
The nature of innate and adaptive interleukin-17A responses in
sham or bacterial inoculation

Introduction

Interleukin-17A (IL-17A) was first described as a pro-

inflammatory cytokine at the end of the twentieth cen-

tury.1 Much interest in this cytokine has been generated

by the description in humans and mice of a discrete

T helper type 17 (Th17) subset (IL-17A-producing CD4+

T cells), initially believed to be critical for experimental

allergic encephalomyelitis and then linked to other auto-

immune diseases as well as to responses to infection.2,3

Although much attention has centred on its production

by T cells (CD8+, CD4+ and cd subsets), it is also secreted

by other innate populations such as neutrophils, natural

killer (NK) cells and invariant natural killer T (iNKT)

cells.4

The precise role of IL-17A in responses to infection

remains controversial. Most studies have focused on a

physiological role of Th17 cells in defence against bacte-

ria.5 Production of IL-17A by CD4+ T cells during Strep-

tococcus pneumoniae or Klebsiella pneumoniae infection

has been shown to have a protective effect in mice

through the rapid recruitment of neutrophils that aid

bacterial clearance.6,7 Such a role has also been confirmed

by antibody-mediated IL-17A or CD4+ T-cell depletion

experiments, which showed reversal of the recruitment of

neutrophils and monocytes to the mucosal surface leading

to increased bacterial colonization and poor survival out-

come.6 Over-expression of IL-17A in the pulmonary com-

partments has been shown to be beneficial, enhancing

survival after lethal challenge with K. pneumoniae.8

Although a role for Th17 cells during infection has

been demonstrated, innate immune cells such as cd T,

NK and NKT cells also produce IL-17A in the face of

infection and are considered to constitute the first line of

host defence, acting before adaptive immunity can be

initiated.9–11 Interleukin-17A is secreted by cd T cells

during Escherichia coli infection: upon cytokine depletion,

decreased neutrophil recruitment to the site of infection

is observed, resulting in impaired microbial clearance and

increased bacterial burden.12 A similar pattern of response

by cd T cells has been described in Listeria monocytogenes

and Salmonella enterica serovar enteritidis infection mod-

els.13,14 The NK cells are an early source of IL-17A during

toxoplasmosis and depletion of this immune population

with anti-asialo-GM1 decreased serum IL-17A levels.11

Taken together, these studies provide evidence for the
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Summary

Streptococcus pyogenes is the causative agent of numerous diseases ranging

from benign infections (pharyngitis and impetigo) to severe infections

associated with high mortality (necrotizing fasciitis and bacterial sepsis).

As with other bacterial infections, there is considerable interest in

characterizing the contribution of interleukin-17A (IL-17A) responses to

protective immunity. We here show significant il17a up-regulation by

quantitative real-time PCR in secondary lymphoid organs, correlating

with increased protein levels in the serum within a short time of S. pyoge-

nes infection. However, our data offer an important caveat to studies of

IL-17A responsiveness following antigen inoculation, because enhanced

levels of IL-17A were also detected in the serum of sham-infected mice,

indicating that inoculation trauma alone can stimulate the production of

this cytokine. This highlights the potency and speed of innate IL-17A

immune responses after inoculation and the importance of proper and

appropriate controls in comparative analysis of immune responses

observed during microbial infection.

Keywords: bacterial immunity; infection; interleukin-17A; natural killer

cells; Streptococcus pyogenes; T helper type 17 cells
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protective role of IL-17A in the early immune response to

serious bacterial infection.

However, production of IL-17A during infection has

not always been correlated with protection. In the murine

caecal ligation puncture model of polymicrobial sepsis,

IL-17A from cd T cells was detected, but depletion of this

cytokine led to a decrease in bacteraemia and a reduction

in systemic pro-inflammatory cytokines [tumour necrosis

factor-a (TNF-a), IL-1b and IL-6] and chemokines.15

This offers a somewhat conflicting view suggesting that

the consequence of IL-17A release in different disease

models varies, depending on the nature and magnitude of

the infection, conferring different survival outcomes.

Streptococcus pyogenes is a Group A Streptococcus

(GAS),16 the causative agent of diverse diseases, ranging

from non-invasive (‘strep throat’, impetigo) to severely

invasive (necrotizing fasciitis and bacterial sepsis). Many

symptoms of sepsis have been attributed to a so-called

‘cytokine storm’, classically characterized by an excessive

release of pro-inflammatory cytokines (TNF-a and IL-1b)

leading to heightened systemic inflammatory responses

observed in patients.17–19 However, this may be an over-

simplified view because administration of anti-cytokine

antibodies, either in the clinical setting or in murine

models, does not offer protection from toxic shock.20

Streptococcus pyogenes has a wide array of virulence

factors implicated in pathogenesis and immune evasion,

the most widely studied being the superantigens21–23 and

M proteins.24,25 To date, only a handful of papers have

been published relating to aspects of IL-17A release dur-

ing S. pyogenes infection. Purified superantigens from

S. pyogenes and superantigen-contaminated preparations

of peptidoglycan are potent inducers of IL-17A from T

cells.26 Patients with GAS infections including strepto-

coccal toxic shock syndrome show elevated levels of cd
T cells, though IL-17A release was not analysed.27 Tonsil

cultures from patients with recurrent GAS-associated

tonsillitis can be stimulated with heat-killed M1 serotype

GAS to produce IL-17A together with transforming

growth factor-b, which suggests the possible differentia-

tion of Th17 cells.28

With a potential role for adaptive Th17 cells during

S. pyogenes infection previously reported, the innate

source of IL-17A has often been overlooked. We sought

to clarify the contribution of IL-17A from innate cell

types during GAS infection. Using a murine model of

acute sepsis, we demonstrated rapid up-regulation of both

il17a transcript and serum IL-17A levels in S. pyogenes-

infected mice. To our surprise, we also detected IL-17A

responses in sham-treated animals; with NK and CD4+

T cells representing the main producers of this pro-

inflammatory cytokine in both PBS-treated and GAS-trea-

ted mice. This study provides evidence that early IL-17A

responses are initiated by tissue damage and trauma

caused by the route of inoculation or by bacterial infec-

tion. Th17 responses are also observed within hours, sug-

gesting that the CD4/Th17 cells are closer to the innate/

adaptive interface than previously recognized and play a

more essential role in the acute response to trauma and

infection.

Materials and methods

Mice

HLA-DQ8.Ab0 transgenic mice, used for their heightened

sensitivity to streptococcal superantigen and GAS infec-

tion,29 were bred on-site and maintained in accordance

with UK Home Office guidelines. Female mice used in

the experiments were aged between 10 and 21 weeks, and

age-matched in any given infection experiment.

Acute sepsis infection model

Streptococcus pyogenes (NCTC8198) was cultured in

Todd–Hewitt broth (Oxoid, Basingstoke, UK) overnight

at 37� in 5% CO2. The next day, the culture was washed

three times in sterile PBS by centrifugation at 3000 g, for

15 min at 4� to remove contaminating broth and resus-

pended in injection-grade sterile saline. To study IL-17A

responses during the time–course of infection, 50 ll bac-

terial suspension or sterile saline (as sham control) was

given via the intramuscular (i.m.) route into the right

thigh of female mice at t = 0 hr. The bacterial inoculum

was quantified by serial plating on to columbia blood

agar plates (Oxoid) and was between 108 and 109 col-

ony-forming units per dose. Sterile saline inoculum was

also plated out and no bacterial contamination was

detected after 24 hr of incubation. At per-determined

time-points post-infection, groups of 10 infected mice or

groups of five sham-treated mice were killed for analysis

(carried out as part of two independent experiments).

Tissue was also obtained from five non-inoculated naive

female mice for normalization of quantitative reverse

transcription (qRT-) PCR data. For ex vivo IL-17A cyto-

kine flow cytometry, female mice were inoculated with

S. pyogenes (n = 4) or PBS (n = 3) as described above,

and killed at 24 hr along with untreated naive mice

(n = 3).

Quantitative RT-PCR

Spleen and inguinal draining lymph nodes were harvested

from naive, sham-infected or infected mice at 4, 8, 12

or 24 hr and stored in RNAlater� RNA Stabilisation

Reagent (Qiagen, Crawley, UK) at )80� until ready for

use. Total RNA was extracted using the acid phenol

method with TRIzol (Invitrogen, Paisley, UK) as per

the manufacturer’s instructions before resuspension in

RNase-free water containing RNaseOUT Recombinant
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Ribonuclease Inhibitor (Invitrogen). Concentration of

RNA and the nucleic acid : protein ratio were analysed

using a NanoDrop spectrophotometer (NanoDrop, Wil-

mington, DE). One microgram of total RNA was reverse

transcribed into cDNA using Superscript� III Reverse

Transcriptase (Invitrogen). A qRT-PCR was run on cDNA

samples in triplicates using in-house-designed target-

gene-specific primers and hydrolysis probes (Table 1) on

an MX3000P real-time PCR thermocycler (Agilent Tech-

nologies, Inc., Santa Clara, CA). Reactions were per-

formed in 20 ll total volume with a thermal profile of

50� for 2 min, followed by 10 min at 95� and then 50

cycles of 15 seconds at 95�, 15 seconds at 60� and 15 sec-

onds at 72�. The fold changes in gene expression levels,

relative to unimmunized naive samples, were normalized

to two tissue-specific reference genes and calculated based

on the DDCT method,30 along with differential amplifica-

tion efficiencies and randomization statistical analysis

using the RELATIVE EXPRESSION SOFTWARE TOOL (REST)

(Qiagen, Hilden, Germany).31

ELISA

Blood from naive, infected or sham-infected mice was

collected by cardiac puncture. Serum IL-17A concentra-

tions were determined by sandwich ELISA (MABTECH

AB, Nacka Strand, Sweden) and optical densities of

samples against an IL-17A standard curve were measured

using an ELISA plate reader (lQuant BIO-Tek Instru-

ments, Inc., Winooski, VT) and KC JUNIOR software.

Ex vivo intracellular IL-17A flow cytometry

Female mice inoculated with S. pyogenes or with PBS or

left untreated (naive) were given 50 lg brefeldin A (BFA;

Sigma-Aldrich, Poole, UK) or PBS via an intraperitoneal

(i.p.) route in a volume of 100 ll at 20 hr to stop the

release of cytokines from cells in the last 4 hr of infec-

tion.32 Mice were killed at 24 hr and inguinal draining

lymph nodes and spleens were harvested and homoge-

nized into a single cell suspension in PBS containing 10%

fetal calf serum using cell strainers (BD, Oxford, UK).

Cells were washed twice in cold PBS (10% fetal calf

serum) before blocking with Fc Block (eBioscience, San

Diego, CA) for 10 min on ice. Surface staining was car-

ried out with anti-mouse CD3 V500-conjugated,

anti-mouse T-cell receptor-cd phycoerythrin-conjugated,

anti-CD4 allophycocyanin-H7-conjugated and anti-mouse

NK1.1 phycoerythrin-Cy7-conjugated (all BD) for 20 min

at 4�. Cells were washed and resuspended in 1· Fix/Perm

solution (eBioscience) for 30 min at 4� before being

washed twice in 1· permeabilization buffer (eBioscience)

and intracellular IL-17A was stained using AlexaFluor

647-conjugated anti-mouse IL-17A (BD) for 30 min at 4�
before washing and fixation in 1% paraformaldehyde. The

IL-17A Fluorescence Minus One (FMO) controls were

used to determine positive populations (Fig. S1) and sam-

ples were run on a BD FACSAria II� flow sorter (BD,

Mountain View, CA) and analysed using FLOWJO software

(Treestar, Ashland, OR).

Statistical analysis

Statistical analysis of qRT-PCR data was performed using

REST software. Data are presented as mean ± SEM. Any

significant differences between treatment groups for

ELISA and ex vivo IL-17A flow cytometry were deter-

mined with a Kruskal–Wallis significance test using

GRAPHPAD PRISM 4.0 software (Graphpad Inc., La Jolla,

CA).

Results

Rapid induction of il17a expression after inoculation

Female HLA-DQ8.Ab0 transgenic mice were used in this

study because of their increased susceptibility to S. pyog-

enes infection and superantigen sensitivity.29 Female mice

received either S. pyogenes (n = 10 per time-point) or

PBS (n = 5 per time-point) using the intramuscular

Table 1. Quantitative real-time reverse transcription-PCR primers and hydrolysis probes

Gene Sense primer Anti-sense primer 6FAM-probe-TAMRA

b2m CTACTGGGATCGAGACATTGTGAT TGTGTACATTGCTATTTCTTTCTGC TGCTCTGAAGATTCATTTGAACCTGCT

gapdh GAGAAACCTGCCAAGTGTGATGAC AGACAACCTGGTCCTCAGTGTAG TCAAGAAGGTGGTGAAGCAGGCATC

tfrc AATGGTAACTTAGACCCAGTGGAG ATTAGCATGGACCAGTTTACCAGA TCCCGAGGGTTATGTGGCATTCAGT

tbp CAGTGCCCAGCATCACTATTT GCATCCTCTGAATATCTCCTTAGAA CATGGTGTGAAGATAACCCAGAACA

il17a CTGTGTGTGTGATGCTGTTGCT AAGGGAGTTAAAGACTTTGAGGTTG AGCTCAGCGTGTCCAAACACTGAGG

rorc

il6

tgfb

GTCTGCAAGTCCTTCCGAGAG

GTTCCTCTCTGCAAGAGACTTCC

ATGTTCTTCAATACGTCAGACATTC

ATCTCCCACATTGACTTCTG

GTATCCTCTGTGAAGTCTCCTCTCC

TTGCTATATTTCTGGTAGAGTTCCA

CTGCGACTGGAGGACCTTCTACGGC

CTTGGGACTGATGCTGGTGACAACC

GCAGAGCTGCGCTTGCAGAGATTAA

Sequences of sense, anti-sense and probes used for quantification of fold changes in gene expression. b2m, gapdh, tfrc and tbp were used as tis-

sue-specific reference genes to normalize the fold change in il17a, rorc, il6 and tgfb expression.
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route to mimic acute septic infection and were killed at

defined time-points. Naive, untreated mice (n = 5

females) were also killed, one at each time-point, and

pooled together to form the normalization group

(t = 0). From qRT-PCR analysis, it was observed that

there was rapid up-regulation in il17a expression in the

draining lymph nodes after GAS infection, peaking at

4 hr, then slowly declining and remaining steady from

12 to 24 hr post-infection compared with unimmunized

mice (Fig. 1a). Interestingly, sham infection with sterile

saline also produced swift expression of il17a in the

lymph nodes and expression remained higher than in

infected samples even 24 hr after treatment (Fig. 1a).

Increased transcription of il17a was also observed in the

spleen (Fig. 1b) but with no significant difference

between sham-treated and naive mice at 8 and 12 hr

post-treatment. This suggested a return to basal levels of

il17a expression in the spleen at the intermediate time-

points, whereas S. pyogenes-infected mice displayed more

sustained up-regulation of il17a transcription throughout

the time–course of infection (Fig. 1b). Hence, inocula-

tion with either saline or S. pyogenes induced a dramatic

increase in il17a expression in the secondary lymphoid

organs analysed.

Elevated IL-17A levels in the serum were detected
post-inoculation

The rapid up-regulation in il17a gene expression was

matched by serum IL-17A concentrations. Serum IL-17A

was markedly elevated 4 hr after infection with S. pyoge-

nes, but was reduced at 8 hr before rising again during

the later stages of infection. The data were in contrast to

those for naive controls (t = 0 hr), which displayed low

background levels of IL-17A in the serum (Fig. 2). Sham

infection with saline resulted in strong production of

IL-17A, which followed a similar bimodal pattern to

GAS-infected samples (Fig. 2). Taken together, inocula-

tion with either saline or S. pyogenes resulted in elevated

levels of IL-17A in the serum.

Effects of inoculation on rorc gene expression

Quantitative RT-PCR analysis was also carried out on the

draining inguinal lymph node and spleen tissue to analyse

any changes in rorc, a hallmark transcription marker of

Th17 cells, to determine the contribution of this cell type

during immunization.33 Paradoxically, this transcript was

significantly down-regulated, both in sham-infected and

S. pyogenes-infected lymph node samples (Fig. 3a) relative

to naive uninfected controls, despite an increase in il17a

transcription (Fig. 1a). This suggested that increased IL-

17A in draining lymph nodes may not be the result of

rapid induction of Th17 cells, but may be produced from

some other cell-type. In contrast to changes in the drain-

ing lymph node, transcription of rorc increased in the
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Figure 1. Fold change in expression of il17a after Streptococcus pyogenes infection or sham infection. HLA-DQ8.Ab0 mice were injected intramus-

cularly with 1�1 · 109 colony-forming units S. pyogenes (n = 10 per time-point) or PBS (n = 5 per time-point) at t = 0 hr. Draining lymph nodes

(a) or spleens (b) were taken at t = 0, 4, 8, 12 and 24 hr for quantitative real-time reverse transcription-PCR. Sham and infected samples were

normalized to naive uninfected mice (n = 5) and to two tissue-specific reference genes. Fold change in il17a expression was determined using

rest software and any significant differences (*P < 0�05) relative to naive samples are indicated.
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Figure 2. Serum interleukin-17A (IL-17A) released after Streptococcus

pyogenes infection or sham infection. HLA-DQ8.Ab0 mice were

injected intramuscularly with 1�1 · 109 colony-forming units S. pyog-

enes (n = 6 per time-point) or PBS (n = 3 per time-point) or naive

(n = 4) at t = 0 hr. Serum was collected from mice at t = 0, 4, 8, 12

and 24 hr by cardiac puncture for serum IL-17A analysis by ELISA.

Any significant differences between sham or infected samples com-

pared with naive mice are shown above (*P < 0�05). No significant

differences were found between time-matched sham or infected

samples).
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spleen following both GAS infection and sham infection

(Fig. 3a). These changes in the spleen may represent a

delayed, systemic Th17 response to GAS infection or

injection trauma and could contribute to the released

IL-17A in the serum as observed in Fig. 2.

The qRT-PCR analysis of fold changes in il6 and tgfb

expression between GAS-infected and sham-infected

samples was also performed as these two cytokines are

essential for RORct induction and hence Th17 differentia-

tion.34,35 Expression of the il6 gene was significantly up-

regulated only in S. pyogenes-infected samples relative to

naive controls in the draining lymph node and spleen

(Fig. 3b). This was also mirrored by tgfb expression in

GAS-infected spleen (Fig. 3c). As a result, up-regulation

of il6 and tgfb expression in the spleen seems to correlate

with induction of rorc expression, whereas up-regulation

of il6 in the draining lymph nodes and in the absence of

tgfb expression was not sufficient to induce rorc expres-

sion and Th17 cell differentiation.

Identification of innate and adaptive sources of
IL-17A post-inoculation

The cellular source of IL-17A was determined by ex vivo

intracellular cytokine flow cytometry, allowing identifica-

tion of IL-17A producing cell types following either GAS

or sham infection. IL-17A+ cellular populations were

determined in the draining lymph node of naive, sham-

infected or GAS-infected mice. In the last 4 hr of i.m.

immunization, BFA was given i.p. as part of the ex vivo

staining protocol and PBS was used as control for this

injection. The percentage of IL-17A+ cells from the total

population was not significantly different in the naive

controls given either BFA or PBS. This suggests that the

administration of chemicals into the peritoneal cavity did

not affect the percentage of cells producing IL-17A

(Fig. 4). Interestingly, mice treated with i.m. immuniza-

tion (either sham-infected or GAS-infected) and BFA i.p.

exhibited a slight (but not significant) decrease in the
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percentage of IL-17A+-expressing cells compared with

mice given PBS i.p. (Fig. 4). Infected mice given BFA

contained a significantly lower percentage of IL-17A+ cells

compared with naive mice also treated with BFA (Fig. 4).

To determine the precise cells capable of producing

IL-17A, a further ex vivo flow cytometric analysis was con-

ducted (Fig. 5a). In naive animals, the predominant cell

types in the draining lymph node to produce IL-17A upon

treatment with PBS i.p. appeared to be NK and CD4+

T cells (Fig. 5b). This was also true for sham-infected and

GAS-infected mice given PBS i.p. (Fig. 5b). Mice treated

with BFA i.p. had a reduced percentage of IL-17A+ expres-

sion cells compared with mice given PBS (Fig. 5b). Signifi-

cantly fewer NK cells and cd T cells expressed IL-17A in

the sham-infected mice treated with BFA compared with

the PBS control group (Fig. 5b). Naive mice treated with

BFA had significantly fewer cd T cells compared with

infected mice given BFA (Fig. 5b). This pattern of reduced

cell types expressing IL-17A appears to agree with the

decrease in the percentage of IL-17A+ cells of the total pop-

ulation (Fig. 4). Overall, IL-17A synthesis in either naive,

sham-infected or GAS-infected mice treated with PBS was

primarily from NK and CD4+ T cells.

Discussion

Interleukin-17A is the most widely studied from a family

of five related cytokines from the IL-17 family (A–F).36

Interleukin-17A has 50% homology with IL-17F and

shares signalling via the heterodimeric IL-17RA and

IL-17RC subunit receptor complex ubiquitously expressed

on many different cells.37 Hence, IL-17A can bring about

immunological effects on various cell types (including

non-lymphoid cells such as epithelial and mesenchymal

cells) via a diverse array of target genes mediated by sig-

nal transduction downstream of its receptor.38 Key exam-

ples of target genes include pro-inflammatory chemokines

(CXCL1, CXCL8), cytokines (TNF-a, IL-6 and IL-1),

anti-microbial peptides and tissue remodelling factors.39

Different roles in immunity have been postulated for

IL-17A since its discovery in the early 1990s. One potent

source of this pro-inflammatory cytokine was found to be

adaptive CD4+ T cells, termed Th17 cells in line with the

Th1 and Th2 subsets postulated by Mosmann et al. in

1986.40 Since then, most research has been dedicated to

the role of Th17 cells in host defence in infectious

diseases or contribution in the development of auto-

immunity (e.g. experimental allergic encephalomyelitis,

rheumatoid arthritis, inflammatory bowel disease).5,41

However, in the past few years, interest has been gener-

ated as innate cell types such as cd T, NK and NKT cells

were found to also secrete IL-17A in response to micro-

bial stimuli.4 Despite our current understanding, the pre-

cise interplay between innate and adaptive sources of, or

the role of, IL-17A and downstream consequences during

the early stages of acute bacterial infection have not been

fully elucidated. In this study we sought to characterize

both adaptive and innate sources of IL-17A during a

time–course of acute S. pyogenes infection using a human-

ized murine model.

In this study, up-regulated il17a gene expression and

protein production were detected following S. pyogenes

infection in the inguinal draining lymph node, spleen and

serum, respectively. However, using a stringent negative

control not always included in infection protocols, it was

noted that sham infection with sterile saline could induce

changes of similar magnitude in il17a expression (Fig. 1)

and protein production (Fig. 2) despite the absence of

pathogen or antigen. Sham infection induced a marginally

larger and longer lasting effect in il17a gene expression

compared with infected samples.

The main sources of IL-17A in naive, sham or

infected mice treated with PBS i.p. were NK and CD4+ T

cells, implying that both innate and unexpectedly early

adaptive immune cells are involved in the production of

IL-17A (Fig. 5). Interestingly, rorc transcription actually

decreased following S. pyogenes infection or sham infec-

tion in the local draining lymph node when normalized

to unimmunized naive controls, indicative of fewer Th17

cells migrating to the site of trauma or infection or even

of Th17 differentiation. This was supported by down-reg-

ulation of expression of one of the key cytokines; tgfb

required for Th17 differentiation in both sham-treated

and GAS-treated samples compared with naive tissue. The

CD4+ T cells detected by ex vivo IL-17A staining in the

draining lymph nodes of infected mice may be pre-existing
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nodes were harvested from untreated naive HLA-DQ8.Ab0 mice

(n = 3) or Streptococcus pyogenes-infected (n = 4) or PBS-immunized

(n = 3) mice at t = 24 hr. In the last 4 hr of immunization, PBS or

brefeldin A (BFA) was given intraperitoneally before mice were

culled and cells were stained for IL-17A production and analysed by

flow cytometry. Fluorescence Minus One (FMO) controls were used

to determine IL-17A+ populations. The percentage of IL-17A+ cells

from total cells are shown for naive, sham and infected mice. Any

significant differences are indicated (*P < 0�05) using the Kruskal–

Wallis statistical test.
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memory cells, reminiscent of an IL-17A-producing mem-

ory Th17 population identified using superantigen-secret-

ing Staphylococcus aureus isolates.42

The decreased percentage of IL-17A+ cells of the total

population in the sham-infected and GAS-infected sam-

ples treated with BFA i.p. compared with naive controls

as shown by ex vivo IL-17A staining may be caused by

increased cell death caused by the trauma of inoculation.

This is particularly the case for S. pyogenes-infected mice,

whereby this pathogen has been demonstrated to

induce dramatic apoptosis in immune cell types.43 The

increased detection of IL-17A+ cells in naive controls

without treatment with BFA may represent a store of

this pro-inflammatory cytokine and suggests that these

cells are poised for quick release in response to trauma

or infection.
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As no increase in rorc or tgfb gene expression was

detected in the inguinal draining lymph node, it cannot

be ruled out that Th17 cells may differentiate elsewhere

upon sham or GAS infection. It has been shown that

skin-migratory Langerhans cells can induce Th17 differen-

tiation from naive CD4+ T cells in the presence of IL-6

and IL-15.44 Differentiated CD4+ T cells were able to

home to the skin and produce IL-17 and also interferon-c
to exert tissue damage. Therefore, it is not implausible to

suggest that the trauma caused at the site of injection in

our model may activate skin-migratory Langerhans cells

to induce the differentiation of Th17 cells in a similar

fashion and the production of IL-17A may contribute to

the observed tissue damage and cell death. However, this

would need to be confirmed.

The small difference between sham-infected and S. py-

ogenes-infected samples in terms of serum IL-17A levels

is indicative of the very strong and volatile innate IL-

17A response to local trauma. It has been long estab-

lished that tissue damage and trauma can lead to the

production of pro-inflammatory cytokines, such as IL-1,

IL-2, TNF-a, IL-6, IL-12 and interferon-c.45 These cyto-

kines and also chemokines act as danger signals, recruit-

ing cells, such as NKT cells, to the site of injury to

create a microenvironment suitable for tissue repair and

wound healing46 and also to guard against risk of infec-

tion.47 Interleukin-17A is also associated with trauma

and tissue damage. Systemic increases have been

described in post-trauma patients. However, this was

associated with Th17 cells as IL-23 induced by local

macrophages and dendritic cells maintained the survival

of this T-cell subset.48 Elevated IL-17A has also been

detected after severe burn injuries in both clinical

patients and murine models.49,50 cd T cells have been

demonstrated to sense stress signals from dying cells and

secrete IL-17A in response51 as a form of immune sur-

veillance.52 In our acute sepsis model we found a signifi-

cantly increased percentage of IL-17A+ cd T cells in

infected BFA-treated mice relative to naive BFA controls,

indicating that this innate immune cell type may be

playing a role in immune surveillance.

The major sources of IL-17A in this model were NK

cells, CD4+ cells, and to a lesser extent NKT cells, follow-

ing S. pyogenes infection in terms of percentage of lym-

phocytes. Both pathogenic and protective roles for NK

cells during bacterial sepsis have been demonstrated by

depletion experiments using the caecal ligation puncture

animal model of polymicrobial sepsis and other models

of trauma.53–56 Clearly, a potential mechanism for the

interaction between S. pyogenes and immune cells leading

to IL-17A production may be via secreted superantigens.

For example, hepatic NKT cells can be activated by Kupf-

fer cells in the presence of superantigens to produce inter-

feron-c and IL-12 and show enhanced cytotoxic activity.57

We are currently defining the relative contributions of

antigenicity and superantigenicity using superantigen-

knockout GAS isolates.

Our experiments have shown potent and rapid release

of IL-17A by both innate and adaptive cell types in

response to trauma and infection. This appears to be an

exquisitely reactive mechanism, poised to prime the host

against potential infection and inflammation as perceived

through tissue damage at the site of injury. Hence,

extreme care is required in choosing appropriate controls

for infection models.
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