in Boyden chamber assays when 10%

fetal bovine serum was used as the chemoattractant. However,

231MYOF-KD cells exhibited a significant ,38% reduction in

invasiveness into Matrigel relative to 231LTV-ctrl cells (Figure 5B).

These results suggest that targeted disruption of MYOF expression

selectively attenuates invasiveness through reconstituted basement

membrane matrix, with little effect on chemotactic migration.

Myoferlin Depletion Alters MMP Expression
The reduced invasive capacity of 231MYOF-KD cells led us to

study whether proteins associated with tumor-microenvironment

interactions may be altered following MYOF depletion. Specifi-

cally, given that MYOF has been implicated in exocytosis [37], we

hypothesized that its depletion might decrease the secretion of

matrix metalloproteinases (MMPs) and/or tissue inhibitors of

MMPs (TIMPs), as these are vital endopeptidases for degrading

Figure 2. Morphology change following myoferlin depletion in MDA-MB-231 cells. Immunofluorescence micrographs showing the
morphology of MDA-MB-231 wild type (WT), lentiviral transduction control (LTV-ctrl), and myoferlin knockdown (MYOF-KD) stable cell lines in culture.
Note the more epithelial morphology of MYOF-KD cells compared to the more mesenchymal appearance of the WT and LTV-ctrl cells. Bar = 50 mm.
doi:10.1371/journal.pone.0039766.g002
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ECM constituents [38]. To that end, we collected 24 hour

conditioned, serum-free supernatants from 231LTV-ctrl and

231MYOF-KD cells and performed an array-based multiplex

sandwich ELISA to screen the expression of several of these

endopeptidases and their regulators (Figure S5). We observed a

reduction in the secretion of MMP-1, -2, -3, and -8 from 231MYOF-

KD cells (MMP-2, -3, and -8 were undetectable in 231MYOF-KD

cells). MMP-13 levels were not drastically affected, while in

contrast, levels of MMP-9 and -10 were elevated in 231MYOF-KD

cells. In addition, the 231MYOF-KD cells had reduced levels of

TIMP-4, but no notable changes in TIMP-1 and -2 releases were

evident. Of the detectable MMPs, the most pronounced change

was the decrease in secreted MMP1. However, given the small

sample size of this screening experiment (n = 1), statistical analysis

could not be performed to validate the significance of the observed

fold changes. Therefore, to validate the change in MMP1,

multiple biological replicates of concentrated 24 hour supernatant

from 231LTV-ctrl and 231MYOF-KD cells were subjected to

immunoblotting (Figure 6A), and secreted MMP1 was verified to

be decreased in 231MYOF-KD cells compared to controls. We also

confirmed the diminution (,97%) of pro-MMP1 secretion into the

extracellular milieu by solution-phase ELISA of 231LTV-ctrl and

231MYOF-KD cells (Figure 6B). To confirm the functional

association between MYOF knockdown and MMP1 depletion,

we investigated the invasive capacity of 231MYOF-KD cells through

a collagen I matrix, since fibrillar collagen is a key substrate for the

MMP1 enzyme [39] and Matrigel lacks collagen I [40]. In support

of these previous observations, 231MYOF-KD cells exhibited a

,62% reduction in invasion through collagen I matrix compared

with 231LTV-ctrl cells (Figure 6C).

We next tested whether MMP1 expression was diminished at

the transcriptional level using qRT-PCR. Surprisingly, MMP1

mRNA levels were reduced over an average 18.8-fold in 231MYOF-

KD cells when compared with the 231LTV-ctrl cells (Figure S6). This

finding of MMP1 mRNA down-regulation in 231MYOF-KD cells

was striking, as there have been no reports from other laboratories

suggesting that MYOF may contribute to gene expression

regulation. Since the diminution of MYOF in the MDA-MB-

231 cells was mediated by shRNA (which mimics the function of

microRNA molecules [41]), we recognized the potential that

Figure 3. Morphology change following myoferlin depletion in MDA-MB-231 cells. Atomic force and scanning electron microscopy images
showing the spindle, elongated shape of lentiviral control (LTV-ctrl) cells and the more flat and circular morphology of myoferlin depleted (MYOF-KD)
cells. AFM imaging shows pronounced actin stress fibers (black arrows) oriented along the long axis being evident in the control but not in the MYOF
depleted cells. Cytoplasmic poles, lamellipodia and filopodia are observable in the SEM images. White arrowheads indicate the leading edge of cells.
doi:10.1371/journal.pone.0039766.g003
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MMP1 mRNA could be down-regulated as an off-target effect of

the RNAi targeting construct. We therefore screened additional

MYOF-targeting shRNA constructs. Although two constructs

(Figure S3) yielding partial MYOF knockdown (mean 64–66%

knockdown compared with controls, n = 4) were not associated

with reductions in MMP1 (data not shown), an additional

construct (#320398) that targets the coding sequence of MYOF

(Figure S3) resulted in a mean of 91% MYOF knockdown (n = 3)

and was also associated with significant reductions in MMP1

release (Figure S7A and B).

In addition, we performed an extensive in silico analysis to

examine potential off-target effects of construct #10628. A search

through the human nucleotide database for sequences similarity to

the 21 nucleotide sequence of #10628 did not reveal MMP1 as a

transcript with significant alignment (BLASTN version 2.2.24+)

[42]. A search through the microRNA database TargetScan

Custom (http://www.targetscan.org/, release 5.1, accessed Octo-

ber 10, 2010) using the 2–8 mer sequence of ‘‘CTCTACT’’ from

the #10628 construct did not show MMP1 to be a potential

target. Construct #10628 is from a clone cataloged by the RNAi

Consortium (http://www.broadinstitute.org), and a search

through the consortium database did not show the MYOF

shRNA construct as a non-targeting clone with matching

transcripts in the MMP1 gene. Finally, the construct sequence

was placed into the miRBase [43] to search against known

miRNAs. There were no matches of the sequence against mature

miRNAs, and all matches to stem-loop sequences using the

SSEARCH method were from non-human species (silk worm,

mosquito, and platypus) and were not significant (E-value

..0.01).

We did additional PCR screening using a commercial

extracellular matrix and adhesion molecules array to profile the

expression of MMP genes (Table S2). The screen validated the

MMP1 PCR results showing down-regulation of MMP1 mRNA in

231MYOF-KD cells. Specifically, of the four MMPs (MMP1, 10, 11,

14) expressed at reasonable levels in the MDA-MB-231 cells (i.e.

Figure 4. Expression of EMT markers following myoferlin depletion in MDA-MB-231 cells. (A) Representative immunoblots (n = 3) of
select EMT markers in lentiviral control (LTV-ctrl) and myoferlin depleted (MYOF-KD) cells serum-starved for 24 h. (B) Graphs illustrating the semi-
quantitative evaluation of the expression of EMT markers by densitometry analysis of blots (n = 3). Density was presented in the graph as ‘‘relative
density (%)’’ with density of lentiviral controls normalized to 100%, and statistical testing was done with the 1-sample t-test.
doi:10.1371/journal.pone.0039766.g004
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Cp value ,30), only MMP1 was found to be significantly

regulated ($ 62 fold-change) at the transcription level by MYOF-

depletion.

Discussion

We provide in silico and experimental evidence that MYOF

plays a critical and previously unrecognized role in breast tumor

cell invasion. Mining of transcriptome and proteome databases

from breast cancer cell lines revealed higher levels of MYOF

mRNA and protein in the more invasive lines compared with

poorly invasive breast tumor cells or normal mammary epithelial

cells (i.e., MCF-10A). Published microarray datasets using breast

cancer cell lines [34] also support greater MYOF expression in the

invasive basal B group compared with the luminal subtype. In a

separate study, MYOF was found to be 1 of 39 genes selectively

over-expressed in breast carcinoma using 20 human breast cancer

cases [28]. These data suggested to us that MYOF is a potentially

important protein in breast cancer biology.

The premise that MYOF contributes to cancer invasion was

based on several reports implicating a role for ferlin proteins in

intracellular vesicle trafficking, including cell motility. For

example, Ward and colleagues demonstrated that temperature-

sensitive mutations in the ancestral fer-1 gene in C. elegans led to

fertility impairments yielding immotile spermatozoa secondary to

defects in vesicle recycling at the leading edge of the cell [15,44].

Mechanistically, mutations in C2 domains of fer-1 altered calcium

sensitivity and subsequently impeded calcium-dependent fusion of

intracellular vesicles to the plasma membrane that drives the

amoeboid movement of the roundworm sperm cells [15]. Vesicle

trafficking has been implicated in several important steps during

cell motility [9]. Based on these observations, coupled with the

observation that MYOF expression was increased in breast cancer

specimens and breast cancer cell lines with high invasive potential,

we hypothesized that MYOF depletion would impair the motility

of breast cancer cells. And this appeared to be the case. End-point

Boyden chamber assays accessing cell motility initially detected no

overall change in migration during a 24 hour assay period. This

was somewhat surprising in light of the work of Achanzar et al.

[45] demonstrating that mutation of fer-1 resulted in profound

defects in amoeboid migration of C. elegans sperm cells. However,

recent work from our lab using live-cell imaging clearly shows that

MYOF depletion leads to fundamental changes in the mode of

breast tumor cell motility (Volakis et al., in preparation, J

Biomechanics), suggesting that MYOF loss also contributes to

disturbances in cell migration on two-dimensional surfaces (work

in progress).

Tumor cell invasion into distant tissues to establish secondary

malignancies is a hallmark of cancer metastasis and cancer-related

death [4]. In many cases, enhanced tumor cell migration as well as

local and distant invasion are preceded by an EMT that converts

sessile epithelial cells into actively migratory and invasive cells

[46,47]. In order for efficient migration and invasion to occur, in

many instances cancer cells must secrete several MMPs for

basement membrane and stromal ECM degradation [48]. We

probed the invasive capacity of breast tumor cells (MDA-MB-231)

following shRNA directed depletion of MYOF (shRNAMYOF), and

noted a profound deficit in the ability of cells to invade through

Matrigel (basement membrane mimic) [49] and collagen type I

(stromal ECM mimic) [50]. These observations indicated that

MYOF disruption may perturb one or more MMPs that are

essential for effective cell invasion through the ECM or collagen I

[48]. Indeed, screens of several MMPs using qRT-PCR and

protein immunoassay arrays suggested that MMPs-1, 3, 8, 12, 13,

14, and 16 were down-regulated in MDA-MB-231 cells in which

MYOF was knocked down by RNAi (Figure S5 and Table S2).

Interestingly, MMP-9 appeared to be up-regulated under these

same conditions, indicating the MYOF depletion results in

selective changes in MMPs.

To evaluate the effect of abolishing MYOF on MMP

expression, we probed MMP-1 further, because our data revealed

a nearly complete loss of MMP-1 when shRNAMYOF was

expressed in MDA-MB-231 cells. Quantitative RT-PCR and

Western blotting showed essentially no detectable MMP-1 mRNA

or protein in 231MYOF-KD cells. Moreover, we detected virtually

no pro-MMP-1 reactive protein by ELISA. Thus, it appears that

MYOF may play a role in MMP gene expression in addition to

other mechanisms it may influence, such as MMP secretion via

vesicle trafficking. We are currently exploring the mechanistic

basis for this apparent alteration in MMP gene expression in

human breast tumor cells.

To authenticate that our shRNA results were not due to off-

target effects on the MMP mRNAs, we conducted an extensive in

silico analysis using several software packages available in the

Figure 5. Myoferlin depletion reduces invasive but not migratory capacity of MDA-MB-231s control (LTV-ctrl) and MYOF depleted
cells (MYOF-KD). (A) Boyden chamber migration assay of MDA-MB-231 cells moving across 8 mm porous membranes towards a 10% serum
gradient for 24 h (mean 6 s.d., n = 3, unpaired 2-tailed t-test). (B) 24 h Boyden chamber invasion results of MDA-MB-231 cells across a 100% Matrigel
coated 8 mm porous membrane towards a 10% serum chemoattractant (mean 6 s.d., n = 3, unpaired 2-tailed t-test).
doi:10.1371/journal.pone.0039766.g005
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public domain and verified that none of the shRNAMYOF

constructs predicted the targeting of any nucleic acid sequences

within the human MMP-1 gene. In addition, we found MMP1

expression to be also down-regulated when MYOF expression

was knocked down using an alternative shRNA construct with

similar knock down efficiency.

Another unanticipated finding in the current studies was the

partial reversion of the mesenchymal-like shape in wild-type and

control MDA-MB-231 cells to a more epithelial-like phenotype in

231MYOF-KD cells. We verified this potential MET event using

immunofluorescence, scanning, and atomic force microscopy. In

addition, we also demonstrated the likelihood of an MET in the

setting of depleted MYOF using immunoblotting that revealed

down-regulation of fibronectin and vimentin and up-regulation of

E-cadherin.

In a recent paper from our group, MYOF depletion was shown

to lead to the down-regulation of the phosphorylation of several

receptor tyrosine kinases, including EphB4, FGFR2, Hck, IGF-IR,

JAK2, TXK, VEGFR2 [30]. This observation is in agreement

with the work of Demonbreun et al. demonstrating that loss of

MYOF led to impaired insulin-like growth factor I receptor (IGF-

IR) signaling in a murine model [51]. In separate reports, MYOF

was shown to be required for Tie-2 (angiopoietin-1 receptor)

activation [25] and vascular endothelial growth factor receptor 2

(VEGFR-2) expression in vascular endothelial cells [24]. More-

over, Sharma et al., showed that disruption of dysferlin, a close

molecular cousin of MYOF, in endothelial cells led to poly-

ubiquitination and proteasomal degradation of platelet endothelial

cellular adhesion molecule-1 (PECAM-1/CD31) signaling [52].

These data, when considered collectively and in the context of

our breast tumor cell investigations, implicate MYOF as a critical

participant in key processes within the intracellular vesicle

trafficking mechanism including cell motility, MMP expression/

secretion, and RTK activation. Our work is the first examination

of the role of MYOF in cancer cell biology and may shed light on

essential features of vesicle shuttling of important cargos within

tumor cells that participate in cancer progression and metastasis.

Materials and Methods

Cell Culture Methods and Cell Line Authentication
Human MCF-10A (generously provided by Dr. Joan Brugge,

Boston, MA, [32,53]), MCF-7 (HTB-22, ATCC, Bethesda, MD),

MDA-MB-231 (HTB-26, ATCC), T47D (HTB-133, ATCC), and

BT549 (generous gift from Dr. Lisa Yee, Columbus, OH; HTB-

122, ATCC) cells were used in this study. MCF-10A cells were

maintained in Dulbecco’s Modified Eagle Medium Ham’s F12

(DMEM/F12, Gibco, Carlsbad, CA) supplemented with 5% horse

serum (Gibco), 20 ng/ml hEGF (PeproTech, Rocky Hill, NJ),

0.5 mg/ml hydrocortisone (Sigma-Aldrich, St. Louis, MO),

100 ng/ml cholera toxin (Sigma-Aldrich), 10 mg/ml bovine insulin

(Sigma-Aldrich), and 1% penicillin/streptomycin (Gibco). MCF-7

and MDA-MB-231 cells were maintained in DMEM with 4.5 g/L

D-glucose supplemented with 10% fetal bovine serum (FBS,

Gibco). T47D and BT549 cells were cultured in RPMI-1640 with

10% FBS.

The cell lines used in this study were authenticated by DNA

profiling using short tandem repeat (STR) analysis on a

PowerPlex 1.2 System (Promega, Madison, WI) at John Hopkins

University (Fragment Analysis Facility, Baltimore, MD). Fur-

Figure 6. Myoferlin depletion attenuates MMP1 expression
and collagen I invasion capacity of MDA-MB-231 cells. (A)
Representative (n = 3) immunoblotting results of secreted MMP1 in 24 h
serum starved supernatant of MDA-MB-231 lentiviral control (LTV-ctrl)
and myoferlin knockdown (MYOF-KD) cells. Recombinant human matrix
metalloproteinase-1 was used as a standard. Verification of myoferlin
knockdown was done in the corresponding cell lysates with GAPDH as a
loading control. (B) Secreted pro-MMP1 was evaluated in 231LTV-ctrl and
231MYOF-KD cells (n = 2) using ELISA (mean 6 s.d., Kruskal-Wallis test/
Dunn’s multiple comparison analysis). (C) Results from Boyden chamber
invasion assays using a coating of 3 mg/ml of rat tail collagen I to

evaluate the invasive capacity of 231LTV-ctrl and 231MYOF-KD cells (n = 3,
mean 6 s.d., Kruskal-Wallis test/Dunn’s multiple comparison analysis).
doi:10.1371/journal.pone.0039766.g006
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thermore, to rule out cell line contamination as the cause for

the morphology changes seen in MDA-MB-231 myoferlin-

deficient cells (231MYOF-KD), the identity of the 231MYOF-KD

cells as MDA-MB-231s was also authenticated through short

tandem repeat profiling.

Lentiviral shRNA Transduction
Recombinant lentiviral particles containing non-target control

shRNA and human myoferlin targeted shRNA

(TRCN0000010628, TRCN0000010630, TRCN0000001522,

and TRCN0000320398, Figure S3) in the pLKO.1 vector were

purchased from Sigma-Aldrich (MISSIONH). The myoferlin

constructs are referred to as #10628, #10630, #1522 and

#320398, respectively, in the body of the manuscript. For

lentiviral transduction, cells were seeded in 24-well culture plates

and incubated overnight at 37uC in 5% CO2 in a humidified

atmosphere. Media was replaced with media containing 8 mg/ml

hexadimethrine bromide (Sigma-Aldrich) and lentiviral particles

were added to subconfluent at a multiplicity of infection (MOI) of

at least 1. After overnight incubation (37uC, 5% CO2), virus-

containing supernatant was replaced with complete media and

incubated overnight. Transduced cells were selected in media

containing an appropriate puromycin concentration as predeter-

mined by a puromycin kill curve.

RNA Extraction and Quantitative Real Time-Polymerase
Chain Reaction (qRT-PCR)

Total RNA was extracted using TRIzolH reagent (Invitrogen,

Carlsbad, CA) according to the manufacturer’s protocol up to the

chloroform extraction and centrifugation step. The resulting

aqueous phase was mixed with an equal volume of 70% ethanol

and applied to an RNeasy mini column (QIAGEN, Valencia, CA)

and processed according to the manufacturer’s protocol with on

column DNAse digestion. Total RNA was quantified by UV

absorbance at 260 nm and 280 nm on a NanoDrop 2000

(Thermo Scientific, Waltham, MA), and 1–2 mg total RNA from

each sample were reverse-transcribed to cDNA using oligo-dT18

and random hexamer primers with a Transcriptor First Strand

cDNA Synthesis Kit (Roche Applied Science, Indianapolis, IN).

Quantitative RT-PCR was performed using an equal amount of

cDNA per sample on a LightCyclerH 480 II System (Roche

Applied Science) using primer-probe sets specific to MYOF,

MMP1, RLPO and 18 S rRNA (Applied Biosystems, Carlsbad,

CA) with the LightCyclerH 480 Probes Master Mix, and results

analyzed with the LightCyclerH 480 Software.

Immunofluorescence
MDA-MB-231 cells cultured on glass coverslips and serum-

starved for 24 h were fixed for 1 h in 4% (w/v) paraformalde-

hyde/PBS, permeabilized for 15 min with 0.2% (v/v) Triton X–

100/PBS, and blocked for 1 h in 5% normal goat serum/1%

nonfat dry milk/PBS. Samples were incubated with antibodies

directed against myoferlin (1:400, Sigma) overnight at 4uC. After

washing, cells were exposed to fluorochrome-conjugated second-

ary antibodies (Molecular Probes). After further stringent washing

in PBS, actin cytoskeleton was stained with AlexaFluor 488-

phalloidin (Molecular Probes) for 20 min. Nuclei were stained and

cells mounted with ProLongH Gold Antifade Reagent with DAPI

(Invitrogen) and visualized with confocal laser scanning microsco-

py (Olympus FV 1000 Spectral Confocal system; Olympus

America Inc., Center Valley, PA).

Atomic Force (AFM) and Scanning Electron Microscopy
(SEM)

MDA-MB-231 lentiviral control and myoferlin-deficient cells

were seeded in 60 mm cell culture dishes (5–86105 cells), and

allowed to grow to 80–90% confluence for AFM analysis. Prior to

AFM analysis, culture media was exchanged for CO2 independent

media (Invitrogen) supplemented with 1% FBS, 1% Penicillin/

Streptomycin and 4 mM L-Glutamine, for optimal cell survival

during the atomic force measurements. A Bioscope II instrument

(Veeco, Plainview, NY) mounted on the stage of an Axiovert 200

inverted optical microscope (Zeiss, Oberkochen, Germany) was

used in contact mode for live cell imaging. Silicon nitride (SiN)

triangular cantilevers (Veeco) 200 mM in length with a tip angel

h= 35u and a nominal spring constant k of 0.01 N/m were used to

image the cells. Image acquisition was done at a scanning rate of

0.5 Hz with 5126512 lines resolution for recording the height and

the deflection channels. All images were recorded with a scan size

area of 70–80 mm2 covering ,5 cells, with 4–5 areas completed

per cell type. The experiments were repeated three times and the

data were analyzed using version 7.30 of the NanoScope software

(Veeco).

For SEM, cells cultured on thermoplastic coverslips (Therma-

noxTM, Nunc, Waltham, MA) were fixed with 3% glutaraldehyde,

post-fixed with 1% OsO4 and dehydrated through an ethanol and

hexamethyldisilazane series. Samples were mounted onto SEM

studs and prepared for SEM using a Pelco Model 3 sputter coater

with gold-palladium (0.07 mbar, 17 mA, 110 s) and imaged with

an FEI Nova NanoSEM microscope (FEI Company, Hillsboro,

OR).

Protein Extraction and Immunoblotting
Cells were rinsed with PBS and lysed for 30 min in cold RIPA

lysis buffer supplemented with protease inhibitor cocktail (Sigma-

Aldrich) and 1 mg/ml of pepstatin A (USB, Santa Clara, CA). Cell

lysates were centrifuged for 10 min at 17,0006g and 4uC.

Supernatant aliquots were assayed for protein concentration using

the BCA Protein Assay (Pierce, Rockford, IL) with bovine serum

albumin as a standard. Total protein from each lysate (30 mg per

lane) were resolved by SDS-PAGE and transferred to nitrocellu-

lose membranes. Non-specific binding was blocked by incubation

in Tris-buffered saline (pH 8) containing 0.1% Tween-20 and 5%

non-fat dry milk. Membranes were probed with primary

antibodies against: b-actin (Santa Cruz Biotechnology, Santa

Cruz, CA), GAPDH (Chemicon, Billerica, MA), myoferlin (Sigma-

Aldrich), E-cadherin (EP700Y, Abcam, Cambridge, MA), vimen-

tin (Sigma-Aldrich V6630), or MMP1 (R&D Systems, Minneap-

olis, MN) diluted in blocking solution. After washing, membranes

were exposed to horseradish peroxidase-conjugated secondary

antibodies and immune complexes were revealed with Super-

Signal West Femto chemiluminescent substrate (Pierce), visualized

using the VersaDoc Imaging System and analyzed with Quantity

One analysis software (Bio-Rad, Hercules, CA).

Supernatant Collection and Immunoblotting
Cell conditioned media were collected after the cells were plated

at equal densities in 100 mm dishes, then serum starved in 4 ml of

basal media for 24 h. The conditioned media were concentrated

50-fold with Amicon Ultra-4 10-kDa centrifugal filters (Millipore,

Billerica, MA), and equal volumes of concentrated media were

reconstituted in sample buffer and resolved by SDS-PAGE.

Human recombinant MMP1 (rhMMP-1) from conditioned media

of rhMMP-1 expressing NS0 mouse myeloma cells (WBC024;

R&D Systems) was used as a positive control. Gels were processed
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per immunoblotting procedures as detailed in the previous section,

using anti-human mouse monoclonal antibodies against MMP-1

(MAB901; R&D Systems) and fibronectin (610077; BD Trans-

duction Laboratories, San Jose, CA).

MMP Expression Array and MMP1 ELISA
ECM proteins (MMP1, -2, -3, -8, -9, -10, and -13 and TIMP1, -

2, -3, and -4) in conditioned, serum starved supernatants of

lentiviral-transduction control (MDA-MB-231LTV-ctrl) and MDA-

MB-231MYOF-KD cells were determined by an antibody array

(RayBioH human matrix metalloproteinase antibody array 1,

RayBiotech, Inc., Norcross, GA) following the manufacturer’s

protocol. Each array membranes contained duplicates for each

ECM protein along with positive and negative controls. The blots

were imaged and quantified by densitometry (Quantity One

software, Bio-Rad), and values normalized to total protein of the

corresponding cell lysates.

Secreted pro-MMP-1 in cultured media of cells was detected by

quantitative ELISA (DMP100; R&D Systems). Conditioned

cultured media were collected by plating equal densities of each

cell type in 100 mm culture dishes followed by serum-starvation

for 24 h. Unconcentrated, conditioned media samples were run in

duplicate in the ELISA and processed according to manufacturer’s

instructions. Colorimetric results were read at 450 nm with a

wavelength correction of 570 nm in a MRX Microplate Reader

(Dynex Technologies, Chantilly, VA). MMP-1 concentrations

were determined by interpolation using human recombinant pro-

MMP-1 as a standard. In cases where the secreted pro-MMP1 was

undetectable, it was assigned the assay’s lowest limit of detection

(0.021 ng/ml).

MTS Proliferation Assay and Cell Cycle Analysis
Cells were plated in 96-well plates at a density of 2500 and/or

5000 cells per well and assayed at 24, 48, and 72 h after plating

using the CellTiter 96 AQueous Non-Radioactive Cell Prolifer-

ation Assay (Promega), according to the manufacturer’s instruc-

tions.

For flow cytometric analysis of MYOF depleted breast cancer

cells, cells were fixed in 70% ethanol and stained in PBS containing

0.1% Triton X-100, 200 mg/mL of RNase, and 50 mg/mL

propidium iodide (Sigma-Aldrich). DNA content was measured on

a FACS Calibur or LSR II flow cytometer (Becton-Dickinson)), and

data were acquired and analyzed using flow cytometer software

(BD). Each analyzed sample contained at least 16106 cells.

Migration and Invasion Assays
Cells were washed with PBS, trypsinized, pelleted and

resuspended in serum-free DMEM. Cells were then seeded onto

Boyden Chamber inserts (8 mm pores; Millipore) at a density of

7.56104 cells in 24-well plates with 10% FBS containing DMEM

in the bottom chamber as a chemo-attractant. In parallel, input

controls were seeded with the same number of cells in the same

volumes of serum-free and 10% FBS media without inserts. Cells

were incubated (37uC, 5% CO2) for 24 hours. The inserts were

processed by rinsing in PBS and fixation with 3.7% formaldehyde

containing 0.05% crystal violet for 10 min. After repeated washes

with PBS and distilled water the chambers were air-dried.

Migrated cells on the bottom of the inserts were collected with

cotton swabs and placed into Eppendorf tubes. Crystal violet dye

was extracted from the Q-tips and input control wells with 80%

methanol for 30 min, and quantified at 570 nm. Percentage

migration was calculated using the ratio of the migrated cells over

the total cells (input control) to determine the percentage of cell

migration. For invasion, the Boyden Chamber assay was

conducted in the same manner but with the addition of 20 ml of

growth factor reduced Matrigel (BD) or 3 mg/ml collagen I (rat

tail, Gibco) to the top of the insert and allowed to gel for 1 h at

37uC, 5% CO2.

Quantitative Reverse Transcription PCR Array
RT2 ProfilerTM PCR array (SABiosciences, Frederick, MD) was

performed for EMT-associated genes (cat #PAHS-090) and

human extracellular matrix and adhesion molecules (cat #
PAHS-013) following manufacturer’s protocol. Briefly, total

RNA was extracted as described in the qRT-PCR section from

lentiviral control and myoferlin-deficient MDA-MB-231 cells that

had been in culture for 10 consecutive passages. Complementary

DNA was generated from 1 mg of total RNA per cell type using

random hexamers and oligo-dT18 primers as part of the RT2 First

Strand Kit (SABiosciences). Equal amounts of dilute cDNA was

mixed with LightCyclerH 480 SYBR Green I Master mix (Roche)

and aliquoted to each well of the PCR array plate containing pre-

filled gene-specific primer sets, and PCR was performed according

to manufacturer’s instructions for the Roche LightCyclerH 480.

The LightCyclerH 480 Software (Roche Applied Science) was used

to calculate the threshold cycle (crossing point, Cp) values for all

the transcripts in the array. The Cp values were exported into a

spreadsheet-based PCR array data analysis template (SABios-

ciences) to calculate fold changes in gene expression using the

DDCt method.

Statistical Analysis
Graphical representation and statistical analysis of data were

done using Prism version 5 (GraphPad). Error bars represent

standard deviation in all cases, unless differently noted. Statistical

significance was determined by appropriate statistical tests

following normality testing of the data, using the KS, D’Agostino

& Pearson omnibus and/or Shapiro-Wilk normality tests. Com-

parisons between 2 groups with Gaussian distribution were carried

out with the 2-tailed student t-test for unpaired samples, while

those among 3 or more groups were carried out with one-way

ANOVA followed by Tukey’s Multiple Comparison Test. Data

exhibiting a non-Gaussian distribution were analyzed with either

the Mann Whitney statistical test (2 groups) or the Kruskal-Wallis

with Dunn’s multiple comparison post-test (3 or more groups). For

analysis, results were regarded as significant if p values were less

than 0.05.

Supporting Information

Figure S1 Analysis of the myoferlin gene expression in
breast cancer cells. Graphical representation (mean 6 s.d.) of

expression data from two microarray probe sets for myoferlin

reported in the study by Neve and colleagues [34], showing a

higher expression (Kruskal-Wallis test/Dunn’s multiple compari-

son analysis) in the Basal B cells compared with the luminal cells.

(TIF)

Figure S2 Graphical representation from ArrayExpress
gene expression atlas (accession # E-TABM-276) of
MYOF mRNA expression level in breast tissue samples
from healthy patients and patients with invasive ductal
carcinoma.

(TIF)

Figure S3 Myoferlin lentiviral constructs. Target and

sequence information of lentiviral constructs used to generate

myoferlin-deficient cell lines. Bold letters indicate coding sequence.

(TIF)
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Figure S4 Proliferation not affected by myoferlin de-
pletion in MDA-MB-231 cells. Growth curves (A) and cell

cycle analysis (B) of wild type (WT), lentiviral control (LTV-ctrl)

and myoferlin knockdown (MYOF-KD) MDA-MB-231 cells.

Statistical analysis on the proliferation curves (n $4, mean 6

s.d.) were done using linear regression on the log transformation of

the OD readings (p = 0.43), showing an insignificance difference

among the proliferation rate of the cells. The cell cycle analysis (n

$4, mean 6 s.d.) also showed an insignificant difference in cell

proliferation (Gaussian approximation P value of 0.96, Kruskal-

Wallis/Dunn’s multiple comparison post-test).

(TIF)

Figure S5 Myoferlin depletion in MDA-MB-231 cells
alters the secretion of matrix metalloproteinases
(MMPs) and tissue inhibitors of MMPs (TIMPs). Anti-

body membrane-based array detecting various MMPs and TIMPs

was used to screen whether myoferlin depletion changes the

secretion of MMPs and TIMPs. 231LTV-ctrl and 231MYOF-KD cells

were serum starved for 24 h, and culture supernatants collected

and analyzed for extracellular matrix proteins. The intensity of the

quantified signals was normalized to 231LTV-ctrl cells, and results

are expressed as fold changes.

(TIF)

Figure S6 MMP1 mRNA expression attenuated by
myoferlin depletion in MDA-MB-231 cells. Relative levels

of MMP1 mRNA in lentiviral-control (LTV-ctrl) and myoferlin

depleted (MYOF-KD) MDA-MB-231 cells. Levels of 18 S

expression were used to normalize the samples. Graph represents

fold change normalized to MMP1 levels in 231LTV-ctrl cells (n = 3,

mean 6 s.d.), showing a significant depletion of MMP1 mRNA in

231MYOF-KD cells (unpaired t-test, p = 0.003).

(TIF)

Figure S7 Myoferlin depletion in MDA-MB-231 cells by
separate shRNA constructs attenuates MMP1 produc-
tion. Immunoblotting (A) and ELISA (B) evaluation of secreted

MMP1 in 24 h serum starved supernatant of myoferlin depleted

MDA-MB-231 cells (constructs #10628 and #320398). Three

replicate samples of construct #320398 were ran (A–C). ELISA

results (n = 3, mean 6 s.d.) show significant depletion of secreted

MMP1 in both myoferlin depleted MDA-MB-231 cells (one way

ANOVA/Tukey’s Multiple Comparison Test, p,0.01) when

compared with the lentiviral control cells.

(TIF)

Table S1 Reported is an alphabetical listing of genes
with Cp values less than 30 cycles for at least one of the
samples and with fold changes of $ 62-fold. Fold change

for genes up-regulated in MYOF-deficient MDA-MB-231 cells are

in bold, while the down-regulated genes are in italics.

(DOCX)

Table S2 Reported are fold changes at the mRNA level,
along with each MMP’s known ECM substrates [54].
MMPs with Cp values less than 30 cycles for at least one of the

samples are formatted in bold (MMP1, MMP10, MMP11, and

MMP14). Fold change for genes down-regulated in MYOF-

deficient MDA-MB-231 cells are in italics.

(DOCX)
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