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Abstract
Multivariate machine learning algorithms applied to human functional MRI (fMRI) data can
decode information conveyed by cortical columns, despite the voxel-size being large relative to
the width of columns. Several mechanisms have been proposed to underlie decoding of stimulus
orientation or the stimulated eye. These include: (I) aliasing of high spatial-frequency components,
including the main frequency component of the columnar organization, (II) contributions from
local irregularities in the columnar organization, (III) contributions from large-scale non-columnar
organizations, (IV) functionally selective veins with biased draining regions, and (V) complex
spatio-temporal filtering of neuronal activity by fMRI voxels. Here we sought to assess the
plausibility of two of the suggested mechanisms: (I) aliasing and (II) local irregularities, using a
naive model of BOLD as blurring and MRI voxel sampling.

To this end, we formulated a mathematical model that encompasses both the processes of imaging
ocular dominance (OD) columns and the subsequent linear classification analysis. Through
numerical simulations of the model, we evaluated the distribution of functional differential
contrasts that can be expected when considering the pattern of cortical columns, the hemodynamic
point spread function, the voxel size, and the noise. We found that with data acquisition
parameters used at 3 Tesla, sub-voxel supra-Nyquist frequencies, including frequencies near the
main frequency of the OD organization (0.5 cycles per mm), cannot contribute to the differential
contrast. The differential functional contrast of local origin is dominated by low-amplitude
contributions from low frequencies, associated with irregularities of the cortical pattern.
Realizations of the model with parameters that reflected best-case scenario and the reported
BOLD point-spread at 3 Tesla (3.5 mm) predicted decoding performances lower than those that
have been previously obtained at this magnetic field strength. We conclude that low frequency
components that underlie local irregularities in the columnar organization are likely to play a role
in decoding. We further expect that fMRI-based decoding relies, in part, on signal contributions
from large-scale, non-columnar functional organizations, and from complex spatio-temporal
filtering of neuronal activity by fMRI voxels, involving biased venous responses. Our model can
potentially be used for evaluating and optimizing data-acquisition parameters for decoding
information conveyed by cortical columns.
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Introduction
Recent studies have demonstrated that multivariate machine learning algorithms can decode
visual stimuli from functional MRI (fMRI) data (Haxby et al., 2001; Kamitani and Tong,
2005; Haynes and Rees, 2005a). Using gradient-echo (GE) blood oxygenation level
dependent (BOLD) fMRI data obtained at 3T, these algorithms decoded information thought
to be mediated by cortical columns. This result seems to be surprising given the large size of
the voxels (3×3×3 mm3) relative to the mean cycle length of columns (2 mm or less for
ocular dominance columns (ODCs) and orientation columns in humans). This result is even
more surprising considering the relatively wide point-spread function of GE BOLD fMRI
signals at 3T (~3.5 mm; Engel et al., 1997; Parkes et al., 2005; Shmuel et al., 2007).

The mechanism by which low-resolution imaging decodes information represented at a fine
scale relative to the voxel size is not clear. In the following we mention five alternative
mechanisms that have been hypothesized (we believe the terms we use are appropriate for
describing these mechanisms, although the original publications may have used different
terms). (I) Aliasing of high spatial-frequency components of the columnar organization by
the large voxels has been suggested (Boynton, 2005). The “aliasing” mechanism, also
termed the “hyperacuity” mechanism (Op de Beeck, 2010), involves components of the
columnar organization with frequencies higher than the Nyquist frequency of the MRI
sampling process, that were thought to contribute to the sampled voxels. (II) It was
hypothesized that random, local variations and irregularities in the functional organization
contribute to decoding (Kamitani and Tong, 2005, 2006; Haynes and Rees, 2006;
Kriegeskorte and Bandettini, 2007). The argument is that due to the irregular underlying
columnar pattern, each voxel overlaps columns with different preferences unequally,
resulting in biases towards specific preferences. If irregularities exist, the columnar
organization cannot consist of one single spatial-cortical frequency: it is likely to involve a
distribution of frequencies, including frequencies lower than the main frequency of the
organization (Rojer and Schwartz, 1990). Note that these components, with frequencies
lower than the main frequency of the columnar organization, may be present even if the
overall preferences represented by the columns are distributed equally across the
investigated cortical region. Indeed, Swisher et al. (2010) and Shmuel et al. (2010)
demonstrated contributions from low frequency components of the functional columnar
organization to decoding. (III) Very low spatial frequencies, reflecting large-scale
components of the organization were proposed to play a role too (Op de Beeck, 2010).
These include the oblique and radial effects (Sasaki et al., 2006; Furmanski and Engel,
2000) associated with the representation of orientation, and the higher amplitude response to
stimulation of the contra-lateral eye associated with the representation of ODCs (Tychsen
and Burkhalter, 1997).

Alternatively (IV), draining regions that cover cortical maps and columns non-
homogeneously may cause selective responses of their corresponding blood vessels
(Kamitani and Tong, 2005, 2006; Gardner et al., 2006; Kriegeskorte and Bandettini, 2007;
Shmuel et al., 2010). In this scenario, henceforth termed “biased draining regions,” selective
signals from macroscopic blood vessels can be captured by large voxels; therefore, they can
contribute to the decoding of stimuli encoded at the resolution of cortical columns. Evidence
in support of this phenomenon was provided by Gardner et al. (2006) and Shmuel et al.
(2010). Lastly (V), Kriegeskorte et al. (2010) introduced a model in which fMRI voxels
sample neuronal activity as complex spatio-temporal filters. These authors described how
such a model can account for representation of high-frequency components of the cortical
maps by the sampled voxels, and for decoding of information conveyed by cortical columns.
Note that the functionally selective responses of veins demonstrated by Gardner et al. (2006)
and Shmuel et al. (2010) constitute a specific scenario of the more general concept of
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interpreting fMRI sampling as spatio-temporal filtering of neuronal activity. Irrespective of
the exact mechanisms, all five proposed mechanisms mentioned above reflect neuronal
selectivity. Even though the exact spatial information is lost, the signals are expected to
originate at the neuronal level.

In order to assess the plausibility of the aliasing (hyperacuity) mechanism and the
contributions of low-frequency components of the columnar organization, it is necessary to
quantify their respective expected biases and the corresponding classification performances.
In this current study, we aimed to create a model that can be used for studying the
mechanisms underlying fMRI-based decoding of features represented in cortical columns. In
addition, we sought to evaluate the distribution of responses, differential contrasts, and
classification performance that can be expected when using large voxels under realistic
conditions. The realization of these objectives can support the planning of studies involving
decoding.

To address these objectives, we developed a model to image a region with a fine-scale
organization of cortical columns, followed by decoding. The model first creates a realistic
pattern of ODCs organization. Next, the model addresses the responses of neuronal
assemblies within this organization to specific stimulus conditions. The spatial features of
the BOLD response are then considered, followed by modeling the process of voxel
sampling. In the subsequent decoding portion of the model, we show that classification
performance can be predicted from quantities obtained within the model. Specifically,
decoding performance is fully characterized by the distribution of differential contrasts, the
noise level, and the number of analyzed voxels.

Using our model, we demonstrate the dependence of differential contrast and classification
performance on parameters of the studied functional organization including the sharpness
and irregularity of the cortical map. We further evaluate the dependence of differential
contrast and classification performance on parameters of the data acquisition process,
including the BOLD point spread function (PSF) and voxel size, and the number of voxels.
Lastly, we compare results obtained by the model to those obtained in decoding studies.

Methods
Overview

We developed a model that enables the prediction of classification performance as a
function of several parameters of interest. The model is based on linear classification. Linear
classification has been used in previous fMRI-based decoding studies in the form of linear
discriminant analysis (LDA) (e.g. Haynes and Rees, 2005a,b) or linear support vector
machines (Kamitani and Tong, 2005). Here we briefly describe the structure of the model,
and the different stages it involves. Variables and parameters of the model are presented in
Table 1. All mathematical derivations and details of the model can be found in the
Appendix.

Imaging model
The goal of the imaging model was to model the distribution of voxel-wise differential
responses (Fig. 1). We use the term “contrast range” to describe how large the expected
differential responses are on average. To quantify the contrast range, we used the standard
deviation of the distribution of single voxel differential responses. This is a measure of how
much contrast between stimulation conditions can be expected. It will be used later on in
calculating the expected classification performance.
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Realistic patterns of ocular dominance columns
The spatial pattern of cortical columns was modeled by spatial filtering of 2D Gaussian
white noise (Rojer and Schwartz, 1990). The structure of the resulting pattern depends on
the shape of the filter. An anisotropic band-pass filter was used, which yields realistic
patterns of elongated ODCs. The ODC filter was parameterized by the main pattern
frequency ρ, which determines the width of the columns. ρ was set to 0.5 cycles/mm
corresponding to a column width of 1 mm (Yacoub et al., 2007). Two additional parameters,
irregularity (δ) and branchiness (ε), were employed in order to control the level of pattern
irregularities, orthogonal and parallel respectively, to the ODC columns. When not
otherwise noted, parameters δ and ε were set to 0.3 cycles/mm and 0.4 cycles/mm,
respectively. These numbers were based on the analysis of macaque ODC maps (Rojer and
Schwartz, 1990) which we scaled to fit the spatial frequency of ODCs in humans. Here we
assumed that human ODC maps have a very similar structure, only scaled in space
according to Horton et al. (1990), Adams et al. (2007) and Yacoub et al. (2007).

The filter was normalized so that the output had a standard deviation of 1. The filtered noise
was passed through a sigmoidal non-linearity with parameter α that controlled the sharpness
of the transitions from one column to the adjacent columns (Rojer and Schwartz, 1990).
When not otherwise noted, we used α = 4, resulting in a moderate level of sharpness.

Neuronal response
The neuronal response was defined on an arbitrary scale from 0 to 1, where 0 stands for no
response and 1 represents a maximal response. The two stimulation conditions were
assumed to produce opposing patterns of neuronal responses proportional to their respective
preferences as defined by the ODC map.

BOLD response
The spatial characteristics of the BOLD response were modeled as a convolution of the
neuronal response with a two-dimensional BOLD point spread function (Engel et al., 1997;
Parkes et al., 2005; Shmuel et al., 2007). The width of the convolution kernel was
parameterized using the full width at half maximum (FWHM) measure. A second parameter,
β, stood for the absolute scaling of the kernel. Its role was to generate realistic response
amplitude values such that the maximal neuronal response results in a steady state BOLD
response of amplitude β. Following a realistic best-case scenario approach β was chosen to
be 5% (Krüger et al., 2001; Boynton et al., 1996; our own experience). We assumed that
residual head motion was comparable between studies that reported PSF at 3 Tesla and
decoding studies. Therefore, rather than directly accounting for residual motion, our model
considers residual head motion implicitly through the convolution with the BOLD PSF.

MR imaging process and voxel sampling
The MR imaging process was modeled as sampling the k-space representation of the BOLD
response patterns at discrete steps determined by the field of view and the voxel width, and a
subsequent discrete Fourier transform (Haacke et al., 1999). The responses to the two
conditions were subtracted to result in a voxelized differential response pattern.

Prediction of classification performance
We analyzed classification performance of a linear discriminant classifier. Hypothetical
fMRI responses (percent change relative to baseline) of n voxels were considered as n-
dimensional vectors associated with one of two stimulation conditions. We assumed that the
voxels responded with amplitudes sampled from two multivariate normal distributions, each
of which was associated with one stimulus condition. Each distribution was characterized by
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its multivariate mean, reflecting the expected (in the sense of statistical expectance) voxel-
wise relative responses, and by its covariance matrix representing all sources of noise. The
distributions of noise associated with different stimulation conditions and in different voxels
were all assumed to be equal, and independent of each other.

Expected classification performance was estimated by calculating the expected fraction of
vectors classified correctly as being associated with the stimulus condition of their origin. A
linear classifier partitions the feature space into two regions separated by a decision
boundary. The fraction of correctly classified vectors from one stimulation condition equals
the integral of the corresponding probability density function over the feature space region
associated with that condition.

Differential responses and contrast range

The expected multivariate difference of voxel-wise responses  determines the position of

the decision boundary relative to the two distributions.  was approximated using the
standard deviation of the expected distribution of single voxel differential responses
(referred to as “contrast range”), and the number of voxels. Eq. 1 in the Appendix shows
classification performance as a function of contrast range, the number of voxels, and the
noise level.

Overall contrast-to-noise ratio
Contrast range, the number of voxels, and noise level were combined into one measure of
overall contrast-to-noise ratio (OCNR). OCNR is proportional to contrast range and the
square root of number of voxels. It is inversely proportional to the noise level. Overall
contrast-to-noise ratio completely determines the classification performance (Eq. 2 in the
Appendix) and is directly related to the Fisher criterion in linear discriminant analysis.

Noise
The relative noise level σ is the standard deviation of all signal changes not related to an
external stimulus, relative to baseline. It is the inverse of time-course signal to noise ratio
(tSNR). Noise dependence on voxel size was modeled using the following formula from
Triantafyllou et al. (2005).

where V is the voxel volume, λ is a field and scanner independent constant governing the
relation between temporal SNR and image SNR, and κ is the proportionality constant
between volume and image SNR that is field strength and hardware dependent. Both
constants were estimated by fitting this equation to the data given in Table 3 of Triantafyllou
et al. (2005) using a Trust-Region non-linear least squares algorithm in MATLAB (The
Mathworks, Inc., 2007). Based on the fitting, we set λ = 0.01297 and κ = 6.641. Note that
the tSNR values in Table 3 of Triantafyllou et al. (2005) were obtained using TR = 5.4 s. In
section C of the Appendix we show how the modeled tSNR values from Triantafyllou et al.
(2005) were modified to tSNR values expected with different TRs.

Model implementation
We implemented the model using numerical simulations in MATLAB (The MathWorks
Inc., Natick, MA, USA). We simulated a square area with a field of view between 48 mm ×
48 mm and 192 mm × 192 mm, depending on the specific simulation. The latter relatively
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large field of view was necessary for obtaining a high enough k-space resolution when
studying the contributions of different spatial frequencies. The area was divided into 1024 ×
1024 evenly spaced points.

We ran numerical simulations of the model components described above (Fig. 2) while
varying different parameters. Contrast range was computed by calculating the standard
deviation over a simulated differential voxel pattern response. Contrast range values
obtained in multiple runs were averaged in order to increase the robustness of the results.
Single frequency contributions to contrast range were computed by restricting the spatial
frequency representation of the ODC pattern to a small range of absolute frequencies Δk
around the frequency under investigation. The obtained contrast range was divided by Δk
resulting in an estimate of contrast range per frequency unit.

Results
We aimed to analyze the mechanisms underlying decoding of information represented in a
fine-scale functional organization using large voxels and a relatively wide point spread
function. Classification performance depends on the differential contrast between
stimulation conditions, the number of voxels, and the relative noise level (see Eq. 1 in the
Appendix). In this section we briefly introduce the model, and demonstrate its function by
means of a numerical realization. We then study how the differential contrast depends on
BOLD point spread and voxel size. Next, we evaluate the frequency components of the
neuronal ODC organization that are reflected in fMRI voxels, and therefore potentially
contribute to decoding. We demonstrate the effects of the BOLD PSF and the MR imaging
process on these frequency components. We demonstrate how voxel-size specific noise,
functional contrast, and number of voxels combine to a measure of overall CNR that
determines classification rate. In the last section, we evaluate the dependence of
classification performance on parameters of the functional columnar organization.

Contrast range
The model—In order to quantify the functional contrast at the single voxel level, we
developed a model of imaging cortical columns, specifically for ODCs. The end result of the
model is a distribution of single voxel differential responses. The modeled voxel differential
responses follow a distribution with zero mean. The standard deviation of the distribution of
differential responses reflects the dispersion of condition specific contrasts (here, contrast
between responses to left and right eye stimulation) present in a set of imaged voxels. The
larger this standard deviation, the larger the contrast values that exist in the specific
distribution. Through the rest of the manuscript, the standard deviation of the distribution of
differential functional contrast will be referred to as the “contrast range.”

Numerical realization—Fig. 2 presents a numerical realization of the model using a
BOLD point spread with FWHM of 3.5 mm and a voxel size of 3 mm. It is evident that the
results of both the BOLD response stage and the subsequent voxel sampling show condition
specific patterns. Nonetheless, these patterns do not directly reflect the structure of the ODC
pattern, which is dominated by higher spatial frequencies. In addition, the functional
contrasts following the BOLD response and voxel sampling stages are very small.

Dependence of contrast range on BOLD point spread and voxel size—We
simulated differential response patterns while varying voxel width and BOLD point spread
width. We computed the contrast range from these patterns and plotted the contrast range as
a function of BOLD PSF width and voxel width (Fig. 3). The contrast range decreased with
increasing width of the BOLD PSF (Fig. 3A and B) and with increasing voxel-width (Fig.
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3C and D). Qualitatively, the effects of BOLD point-spread width and of voxel width are
similar, as reflected in the approximately symmetric pattern in Fig. 3E. Assuming
infinitesimally small voxels, with a BOLD point spread FWHM of 3.5 mm the contrast
range drops to 0.09%, which is ~2% of its expected value (4%) if there was no spread (Fig.
3A). The effect of voxel sampling is similar. Assuming no effect of BOLD point-spread, at a
voxel width of 3 mm the contrast range drops to 0.16%, ~4% of its value (4%) using
infinitesimally small voxels (Fig. 3C). With narrow BOLD PSF or with small voxels,
changes in the other parameter (voxel size or BOLD PSF, respectively) have substantial
effects on contrast range (Fig. 3A, C, E). In contrast, for wide BOLD point spreads or large
voxels, the effect of varying the other parameter is not as pronounced (Fig. 3B, D, E). At a
point spread of 3.5 mm, the contrast range is almost independent of voxel size (Fig. 3D).
Taken together, BOLD point spread with FWHM of 3.5 mm and voxel width of 3 mm,
which are typical to BOLD imaging at 3T, reduced the contrast range to 0.08%, ~2% of its
original value (Fig. 3B, D, and E).

Frequency contributions to contrast range and aliasing—We have shown that the
contrast range is considerably reduced by the BOLD point spread and sampling with large
voxels. We next sought to estimate the relative contributions of different frequency
components of the ODC organization to the contrast available for decoding (Figs. 4 and 5).

To this end, we first considered the effect of the MRI data-acquisition and reconstruction
processes. MRI voxels are often thought of as taking the shape of a rect-function in the
image space (Fig. 4A, in cyan). However, MRI is not equivalent to integrating the signal
over the area of a rect-function-like voxel. Instead, MRI samples the k-space at discrete
steps up to the Nyquist frequency, which is the inverse of twice the voxel width. This is
equivalent to integrating the signal in the image space as weighted by a sinc-function (Fig
4A, in blue). In other words, a more precise model of a voxel in image space follows a sinc-
function (Haacke et al., 1999; See also here, Section B.4 of the Appendix). Fig. 4B presents
the frequency-space representation of a 3 mm wide rect-voxel, a 3 mm wide sinc-voxel, and
the frequency content of a realistic neuronal ODC organization. To obtain the latter, we
calculated the contributions of different spatial frequency components to the contrast range
by decomposing the ODC map into its spatial frequency components.

Fig. 4C presents the frequency components of the ODC organization that remain following
the voxel sampling process for 3 mm rect-voxels (cyan) and 3 mm sinc-voxels (blue),
assuming infinitesimally small BOLD PSF. Rect-voxel sampling reduces the contrast range
across all pattern frequencies (Fig. 4C, cyan curve). It reduces the contributions to contrast
range of multiples of the sampling frequency (0.33 cycles/mm, 0.66 cycles/mm) more than it
does for other frequencies. However, its effect on the relative contributions of frequency
components lower or higher than the main frequency of the organization (0.5 cycles/mm) is
small (compare to Fig. 4B, gray curve). The contrast depends almost entirely on frequencies
that are higher than the Nyquist frequency (fNyquist = 0.167 cycles/mm). It includes
significant contributions from frequencies near the main frequency of the ODC organization
(0.5 cycles/mm).

In contrast, when using sinc-voxels the contrast beyond the Nyquist frequency drops sharply
(Fig. 4C, blue curve), and it is completely eliminated beyond the Nyquist frequency that
corresponds to the diagonal of the k-space (0.167·√2). Contributions from most of the
frequency components of the ODC pattern are eliminated. All information from frequencies
around the main frequency of the organization (0.5 cycle/mm) is lost. Only contributions
from frequencies lower than the main frequency of the organization, that are present due to
the irregularity of the ODC pattern, prevail.
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Panels D and E in Fig. 4 present frequency contributions to the functional contrast as a
function of varying voxel width for rect-voxels and sinc-voxels, respectively. True for both
types of voxels, the contrast with origin in the main frequency of the organization decreases
with increasing voxel width. However, while 3–4 mm wide rect-voxels still carry functional
contrast with origin in that frequency, sampling with sinc-voxels wider than ~1.4 mm
eliminates it completely.

In Fig. 4 we considered contrast contributions from various frequency components while
assuming infinitesimally small BOLD PSF. Next we studied the effect of the BOLD PSF on
the frequency contributions to contrast range. Fig. 5A presents the frequency representation
of a Gaussian PSF with FWHM of 3.5 mm (red curve), along with the frequency
representation of a sinc-voxel and the ODC organization. The BOLD point spread, even
when assuming infinitesimally small voxels, acts as a strong low pass filter (Fig. 5A and B).
High frequencies of the columnar pattern are filtered out almost completely. A convolution
with a realistic BOLD PSF therefore shifts the distribution of the frequency components that
contribute to the functional contrast towards lower frequencies (Fig. 5B).

Fig. 5C shows that convolving the neuronal response with a 3.5 mm BOLD PSF prior to
MRI sampling diminishes the differences between the frequency components captured by
sinc-voxels and rect-voxels. In both cases, only very low frequencies prevail.

Classification performance—Contrast range, the number of voxels and the level of
noise can be combined into a single measure of overall-contrast-to-noise ratio (OCNR).
Overall contrast-to-noise ratio is proportional to contrast range, the square root of the
number of voxels, and the square root of the number of averaged volumes (assuming time-
independent noise; see section A of the Appendix). It is inversely proportional to the noise
level.

In order to calculate classification performance, we modeled noise according to
Triantafyllou et al. (2005). We predicted time-course SNR (tSNR; see section C of the
Appendix) for a TR of 2 s. tSNR increases with increasing voxel width (Fig. 6A). Fig. 6B
presents the dependence of classification performance on the voxel size for a BOLD point
spread width of 3.5 mm. We varied the in-plane width of the voxel, while holding the slice
thickness constant at 3 mm and keeping a constant number of voxels. We considered voxel
size dependent noise, as demonstrated in Fig. 6A. The expected classification performance
using 100 voxels, each of which covering a volume of (3 mm)3, resulting in a voxel volume
dependent noise level of 1.5% (tSNR = 68, TR = 2 s) relative to the temporal mean of the
baseline, and a BOLD PSF of 3.5 mm, was 61% (with chance level being 50%). Fig. 6C
shows how classification performance depends on overall contrast-to-noise (OCNR) ratio.
The logarithmic scaling of the OCNR-axis illustrates that increases in OCNR result in only
moderate increases in decoding performance. When using 100 (3 mm)3 voxels with a BOLD
PSF of 3.5 mm, OCNR is 0.55. In this range, a factor of two improvement in OCNR results
in 10% increase in decoding performance. In order to obtain 75% correct classifications, an
overall CNR of 1.3 is needed. To obtain 95% correct classifications, the overall CNR needs
to reach 3.3.

Sharpness of the ODC organization—The results reported thus far were based on
ODC maps with a moderate, realistic sharpness (alpha = 4; Fig. 7B). In order to assess the
effect of smoother and sharper transitions between neighboring columns on the contrast
range and classification performance, we simulated smooth ODC patterns that were not
passed through a sigmoidal non-linearity (Fig. 7A) and binary ODC patterns (Fig. 7C),
representing the two extreme alternatives along the pattern sharpness domain. We then
computed contrast range as a function of voxel width and BOLD point spread. Qualitatively,
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the resulting patterns of contrast range were similar across all three versions of ODC
organizations (Fig. 7, middle row). All three patterns demonstrated approximately
symmetric roles of BOLD PSF and voxel width, similar to those demonstrated in Fig. 3.
Quantitatively, for large BOLD point spreads and/or large voxel sizes, ODC maps with
sharper transitions produced larger contrast ranges compared to their counterparts with
smoother transitions.

For 3 mm wide voxels and a 3.5-mm BOLD PSF, a binary ODC map produced a contrast
range of 0.15% (70% classification performance with 100 voxels and a TR of 2 s), and an
ODC map with intermediate sharpness level (α = 4) produced a contrast range of 0.08%
(61% correct classification with 100 voxels and a TR of 2 s). This is compared to 0.015%
(52% classification performance with 100 voxels and a TR of 2 s) for the smooth ODC map
model.

Irregularities in the ODC organization—Local variations and irregularities in cortical
maps were proposed as a possible source of selective signals available for decoding. We
therefore sought to study the effect of irregularities in the ODC pattern on classification
performance. To this end, we varied the parameters δ (irregularity) and ε (branchiness) that
control the level of pattern irregularities orthogonal and parallel to the axis of anisotropy of
the ODC organization.

Fig. 8A demonstrates the dependence of the ODC pattern on the irregularity (δ) and
branchiness (ε) parameters. High values of δ make the pattern of the ODC more irregular
along the axis orthogonal to their major anisotropy axis, introducing wide regions in space
that are biased towards one of the two eyes. In contrast, higher values of ε decrease local
biases by interfering with the regular structure orthogonal to the columns. Panels B and C in
Fig. 8 support this intuitive description. They show that classification performance increases
with increases in irregularity (δ; Fig. 8B), and decreases with increases in branchiness (ε;
Fig. 8C). Fig. 8D demonstrates that the effect of varying irregularity on classification
performance is more pronounced than the corresponding effect of branchiness.

Discussion
Summary of the results

We developed a model of imaging cortical columns and subsequent decoding of information
conveyed by them. When considered separately, the width of the BOLD point spread
function and the width of the sampled voxels were found to be important factors in
determining the functional contrast and classification performance (Fig. 3). BOLD PSF and
the voxel width act as low-pass filters in a comparable manner. We analyzed the
contributions of single spatial frequency components to the functional contrast and
classification with parameters routinely used at 3 Tesla. The results ruled out contributions
of aliasing of information represented at high spatial frequency corresponding to the main
frequency of the columnar organization or higher frequencies (Figs. 4 and 5). Not only these
high-frequency components are filtered out by the BOLD PSF, also all frequencies higher
than the Nyquist frequency are discarded by the MR imaging process. Modeling MRI voxels
as sinc-functions removes aliased sub-voxel signals, since they are not part of the k-space
sampling, whereas the BOLD PSF further attenuates contributions from high-frequencies
that are still within the range of frequencies sampled in the k-space. Therefore, all locally
generated contrast useable by a classifier, although very low in amplitude, is caused by
random variations and irregularities of the columnar organization, which contribute to low
frequency components of this organization. Increasing these irregularities improves
classification performance (Fig. 8).
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Assumptions, simplifications, and upper bound of classification performance
Exclusive consideration of basic mechanisms—We aimed to develop a model that
would show the levels of contrast and classification performance that can be expected
considering basic mechanisms. By “basic mechanisms” we refer to the integration of signals
that an MRI voxel overlaps, while considering the BOLD point spread (i.e., voxel as a
compact kernel, and BOLD-as-blurring model, Kriegeskorte et al., 2010), the process of
voxel sampling, and noise. Therefore, of the mechanisms proposed to account for decoding,
our model evaluates (I) “aliasing of the main frequency components of the organization” and
(II) “contributions of irregularities in the columnar organization,” but not “very low-
frequency large-scale components of the organization,”“selectivity of draining veins” and
“complex spatio-temporal filters.” Because we aimed to consider basic mechanisms
exclusively, we refer to our model as a “naive” model. The results of this naive model are
intended to serve as baseline when evaluating more complex mechanisms that potentially
contribute to successful decoding of information conveyed by cortical columns.

Simplifications leading to best-case scenario of classification performance—
We made several simplifying assumptions, which cause overestimation of classification
performance. These simplifications and assumptions, described in more detail below,
include: (1) binary (and separately, smooth) representation of ocular dominance columns
and maps, (2) uncorrelated noise model, (3) a perfectly learned model, and (4) the
employment of an optimal decision boundary. Therefore, our model offers a best-case
estimate (or an upper bound) of classification performance when considering basic
mechanisms.

(1) Binary ODC representation: Our model included a non-linearity introduced in the
process of simulating the ODC maps, which produced spatial transitions of varying degrees
of sharpness. Quantitatively, for large point spreads and/or large voxel sizes, ODC maps
with sharper transitions produced larger contrast ranges compared to their counterparts with
smooth transitions (Fig. 7). For 3-mm-wide voxels and a 3.5-mm point spread of BOLD
response, a binary ODC map produced a contrast range of 0.15% (70% classification
performance with 100 voxels and a TR of 2 s).

A binary ODC map, consisting of columns with neurons responding exclusively to either the
left or the right eye, is not realistic. Therefore, assuming a binary map contributes to our
approach of estimating an upper bound for classification performance.

(2) Uncorrelated noise model: Our model does not consider spatial correlation of noise
between voxels. In reality, the noise in a subset of the voxels would be correlated, in part
depending on their spatial distance. This will decrease the effective degrees of freedom, and
result in decoding performance comparable to that obtained with a reduced number of
voxels. Similarly, when considering averaging of volumes before classification, we assume
the noise to be uncorrelated in time, which maximizes the SNR gains achieved by averaging.
Therefore, in considering independent noise, our model overestimates classification
performance.

(3) Perfectly learned model: In our analysis of classification performance, we assumed that
the estimated means are equal to the real means of the response distributions. This situation
corresponds to a perfectly learned model. In reality, there will be differences between the
estimated and the real means of the classified patterns, which will decrease classification
performance. The choice of classification algorithm will have an effect on how well the
model is learned. The more data used for learning, the closer the estimated means will be to
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the real means. Our model reflects this asymptotic limit, conforming to our approach of
modeling the best case scenario.

(4) Choice of classification framework and optimal decision boundary: We assumed that
evoked responses to stimulation of the left or the right eye follow two respective normal
distributions in each voxel. Linear classification is the simplest and optimal choice for
classifying this type of data. We applied a decision boundary perpendicular to the line
separating the means of the two distributions, that results in a minimum-error-rate
classification (Duda et al., 2006), in line with our best-case scenario approach. While this
boundary is optimal when considering a perfectly learned model, it is also the decision
boundary that linear classifiers such as linear discriminant analysis or linear support vector
machines (SVM) would converge to, given a large enough data-set available for learning.
Thus, our choice of optimal decision boundary follows our approach of modeling the best-
case scenario.

Ocular dominance columns vs. orientation columns—Here we analyzed decoding
of information conveyed by ODCs. These were the basis for a study that decoded the visual
percept during binocular rivalry (Haynes and Rees, 2005b). Other decoding studies were
based on orientation columns (Kamitani and Tong, 2005; Haynes and Rees, 2005a).
Orientation is not a binary stimulus dimension: it varies continuously. Furthermore,
orientation columns in monkeys have slightly higher spatial frequencies than ODCs
(Obermayer and Blasdel, 1993). These differences are expected to decrease differential
contrast obtained after considering BOLD point spread and voxel sampling. However, we
have shown that classification performance at 3 Tesla depends solely on information
represented at spatial frequencies lower than the main frequency of the organization. It may
well be the case that differences between ODCs and orientation columns, such as the main
spatial frequency and the arrangement of columns (anisotropic and isotropic, respectively)
have negligible effects on decoding. In contrast, the exact nature of the small and seemingly
irrelevant low frequency signals associated with the two organizations may play a key role
in decoding. Indeed, ongoing preliminary simulations show that similar columnar patterns
with only subtle differences in their low frequency content can result in very different
decoding performances.

Voxel selection and number of voxels—In multivariate classification it is often
beneficial to reduce the number of features (voxels) (Pereira et al., 2009). Voxels can be
either selected based on condition-unspecific criteria such as their location or general
response strength. Alternatively, condition-specific criteria, such as differential contrast
between conditions, may be employed in order to optimize decoding performance while
reducing the number of voxels.

In our current model, we did not include condition-specific voxel selection. However, our
model can be extended to include forms of voxel selection. This can be done, for example,
by taking into account changes in the distribution of voxel differential contrasts due to voxel
selection (e.g., removing the voxels with the lowest contrast).

The decoding studies to which we compare our model selected voxels according to cortical
position relevant to the paradigm and response to a localizer (Kamitani and Tong, 2005) or a
measure of response magnitude to the group of stimuli (Haynes and Rees, 2005a) (in a
second step, the latter study employed a condition-specific criterion in order to further
reduce the number of voxels below 100). The purpose of this kind of voxel selection is to
obtain functionally responsive voxels in the gray matter of V1, in accordance with the
assumption we employed in our model (voxels localized in gray matter) following a best-
case scenario approach.
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Classification performance in decoding studies is higher than the modeled
upper bound—For 3 mm wide voxels and a 3.5 mm point spread of BOLD response, a
binary ODC map produced a contrast range of 0.15%, and correct classification rate of 70%
(Fig. 7) with 100 voxels and a TR of 2 s. An intermediate sharpness (α = 4) introduced to
the ODC map produced a contrast range of 0.08% (61% classification performance with 100
voxels and a TR of 2 s), compared to 0.015% (52% classification performance with 100
voxels and a TR of 2 s) for the smooth ODC map model. As discussed above, a binary ODC
map is not realistic. Nonetheless, it gives an upper bound for classification performance
(70%). Considering that α = 4 is much more likely to reflect realistic ODC patterns, and
taking into account all other best-case scenario approximations, we expect that realistic
classification performance based solely on basic mechanisms and 100 voxels is in the range
of 55–65%.

A previous study that considered ODCs (Haynes and Rees, 2005b) obtained ~75% correct
classification. Haynes and Rees classified binocular rivalry percepts projected onto a model
based on training with monocular stimulation and stable perception (Haynes and Rees,
2005b, Fig. 4C). Our estimated realistic classification (55–65%) is significantly lower than
that obtained in this study, although the modeled best-case scenario performance with a
binary ODC map (70%) is comparable to the one obtained by Haynes and Rees (2005b).
Note however, that this study used a TR of 1.3 s and only 50 voxels for classification. With
this TR and number of voxels, our model predicts a best-case scenario classification
performance of 64% for a binary ODC pattern and 57% for a realistic ODC pattern (ODC
model with intermediate sharpness).

Our estimated realistic- and best-case scenario classification performances are lower than
those obtained for two orthogonal orientation stimuli using LDA (~80%; Haynes and Rees,
2005a). This study used a TR of 1.3 s and 100 voxels, for which our model predicts
decoding performance of 69% for the binary ODC map and 60% for the realistic ODC map
with intermediate sharpness (α = 4).

Our estimated realistic- and best-case scenario classification performances are lower than
those obtained for two orthogonal orientation stimuli using a linear support vector machine
(~96%; Suppl. Fig. 4, Kamitani and Tong, 2005). However, Kamitani and Tong (2005)
averaged 8 volumes together before classification, which is expected to increase decoding
performance. Taking this effect into account, our model predicts a decoding performance of
98% for the binary ODC map and 86% for the ODC map with intermediate sharpness (α =
4). Although this latter classification rate (86%) that considers a realistic ODC sharpness
depends on several best-case scenario assumptions, it is still lower than the actual results
(96%) obtained by Kamitani and Tong (2005).

Overall, the modeled classification performance is lower than what has been obtained in
decoding studies at 3 Tesla, although it considers several best-case scenario assumptions. In
the rest of this section we discuss mechanisms of fMRI-based decoding and possible reasons
for these differences.

Mechanism of fMRI-based decoding of information conveyed in cortical columns
Aliasing is not possible in MRI: sampling with sinc-function voxels—Whereas
typically, MRI voxels are considered to be squares, they are in fact more accurately
described as sinc-functions in the space domain (Haacke et al., 1999). This more accurate
description rules out spatial aliasing of subvoxel-scale signals in MRI.

If the imaging PSF (not to be confused with the BOLD PSF) is considered to be a rect-
function, then in the Fourier domain, the MR signal is described by a sinc-function
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multiplied with the Fourier representations of the columnar organization and associated
BOLD PSF (Figs. 4 and 5). Since the “ripples” in the tails of the sinc-function extend
infinitely, this means that spatial frequency components higher than the MRI Nyquist
frequency (sub-voxel) can contribute to the measured signal in k-space; in other words,
subvoxel-scale signals are spatially aliased into lower spatial frequencies in the
reconstructed image. These sub-voxel signals are further attenuated by the low-pass BOLD
PSF, which acts as an anti-aliasing filter (Fig. 5).

However, a better characterization of the imaging PSF is as a sinc-function in the space
domain, not the Fourier domain (Haacke et al., 1999). This means that the Fourier domain
representation of the signal is a rect-function multiplied with the Fourier representations of
the columnar organization and the BOLD PSF. A rect-function has compact support,
meaning that high spatial frequency components are zeroed out, and cannot be spatially
aliased into lower frequencies in the reconstructed image. In this more accurate model of the
imaging process, it is impossible for MRI to be sensitive to sub-voxel, supra-Nyquist scale
signals, regardless of the BOLD PSF.

As described by Greenspan (2009), MRI super-resolution is impossible in the phase and
frequency encode directions, as MRI is inherently band limited in these directions. Mayer
and Vrscay (2007) suggested that while super-resolution may be technically possible in the
Phase-Encoding direction, it can at best contribute only a very limited amount of additional
information. Therefore, band limitations of the imaging and reconstruction processes
prevent or limit detection of sub-voxel supra-Nyquist signals. These band limitations hold
for fMRI and fMRI-based decoding (Swisher et al., 2010) and rule out, under the
assumption that an MRI voxel acts as a compact kernel (rather than a spatio-temporal filter),
the possibility of sub-voxel scale contributions via aliasing as a contributing mechanism to
decoding.

The effects of voxel size and the PSF of the imaging signal—We found strong
dependence of classification performance on the point spread of the imaging signal,
especially when small voxels are used. This result can be explained by the substantial
decrease in functional contrast with increasing point-spread (Fig. 3A and B).

The BOLD point spread and the voxel sampling have very similar effects on the functional
contrast: both act as low-pass filters, reducing information conveyed by higher frequencies.
Nonetheless we found that for large point spreads, the voxel width has almost no effect on
functional contrast (Fig. 3D). In contrast, for large voxel widths, increasing BOLD PSF still
decreases the functional contrast (Fig. 3B). The reason for this is that MR voxel sampling
simply discards frequencies higher than the Nyquist frequency but leaves lower frequencies
untouched. Therefore it has a very small effect when high frequencies are already filtered
out by the BOLD point spread. In contrast, the BOLD PSF reduces contributions at every
frequency, including lower frequencies.

The classification performance obtained when considering a 3.5-mm wide point-spread was
lower than previously reported (Kamitani and Tong, 2005; Haynes and Rees, 2005a,b). This
phenomenon suggests that rather than considering the reported mean point-spread, one
needs to consider possible variability of the point-spread in space (Kriegeskorte et al., 2010).
Along these lines, it is possible that previous decoding studies relied in part on data from
cortical sites in which the PSF was significantly lower than 3.5 mm, while excluding data
associated with wider PSF. This can be done implicitly by the learning algorithm, by
assigning high-weights to data from voxels with selective responses that are presumably
associated with narrow PSF.
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Yet another possibility is that the reported BOLD point spread at 3 Tesla was overestimated.
One reason for such overestimation could be the relatively large voxels (2 × 2 × 2 mm3)
used in these studies (Parkes et al., 2005). Using large voxels for sampling introduces low-
pass filter properties that can contribute to an overestimated point spread width. Based on
our previous analysis of this effect (Fig. 8 in Shmuel et al., 2007), we expect that the mean
GE-BOLD PSF at 3 Tesla is approximately 3 mm. Our imaging model assumes the BOLD
point spread width to be only BOLD response related, with low-pass contributions from the
voxel sampling process considered independently.

The convolution with the BOLD PSF in our model cannot be compared to spatial smoothing
of already obtained fMRI data (Op de Beeck, 2010; Swisher et al., 2010; Kamitani and
Sawahata, 2010). In our imaging model, the convolution with the PSF precedes both the
voxel sampling and the consideration of noise. Therefore, the reduced classification
performance obtained here following the convolution with the BOLD PSF is not in
disagreement with the findings on the effect of spatial smoothing on classification rate
(Swisher et al., 2010; Op de Beeck, 2010; Kamitani and Sawahata, 2010).

Irregularities/low spatial frequency components of columnar organizations in
V1—It was hypothesized that random, local variations and irregularities in the functional
organization contribute to decoding (Kamitani and Tong, 2005, 2006; Haynes and Rees,
2006; Kriegeskorte and Bandettini, 2007). The argument is that due to the irregular
underlying columnar pattern, each voxel overlaps columns with different preferences
unequally, resulting in biases towards specific preferences. Irregularities are thought to be
manifested through components of the columnar organization with frequencies higher and
lower than the main frequency of the organization (Rojer and Schwartz, 1990). These
components may be present even if the overall preferences represented by the columns are
distributed equally across the investigated cortical region.

Here, we have shown that signal from the main frequency of the columnar organization (0.5
cycles/mm) cannot contribute to decoding (Fig. 4). The only local contributions to contrast
range arise from frequency components that are considerably lower than the main frequency
of the columnar organization and are lower than the Nyquist frequency which corresponds to
the diagonal in k-space (Fig. 5). These low frequencies, in conjunction with frequencies
higher than the main frequency of the organization, underlie random variations and
irregularities in the columnar pattern. Indeed, varying the content of these irregularities had
a strong effect on decoding performance (Fig. 8).

Higher classification performance in decoding studies could be explained if we considerably
underestimated low frequency components in the ODC pattern. Following Rojer and
Schwartz (1990) we used a filter composed of two Gaussians to model ODC columns. There
are indications (Rojer and Schwartz, 1990; Blasdel et al., 1995) that the spatial frequency
spectra of real ODC columns correspond to a more heavy-tailed filter functions than the
Gaussian filter. In other words, ODC organizations are expected to include higher
contributions of low spatial frequencies than those we modeled. Note that we refer here to
low-spatial frequency components caused by local random variations of ODCs, even when
considering equal representations of the two eyes at the more global level. This could
potentially be a source for larger contrast contributions by low frequencies, and would imply
improved classification performance over those obtained with the Gaussian-filter based
maps we analyzed here.

Experimental evidence for significant, local rather than global, contributions of low-spatial-
frequency components to the pattern of ODCs was demonstrated by Shmuel et al. (2010).
Figs. 2–4 in this paper show OD patterns following low-pass filtering (cycles shorter than 4
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mm were filtered out). Note significant contributions of low-frequency components to the
differential maps (panel A in Figs. 2–4, Shmuel et al., 2010); these low-frequency
components carry discriminative power (panel B). Whereas some of these eye-selective
broad structures correspond to macroscopic blood vessels, others correspond to regions in
which gray matter contributions dominate (panel C in Figures 2, 4, 5 S1 and 5 S3, Shmuel et
al., 2010). We expect that the latter are caused by local variations in the ODC pattern.
Similarly, Swisher et al. (2010) reported that, in cat visual cortex, reliable orientation bias
could still be found at spatial scales of several millimeters. In the human visual cortex, the
majority of orientation information imaged at a resolution of 1×1×1 mm3 was found on
scales of millimeters (Swisher et al., 2010).

Large-scale organizations in V1—Additional contributions from very low-frequency
components to decoding of the stimulated eye could be of a more global origin, e.g. higher
response amplitude to the contra-lateral eye in V1. This mechanism was not evaluated by
our model. Such higher response amplitude could result from unequal representations of the
two eyes, termed ‘nasotemporal asymmetry’ (Tychsen and Burkhalter, 1997).

Low-frequency large-scale organizations of a more global nature that may contribute to
decoding of orientation are the radial bias (Sasaki et al., 2006) and the oblique effect
(Furmanski and Engel, 2000). The radial bias is an overrepresentation of orientations in
cortical positions in which these orientations are retinotopically radial relative to the center
of the visual field. It introduces very low frequency components on top of the low frequency
components caused by local random variations as described above. The oblique effect is an
overrepresentation of cardinal orientations (horizontal and vertical) compared to oblique
orientations. This effect is expected to introduce very low-frequency, large-scale differences
between the response to cardinal and oblique orientations; it may contribute to
distinguishing between these two groups of orientations. Consistent with these expectations,
Swisher et al. (2010) reported contributions to decoding of orientation in the human visual
cortex from larger-scale spatial biases exceeding 1 cm.

Functional selectivity of macroscopic blood-vessels and complex spatio-
temporal filters—As mentioned above, we developed a model of basic mechanisms that
estimates contributions to functional contrast and classification from aliasing and low-
frequency components caused by random variations in the columnar organization. Our
model does not consider contributions from functionally selective macroscopic blood
vessels (Gardner et al., 2006; Shmuel et al., 2010). Therefore, the differences between our
modeled classification performance and those obtained in previous decoding studies could
be accounted for, in part, by contributions of macroscopic blood vessels to decoding. Lastly,
Kriegeskorte et al. (2010) introduced the hypothesis that a voxel’s BOLD response can be
modeled as a complex spatio-temporal filter of neuronal activity. Assuming that this
hypothesis proves true, it may account for part of the differences between previously
measured- and our modeled classification performance.

Conclusions
Under the assumptions of MRI voxels acting as compact kernels, BOLD-blurring of
neuronal activity, and imaging parameters used at 3 Tesla, spatial frequencies as high as the
main frequency of ODCs (0.5 cycles per mm) cannot contribute to decoding of stimulus
features represented in cortical ODCs. Variations in the ocular dominance maps captured by
lower frequencies constitute the only local component that conveys significant information
on the stimulated eye. The contrasts contributed by these low frequencies are very small
though, insufficient for accounting for classification performance reported at 3 Tesla. We
expect that lower frequency, larger scale pattern variations (e.g., due to higher-amplitude
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responses to the contra lateral eye; and oblique and radial effects in the orientation domain)
contribute significantly to fMRI based classification. We expect, in addition, that
mechanisms not considered in the current model, e.g. functionally biased venous responses,
spatially-variable point spread, and complex spatio-temporal filtering of neuronal activity
play significant roles in decoding.
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Appendix A: Performance of a linear classifier
Let n be the number of voxels. Consider a voxel response map as an n-dimensional data
vector . Each vector  is sampled from one of two normal distributions stimulation

 and  corresponding to the two conditions.

The means  and  characterize the expected voxel-wise
activation in all voxels under each condition.

We assume that the data is zero centered in the sense that . Defining the expected

differential activation , we can write  and .

The covariance matrices of the two distributions ∑A=∑B=σ2I characterize the relative noise,
which is assumed to be independent and identically distributed between voxels.

For classification, we project each data vector  onto the normalized vector 
pointing in the direction of the line connecting the means of the two distributions. This
results in one-dimensional variables yt, given by:

These resulting variables yt will also be normally distributed according to  or

, depending on which condition their corresponding activation vectors  were

associated with. The distribution means are given by  and .

The variance is given by .

If yt<0 then xt is classified as belonging to A, otherwise xt is classified as belonging to B.

The expected percentage p of correct classifications does not change if we restrict our
analysis to responses coming from one condition only, due to the symmetry of conditions.
Without loss of generality we can choose condition A and compute p as the expected

fraction of yt associated with condition  that is also classified as coming
from condition A (yt<0).
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where  is the probability density function of .

We define the contrast range c to be the standard deviation of the distribution of differential
contrasts that can be obtained in a single voxel:

The equation for p reduces to

(1)

Defining the overall contrast-to-noise ratio to be  we get:

(2)

OCNR is related to Fisher’s criterion . Fisher’s criterion measures the ratio
between within-class variance and between-class variance and is maximized in linear
discriminant analysis.

When averaging multiple volumes before classification it is possible to reduce the noise
level σ to σavr. Assuming that temporal noise is uncorrelated, the reduced noise level is

, where t is the number of averaged volumes. The overall contrast-to-noise-ratio is

then .

Appendix B: Definition of the model components
We define each single step of the model as a transformation with input variables denoted as
x and output variables denoted as y. In general these are two dimensional fields (real-valued
functions on ), representing quantities in two-dimensional image space.  denotes

spatial position and  denotes coordinates in k-space.

B.1. ODC model
The ODC pattern is modeled by filtering Gaussian spatial white noise according to Rojer
and Schwartz (1990). The shape of the filter is defined in k-space as the sum of two two-
dimensional Gaussian functions (reflecting the symmetry of k-space):
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where ρ is the principal frequency determining the column width. δ is the width (full width
at half maximum) of each Gaussian parallel to the filter orientation. δ determines the
variation in column width. ε is the width (full width at half maximum) of each Gaussian
orthogonal to the filter orientation. ε determines the branchiness of the columns.

In order for the ODC maps to have the same variance as the Gaussian white noise, we
normalize the filter:

Using the spatial representation of the filter , the transformation that

creates the ODC pattern  from the white noise input  is defined as:

We then pass the output of the filter, now denoted by x, through a sigmoidal non-linearity
that controls the sharpness of transitions in neighboring ODCs (Rojer and Schwartz, 1990):

B.2. Neuronal response
The response of the neuronal population depends on the stimulus condition. We assume a
maximal response of 1 for monocular neurons when stimulated through their preferred eye.

Using the ODC map  as the input, we obtain the two condition specific responses

 and .

B.3. BOLD response
The BOLD response is modeled by convolving the neuronal response with a Gaussian
spatial impulse response function given by:
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where σBOLD defines the spatial width of the response. It is related to the full width at half

maximum of the response by . The response
magnitude β is the maximal response corresponding to a neuronal response of 1.

The BOLD response  elicited by the neuronal response  then given by:

B.4. Voxel sampling
Sampling of a voxel is modeled according to the MRI measurement process (Haacke etal.

1999), by sampling the k-space representation of the signal  at discrete
steps and calculating the inverse discrete Fourier transform. The resulting sampled signal is

where  is the signal associated with the voxel with indices (l, m), w is the voxel width
and 2N is the number of sampled points along one dimension in k-space.

In order to obtain the signal change y(l,m) relative to the baseline of an MRI-sampled signal,

we consider a spatially constant baseline pattern of amplitude b and a pattern  of
change relative to baseline.

The signal to be sampled is  during stimulation and  during
baseline.

It follows then, that the sampled change relative to baseline is

To obtain the signal value of one voxel, we pick without loss of generality the center voxel
at l =0, m =0:
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For N >> 1, we can apply integration instead of summation, taking into account that

. Our voxel sampling process is then modeled by

Using a rect-function in k-space, we can drop the integration boundaries:

The integral of a function over the entire k-space equals the value of its Fourier transform at
0. Furthermore, we replace the product in k-space by a convolution in image space, and
calculate its value at 0 taking the symmetry of the sinc-function into account:

The last line shows that the signal sampled by a voxel can be regarded as an integral over
image space weighted with a sinc-function centered on the voxel.

B.5. Differential activation
The differential activation y is obtained by subtracting the activations of the two conditions:

Appendix C: Time-course signal to noise ratio and its dependence on
repetition time

Time-course signal to noise ratio tSNR is modeled using the following formula
(Triantafyllou, et al. 2005):

(3)

where SNR0 is the image SNR, V is the voxel volume, λ is a field and scanner independent
constant governing the relation between temporal SNR and image SNR, and κ is a field
strength and hardware dependent proportionality constant between volume and image SNR.
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When the repetition time TR is short, the longitudinal magnetization does not fully recover
resulting in a lower signal and therefore lower SNR0(TR) relative to the maximally
obtainable  for infinite TR. Using the Ernst angle as the excitation angle, SNR0(TR)
is related to  according to Haacke et al. (1999):

If SNR0 is given for a specific , it follows that SNR0(TR) for any TR is

Inserting this result into equation 3 we get:

(4)

where  is the constant κ estimated for data acquired using the repetition time .
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Fig. 1.
Model overview. In stage 1, ODC maps are modeled by spatial filtering of white noise. In
stage 2 we simulate the neuronal response to right-or left eye stimulation. In stage 3 the
neuronal response is convolved with a BOLD point-spread function. In stage 4 the BOLD
response is transformed into a voxel pattern. In stage 5 the difference between the responses
to the two stimulation conditions is computed in order to obtain a voxel pattern of
differential response. All voxels in this pattern create the distribution of differential response
contrast values. This distribution is characterized by its standard deviation, which reflects
the range of contrasts in the set of imaged voxels (= “contrast range”).
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Fig. 2.
Numerical realization of the model. The figure presents a numerical simulation of the model.
Each row shows the results of one single stage of the model: the Gaussian white noise input,
the ODC map, the neuronal response, the BOLD response, the voxel response, and the
differential voxel response. The BOLD response and the voxel response show patterns that
differentiate the stimulation conditions, although they do not seem to reflect the spatial
organization of the ODC pattern.
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Fig. 3.
Dependence of contrast range on voxel width and BOLD point spread. Contrast range is
defined as the standard deviation of the distribution of differential responses (percent change
relative to baseline). Contrast range in a set of imaged voxels is presented as a function of
FWHM of BOLD point spread (A and B), voxel width (C and D) or both (E). In A, the
voxel width is infinitesimally small, while in B it is held constant at w = 3 mm. In C, the
BOLD point spread is assumed to be infinitesimally small, while in D it is held constant at
FWHM = 3.5 mm. Contrast range decreases fast with increasing voxel size and increasing
point spread width.
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Fig. 4.
Comparing the MR imaging process that relies on sinc-shaped voxels to integrating over
rect-shaped voxels. The figure presents the contributions of spatial frequency components in
the ODC pattern to the range of contrasts in the set of imaged voxels which are sampled as
integral over the voxel area (rect-function in image space) or as a sinc-function weighted
integral in the image space. The contrast range per frequency (standard deviation of the
distribution of differential responses) was computed by restricting the k-space representation
of the ODC pattern to different spatial frequencies and calculating the resulting contrast
range. (A) The image space representation of a 3-mm wide MRI sinc-shaped voxel (in blue)
and the corresponding 3 mm rect-voxel (in cyan). (B) The spatial frequency representations
of the MRI imaging process (in blue), voxel as a rect-function (in cyan), and the frequency
components of the ODC organization (in gray). “fNyquist” refers to the Nyquist frequency
(0.167 cycles/mm for 3 mm voxel). The dotted blue line represents the higher frequencies
sampled in k-space along the diagonal rather than along the shorter main coordinate axes.
(C) The effect of voxel sampling on the imaged frequency components of the ODC
organization. MRI 3 mm wide sinc voxel sampling (in blue) is compared to sampling by
integrating over a 3-mm rect-shaped voxel in image space (in cyan). The original ODC
frequency components presented in B are shown in gray for comparison. The sinc-shaped
voxel is frequency-band limited, while the rect-function is not. With sinc-shaped voxels,
contributions from frequencies higher than the Nyquist frequency are sampled along the
diagonal in k-space up to a frequency equal to 1.4 times the Nyquist frequency. With rect-
shaped voxels, frequencies higher than the Nyquist frequency contribute to contrast range by
means of aliasing. (D) Frequency contributions for varying rect-shaped voxel size (BOLD
PSF effects were not applied). Aliasing contributions can be observed here at frequencies
with cycle lengths larger than twice the voxel width. (E) Frequency contributions for
varying sinc-shaped voxel size (BOLD PSF effects were not applied). In contrast to the
frequency contributions seen with rect-shaped voxels (D), no contributions can be observed
at frequencies with cycle lengths larger than twice the voxel width.
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Fig. 5.
Contributions of pattern spatial frequency components to the contrast range. The figure
presents contributions of spatial frequency components in the ODC pattern to the range of
contrasts in the set of imaged voxels, in a format similar to that used in Fig. 4. In A–C,
different subsets of the model were used to illustrate their respective effects. (A) The
frequency contributions reflect the spectrum of the ODC pattern (gray curve, with no voxel
sampling, and no BOLD point spread). This spectrum is dominated by the main pattern
frequency (0.5 cycles/mm). Due to the irregularity of the pattern, significantly higher and
lower frequencies contribute to the pattern as well. The spatial frequency representation of
the MR voxel sampling process (blue) and of the BOLD point spread (red) are shown for
comparison. The dotted blue line represents the higher frequencies sampled in k-space along
the diagonal rather than along the shorter main coordinate axes. (B) The effect of a BOLD
point spread with FWHM=3.5 mm on the imaged frequency components (in red; voxel
sampling effects were not applied) is that the BOLD response acts as a low pass filter. The
contrast range is dominated by low frequency pattern components. The original ODC
frequency contributions presented in A are shown in gray for comparison. (C) Frequency
specific contributions for rect-function voxel sampling versus MRI sinc-shaped voxel
sampling with 3 mm wide voxels following the convolution in image space with a BOLD
point spread with a FWHM (in image space) of 3.5 mm. The BOLD point spread acts as low
pass filter, removing aliased high frequency contributions in the rect-shaped voxel sampling,
making the result of both sampling models more comparable.
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Fig. 6.
Classification performance. (A) Time-course SNR (tSNR) as a function of voxel width at 3
Tesla. Noise levels were computed following Triantafyllou et al. (2005), using TR = 2 s (see
section C in the Appendix). B presents classification performance as a function of in-plane
voxel width. The slice thickness was held constant at 3 mm. A BOLD point spread FWHM
of 3.5 mm was applied; Voxel volume dependent noise levels at 3 Tesla were computed
following Triantafyllou et al. (2005), modified for a TR of 2 s. Classification performance is
presented in units of percent correct classification and is plotted for 50, 100, 150 and 200
voxels. In C, classification performance is shown as a function of overall contrast-to-noise
ratio. Classification performance depends on the contrast range, the number of voxels and
the relative noise level. All three factors can be combined into one quantity: the overall
contrast-to-noise ratio. The overall contrast to noise ratio is proportional to the contrast
range and to the square root of the number of voxels. It is inversely proportional to the noise
level.
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Fig. 7.
The effect of varying ODC pattern sharpness on the sampled contrast range. The sharpness
of transitions between ODCs can be modeled by a sigmoidal non-linearity with a degree
controlled by parameter α. The figure shows the effect of this non-linearity on the model
results by using different alpha values. The top row shows simulated ODC patterns. The
middle row shows the corresponding contrast ranges as a function of voxel size and point
spread, in a format similar to that used in Fig. 3. The bottom row shows contrast range as a
function of voxel width while the BOLD point spread width is held constant at 3.5 mm. (A)
shows a smooth ODC pattern. This pattern was obtained directly from the filtered white
noise. (B) shows an intermediate level of sharpness (α = 4). This pattern is the most realistic
of the three ODC patterns presented here. Therefore, it was used in the analysis throughout
the rest of the paper. The dependence of contrast range here on voxel width and BOLD point
spread is qualitatively similar to that obtained with the smooth ODC pattern. However, the
contrast ranges are significantly higher than those obtained using the smooth pattern. (C)
shows a binary pattern with sharp edge transitions between neighboring columns (α
approaches infinity). The qualitative results are similar to those presented in A and B but the
contrast ranges are even larger than those obtained with the intermediate-level sharpness.
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Fig. 8.
The effect of pattern irregularities on classification rate. The irregularity of the ODC pattern
is varied to study its effect on classification performance. Classification performance is
predicted for 100 voxels and a TR of 2 s. (A) demonstrates the effects of the irregularity
parameter (δ) and the branchiness parameter (ε) on the ODC pattern. The panel presents
different patterns resulting from combinations of δ and ε values of 0, 0.5 and 1. (B) shows
classification performance as a function of irregularity (δ) with branchiness (ε) held constant
at 0.4. Increasing irregularity leads to increasing classification performance, since larger
contributions of low frequency components are introduced into the ODC pattern. (C) shows
classification performance as a function of branchiness (ε) with irregularity (δ) held constant
at 0.3. With increasing branchiness, classification performance decreases, because
branchiness counteracts the effect of low frequency biases introduced by the irregularity. (D)
shows classification performance as a function of irregularity (δ) and branchiness (ε).
Classification performance depends on irregularity more than on branchiness.
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Table 1

Variables and parameters of the model.

Variable Description Formula

ρ Main frequency of ODC pattern

δ Pattern irregularity, variations orthogonal
to ODC bands

ε Pattern branchiness, variations parallel
to ODC bands

α Sharpness parameter of the sigmoidal
non-linearity in ODC f (x) =

1

1 + e −αx

σ BOLD Bold point spread width FWHM = 2.35·σBOLD

β Maximal BOLD response

w Voxel width

μ→ z
Mean multivariate voxel-wise response

to condition z
μ→ z = (μ1,z, μ2,z, …)

tSNR Time-course SNR

σ Time-course noise in a single voxel (standard
deviation of signal change during baseline) σ =

1
tSNR

d→ Multi-voxel mean difference between conditions d→ = μ→ 1 − μ→ 2

di Single voxel difference between conditions d→ = (d1, d2, …)
c Contrast range

c = di
2

OCNR Overall contrast-to-noise ratio ntc
σ

n Number of voxels

t Number of averaged volumes
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