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Research

Epidemiologic studies have consistently 
linked exposure to particulate matter (PM) 
air pollution with adverse health effects (Pope 
and Dockery 2006). Early studies of long-
term exposure measured concentrations at 
relatively few locations to investigate the 
health impacts of concentration differences 
between cities. Recent studies have used more 
sophisticated methods to improve the spa-
tial resolution of exposure estimates (Health 
Effects Institute 2010).

Despite these improvements, most epide-
miologic studies still assume that outdoor con-
centrations represent personal exposure to PM 
of outdoor origin, even though individuals 
spend most of their time indoors. Several stud-
ies have demonstrated that fine PM [aerody-
namic diameter ≤ 2.5 μm (PM2.5)] infiltration 
efficiency (Finf), defined as the fraction of the 
outdoor concentration that penetrates indoors 
and remains suspended, varies between com-
munities, between homes, and over time 
within homes (Chen and Zhao 2011). Failure 
to account for this potential source of expo-
sure variation in epidemiologic studies may 
be a source of exposure misclassification that 
could limit our ability to accurately estimate 

the health risks of long-term PM exposure 
(Sarnat et al. 2007).

Multiple methods have been developed 
for estimating Finf, a variable that depends on 
the air exchange rate, PM loss rate (the rate at 
which PM is removed from the air by deposi-
tion, filtration, and so forth), and penetration 
efficiency (the fraction of PM that penetrates 
the building envelope as outdoor air comes 
indoors). The use of sulfur or sulfate as an out-
door PM2.5 tracer is the most common method 
for estimating Finf. Sulfur is a useful tracer 
because it has few indoor sources and has infil-
tration characteristics roughly similar to PM2.5 
(Sarnat et al. 2002). Therefore, in the absence 
of indoor sulfur sources, the indoor/outdoor 
(I/O) sulfur ratio provides a good estimate of 
Finf for nonvolatile PM2.5 components.

Unfortunately, methods for estimating 
Finf in residences require indoor and outdoor 
pollution sampling, which makes estimating 
Finf among large populations infeasible. To 
overcome this challenge, some investigators 
have developed Finf prediction models (Clark 
et al. 2010; Hystad et al. 2009; Koenig et al. 
2005; Meng et al. 2009). Although the mod-
els have shown promise, they have generally 

been developed for individual cities using rela-
tively small sample sizes and therefore may not 
be transferable to other locations.

The Multi-Ethnic Study of Atherosclerosis 
and Air Pollution (MESA Air) is a prospec-
tive cohort study of the relationship between 
long-term exposure to PM2.5, subclinical 
cardiovascular disease, and clinical outcomes 
(Kaufman et al. 2012). More than 6,000 par-
ticipants between 45 and 84 years of age will 
be followed over approximately 10 years for 
cardiovascular disease events and mortality, 
and subcohorts are being assessed for subclini-
cal cardiovascular disease progression. In this 
article, we describe the development of mod-
els for predicting Finf on a 2-week basis for 
every study home. These Finf estimates will be 
combined with outdoor PM2.5 concentration 
estimates and individual time–location pat-
terns to estimate every participant’s long-term 
exposure to PM2.5 of outdoor origin (Cohen 
et al. 2009).

Methods
Study design. Most MESA Air participants 
were recruited from the main MESA study 
(Bild et al. 2002), which includes six com-
munities: Baltimore City and Baltimore 
County, Maryland; Chicago, Illinois; Forsyth 
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Background: Epidemiologic studies of fine particulate matter [aerodynamic diameter ≤ 2.5 μm 
(PM2.5)] typically use outdoor concentrations as exposure surrogates. Failure to account for variation 
in residential infiltration efficiencies (Finf) will affect epidemiologic study results.

Objective: We aimed to develop models to predict Finf for > 6,000 homes in the Multi-Ethnic 
Study of Atherosclerosis and Air Pollution (MESA Air), a prospective cohort study of PM2.5 expo-
sure, subclinical cardiovascular disease, and clinical outcomes.

Methods: We collected 526 two-week, paired indoor–outdoor PM2.5 filter samples from a subset 
of study homes. PM2.5 elemental composition was measured by X-ray fluorescence, and Finf was 
estimated as the indoor/outdoor sulfur ratio. We regressed Finf on meteorologic variables and 
questionnaire-based predictors in season-specific models. Models were evaluated using the R2 and 
root mean square error (RMSE) from a 10-fold cross-validation.

Results: The mean ± SD Finf across all communities and seasons was 0.62 ± 0.21, and community-
specific means ranged from 0.47 ± 0.15 in Winston-Salem, North Carolina, to 0.82 ± 0.14 in New 
York, New York. Finf was generally greater during the warm (> 18°C) season. Central air condition-
ing (AC) use, frequency of AC use, and window opening frequency were the most important pre-
dictors during the warm season; outdoor temperature and forced-air heat were the best cold-season 
predictors. The models predicted 60% of the variance in 2-week Finf, with an RMSE of 0.13.

Conclusions: We developed intuitive models that can predict Finf using easily obtained variables. 
Using these models, MESA Air will be the first large epidemiologic study to incorporate variation in 
residential Finf into an exposure assessment.
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County (Winston-Salem), North Carolina; 
Los Angeles County, California; New York, 
New York; and St.  Paul, Minnesota. To 
enhance exposure heterogeneity in MESA Air, 
additional participants were recruited from 
two areas in the Los Angeles basin (coastal 
Los Angeles and an area ~ 90 km inland near 
Rubidoux in western Riverside County) and 
in Rockland County, New York (~ 40 km 
north of New York City). For this analysis, the 
additional Los Angeles area participants were 
combined with Los Angeles County partici-
pants recruited from MESA. Primarily because 
of differences in housing characteristics, 
Rockland County participants were considered 
separately from New York City participants. 
Thus, we considered seven study communi-
ties. All of the participating centers’ institu-
tional review boards approved the study, and 
all study participants gave written informed 
consent before data collection.

The exposure assessment approach in 
MESA Air has been previously described 
(Cohen et al. 2009). The overarching goal is 
to develop accurate estimates of participants’ 
outdoor-origin PM2.5 exposure over the 
10-year study period (Kaufman et al. 2012). 
It is not feasible to make ongoing residential 
or personal concentration measurements for 
the entire study. Therefore, MESA Air makes 
use of a modeling approach, in which a lim-
ited number of measurements in each study 
community and at a subset of participants’ 
homes are used to develop models to estimate 
both outdoor concentrations and Finf across 
the entire study population. Other reports 
have focused on the outdoor concentration 
prediction approaches (Sampson et al. 2011; 
Szpiro et al. 2010); this article addresses the 
estimation of Finf for this cohort.

Data collection. Every participant com-
pleted the MESA Air Questionnaire (hence-
forth “main questionnaire”) at recruitment, 
and this questionnaire was repeated during 
follow-up calls when participants indicated a 
change of residence. This questionnaire was 
used to gather information on residence char-
acteristics and resident behaviors related to 
Finf, including building type, presence/use of 
air conditioning (AC), window opening, and 
use of air filters/cleaners. For behaviors that 
vary seasonally, we asked participants about 
typical behavior in the previous summer 
and winter.

Between March 2006 and July 2008, a 
subset of homes underwent I/O residential 
pollution sampling. Details of sample col-
lection can be found in Cohen et al. (2009). 
In brief, outdoor sampling equipment was 
usually placed in the participant’s back yard 
or patio, away from all structures. When this 
was not possible (e.g., in the case of high-rise 
apartments), outdoor samplers were extended 
approximately 1 m out an available window 

and the window sealed with weather strip-
ping. Indoor sampling equipment was placed 
in the main activity room away from pollu-
tion sources and ventilation systems. Homes 
were selected to cover the geographic area of 
each community and to represent a range of 
proximities to major roads, and only non-
smoking households were selected for I/O 
sampling, because smoking is a weak indoor 
sulfur source (Koutrakis et al. 1992). Each 
sampling period was nominally 2 weeks in 
duration, and many homes were monitored 
twice, usually in different seasons. The con-
centrations of 48 elements in the PM2.5 
Teflon filter samples were quantified by X-ray 
fluorescence (Cooper Environmental Services, 
Portland, OR, USA). Finf was calculated as 
the I/O ratio of 2-week average sulfur con-
centrations. The estimated precision of sulfur 
measurements (calculated as the relative per-
cent difference of duplicate samplers divided 
by √

–2) was 3.7%.
Participants whose homes had paired I/O 

sampling were also asked to complete an infil-
tration questionnaire, for which the comple-
tion rate was approximately 90%. Unlike the 
main questionnaire, the infiltration question-
naire focused on residence characteristics and 
resident behaviors during the 2-week period 
of I/O sampling. In addition, the infiltration 
questionnaire asked questions about potential 
indoor sources of PM2.5 (e.g., cooking) and 
sulfur (e.g., kerosene heaters).

All MESA Air home addresses were geo-
coded based on the Dynamap 2000 TeleAtlas 
road network (TeleAtlas, Menlo Park, CA, 
USA) using ArcGIS (version 9.2; ESRI, 
Redlands, CA, USA) (Cohen et al. 2009), and 
distances to the nearest major roads were cal-
culated. Outdoor temperatures and precipita-
tion during each 2-week period were obtained 
from the National Oceanic and Atmospheric 
Administration (2011).

Data analysis and model building. 
After data cleaning [described in detail in 
Supplemental Material, p. 3 (http://dx.doi.
org/10.1289/ehp.1104447)], there were 526 
I/O sulfur pairs (from 353 homes) for analy-
sis and model building. For each valid Finf 
observation, we estimated the contribution of 
infiltrated and indoor-generated PM2.5 to the 
total indoor concentration (described in detail 
in Supplemental Material, p. 3). Because our 
goal was to predict Finf across the MESA Air 
cohort, we constructed our models using pre-
dictors that were available for every partici-
pant (henceforth “generalizable models”). We 
constructed season-specific models under the 
assumption that the Finf predictors and their 
model coefficients would vary between sea-
sons. To explore the consistency of predictors 
across communities, we first constructed sea-
son-specific Finf models for each community 
before developing season-specific models using 

data from all communities. We categorized 
each 2-week period into a “warm” or “cold” 
season based on the average outdoor tempera-
ture (> 18°C and ≤ 18°C, respectively). We 
used 18°C as the cutoff because it was sup-
ported by the data (see Supplemental Material, 
Figure 1) and because it is commonly used in 
heating- and cooling-degree day calculations 
(Quayle and Diaz 1980).

We focused on predictors that have been 
previously associated with Finf, including out-
door temperature, building type, air cleaner/
filter use, AC use, window opening, and use 
of forced-air heat. A correlation between 
residence age and Finf has also been reported 
(Lachenmyer and Hidy 2000); however, 
building age was not known or not reported 
for nearly 13% of the MESA Air homes, so 
we did not include it as a potential predictor. 
We also evaluated the presence of an attached 
garage, double-pane windows, and storm win-
dows as potential predictors of Finf, although 
these variables have not been associated with 
Finf previously. In addition, proximity to 
major roads was included as a potential predic-
tor because roadway noise might be correlated 
with window opening (Ohrstrom et al. 2006) 
and/or window quality (Klaeboe et al. 2004). 
Some potential predictors (e.g., window open-
ing frequency) were coded as both an ordinal 
variable and as several binary variables with 
different cut-points. Outdoor temperature was 
coded as both continuous and binary with 
different cut-points. In total, we screened 
84 potential predictors of Finf in the generaliz-
able models. We also considered several inter-
actions with outdoor temperature. The details 
of the model building procedure are presented 
in the Supplemental Material, p. 4 (http://
dx.doi.org/10.1289/ehp.1104447).

Generalizable model performances were 
assessed, and the “best” models were selected, 
using a 10-fold cross-validation (CV) method 
(Hastie et al. 2001) Each data set (season) 
being modeled was divided into 10 approxi-
mately equal-size groups. Because some homes 
were monitored twice in the same season, 
both measurements from a single home in a 
given season were placed in the same group. 
The model was then fit based on data from 
nine groups, and the estimated coefficients 
were used to predict Finf for all observations 
in the excluded group. This procedure was 
repeated until predictions for all groups had 
been generated using SAS software (version 
9.3; SAS Institute Inc., Cary, NC, USA). We 
calculated the CV R2 and the CV root mean 
square error (RMSE) by comparing predicted 
and measured Finf. To assess the potential for 
the models to predict Finf outside of MESA 
Air, we also conducted a more conservative 
leave-one-community-out CV. Unless other-
wise stated, CV results will be those from the 
10-fold CV.
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We evaluated the models’ robustness and 
representativeness in three ways. First, we com-
pared the generalizable models with models 
that were developed using the same 84 poten-
tial predictors, plus 49 additional infiltration 
questionnaire predictors that were specific to 
the 2-week I/O sampling period (henceforth 
“2-week specific models”). This comparison 
provided information on the loss of predic-
tive power introduced by a lack of temporal 
specificity in the generalizable models. Second, 
after the predictive models were developed, 
we added possible indoor air pollution sources 

(presence of pilot lights, use of candles or 
incense, use of a humidifier, or participant 
report that the home had been smoky from 
cooking) to the models to determine if these 
sources were associated with higher I/O sulfur 
ratios. Finally, we compared I/O sulfur ratios 
with the corresponding PM2.5 ratios. A sulfur 
ratio that exceeds the corresponding PM2.5 
ratio indicates a) measurement imprecision, 
b) an indoor sulfur source, or c) overestimation 
of PM2.5 Finf, possibly due to the loss of vola-
tile PM2.5 species as the PM moves indoors 
(Sarnat et al. 2006).

Results
The 353 homes that underwent I/O sampling 
were generally representative of the MESA Air 
cohort [see Supplemental Material, Table 1 
(http://dx.doi.org/10.1289/ehp.1104447)]. Of 
the 353 homes, 173 were monitored twice, 
with most of those (119, 69%) monitored 
in different seasons. Because homes where a 
smoker was reported to reside were excluded 
from home sampling, indoor smoking in the 
past year (by residents or visitors) was reported 
more commonly among the full cohort (17%) 
than among the home sampling subgroup 
(4%). The home sampling subgroup was also 
overrepresented by single-family/free-standing 
homes (68%) relative to the full cohort (55%). 
Use of central AC was very similar between the 
two groups but varied widely among commu-
nities, ranging from 6% of MESA Air homes 
in New York City to 88% in Winston-Salem. 
Window opening patterns and air cleaner use 
were also very similar between the full cohort 
and the home sampling subgroup.

Two-week average Finf varied between 
communities and between seasons within 
communities (Figure 1). The mean ± SD 
Finf across all communities and seasons was 
0.62  ±  0.21. Community-specific means 
ranged from 0.47 ± 0.15 in Winston-Salem to 
0.82 ± 0.14 in New York. With the exception 
of Winston-Salem, where approximately 90% 
of homes used central AC in summer and 

Table 1. Predictors in community- and season-specific Finf models. 

Finf 
IQR

Predictor variable Model 
R 2Community n Building Climate Heat/AC Window Air cleaner Interaction

Warm season (> 18°C)
Baltimore 39 0.39 — > 25°C and home 

has central AC (–)
Central AC used almost 

daily in July (–)
Any windows open 

in July (+)
— — 0.67

Chicago 28 0.35 — — Central AC used more 
than half time in July (–)

Any windows open 
in July (+)

— — 0.78

Los Angeles 53 0.18 Free standing (+) — Central AC usea (–) All windows open 
in July (+)

— — 0.62

New York 26 0.10 Incomeb,c (–) — — Windows open > half 
time in July (+)

— — 0.51

Rockland County 11 0.39 — — Central AC used more 
than half time in July (–)

— — — 0.46

St. Paul 23 0.49 — Temperatureb,d (+) Home has central ACd (–) Any windows open 
in July (+)

— Temperature × 
central AC (–)

0.72

Winston-Salem 39 0.23 — > 25°C and home 
has central AC (–)

Central AC used almost 
daily in July (–)

Windows open > half 
time in July (+)

— — 0.51

Cold season (≤ 18°C)
Baltimore 48 0.21 — Temperatureb (+) < 0°C and home has 

forced-air heat (–)
— Air cleaner/filter used 

in the home (–)
— 0.54

Chicago 40 0.15 Free standing (–) Temperatureb (+) — Any windows open 
in January (+)

HEPA or ESP used more 
than half time (–)

— 0.35

Los Angeles 80 0.20 — Temperatureb (+) Home has central AC (–) Windows open > half 
time in July (+)

— — 0.44

New York 24 0.26 — Temperatureb (+) — — — — 0.23
Rockland County 12 0.20 — — — — — — —
St. Paul 56 0.27 — Temperatureb (+) Home has forced-air 

heat (–)
All windows open in 

January (+)
— — 0.49

Winston-Salem 47 0.22 Home has a 
garage (–)

Temperatureb (+) — — HEPA filter used 
almost daily (–)

— 0.33

Abbreviations: —, no statistically significant predictor; ESP, electrostatic precipitator; HEPA, high-efficiency particulate air filter; IQR, interquartile range. (+) and (–) indicate the direction 
of the coefficient predictor variable. All variables are binary unless otherwise noted.
aOrdinal variable. bContinuous variable. cIncome is assumed to be a surrogate for quality of construction, building materials, and so forth. dIncluded as main effects of interaction term. 

Figure 1. Distributions of 2-week average Finf by community and season. Communities are shown in order 
of decreasing median Finf. Solid lines in boxes represent median values, dashed lines in boxes represent 
mean values, boxes represent 25th and 75th percentiles, and whiskers represent 10th and 90th percentiles; 
outliers are not shown. The number of observations and homes for each community/season is given in 
Table 1.

F i
nf

0.0

0.2

0.4

0.6

0.8

1.0

All data
Warm season 
Cold season

New York Los Angeles Rockland County Chicago St. Paul Winston-Salem All citiesBaltimore



Residential PM2.5 infiltration in MESA Air

Environmental Health Perspectives  •  volume 120 | number 6 | June 2012	 827

window opening was infrequent, mean values 
of Finf were generally greater during the warm 
season. Across all observations, PM2.5 of out-
door origin contributed roughly 80% of the 
indoor PM2.5 concentration in these homes. 
Summary statistics for PM2.5 and sulfur con-
centrations are presented in the Supplemental 
Material, Table 2 (http://dx.doi.org/10.1289/
ehp.1104447).

In the preliminary analysis of community- 
and season-specific predictors, we found that 
the most consistent Finf predictors during the 
warm season were variables related to win-
dow opening frequency and use of central AC 
(Table 1). Outdoor temperature was the most 
consistent Finf predictor during the cold season.

Window opening and use of central AC 
were also important in our generalizable 
warm-season model. The warm-season model 
included three variables related to central AC 
use and one variable related to window open-
ing frequency and had a CV R2 of 0.68 and 
a CV RMSE of 0.14 (Table 2). The single 
most important warm-season predictor was 
the use of central AC more than half of the 
time in the past July (partial R2 = 0.56). The 

cold-season generalizable model included as 
predictors outdoor temperature, the presence 
of forced-air heat, the presence of double pane 
windows, and two window opening frequency 
variables and had CV R2 and RMSE of 0.47 
and 0.13, respectively. Outdoor temperature 
(partial R2 = 0.22) and the presence of forced-
air heat (partial R 2 = 0.17) were the most 
important cold-season predictors. Variance 
inflation factors for the predictors in the gen-
eralizable warm- and cold-season models were 
< 3.3 and < 1.2, respectively. In addition to 
two predictors based on outdoor tempera-
ture, a total of seven unique questionnaire-
based predictors were used in the generalizable 
models (Table 2). These seven predictors were 
derived from a total of nine unique ques-
tions, which are provided in the Supplemental 
Material [Table 3 (http://dx.doi.org/10.1289/
ehp.1104447)].

Across seasons, the overall generalizable 
model CV R 2 and RMSE were 0.60 and 
0.13, respectively (Table 2, Figure 2). The 
generalizable models performed similarly 
when evaluated on individual communities 
(Figure 2). The predictions were less variable 

than the measurements; the models consis-
tently overestimated Finf < 0.3 and underesti-
mated Finf > 0.9 (Figure 2). Results were very 
similar when using a more conservative leave-
one-community-out CV model assessment 
approach [see Supplemental Material, Figure 2 
(http://dx.doi.org/10.1289/ehp.1104447)].

The generalizable models performed nearly 
as well as the 2-week specific models (overall 
CV R2 = 0.66; CV RMSE = 0.13; Table 2), 
suggesting that the lack of temporal specific-
ity in the main questionnaire did not sub-
stantially reduce model performance (there 
were fewer observations for the 2-week spe-
cific models because some participants did not 
complete the infiltration questionnaire; the 
generalizable model results were similar when 
applied to participants for which infiltration 
questionnaire data were available: overall CV 
R 2 = 0.62; CV RMSE = 0.13). Presence of 
pilot lights, use of candles or incense, self-re-
ported smoky periods from cooking, and use 
of a humidifier were reported during 72%, 
18%, 14%, and 4% of the I/O sampling 
observations, respectively. None of these were 
significant predictors of Finf (data not shown).

Table 2. Season-specific Finf models combining data from all communities.

Questionnaire 
source for 
predictora

CV

R 2 Season Overall

Predictor β (SE) p-Value Partial Model R2 RMSE R2 RMSE

Generalizable modelb 0.60 0.13
Warm season (n = 219) 0.70 0.68 0.14

Intercept NA 0.72 (0.03) < 0.01 NA
Central AC used > half time in past July Main –0.22 (0.03) < 0.01 0.560
Windows open ≥ half time in past summer Main 0.15 (0.02) < 0.01 0.080
Central AC used > half time in past July and 

2-week average outdoor temperature > 23°C
Main –0.16 (0.04) < 0.01 0.051

Central AC used a few days in past July Main –0.10 (0.03) < 0.01 0.013
2-week average outdoor temperature > 23°Cc NA 0.01 (0.03) 0.75 0.000

Cold season (n = 307) 0.49 0.47 0.13
Intercept NA 0.52 (0.02) < 0.01 NA
2-week average outdoor temperature (°C) NA 0.01 (0.00) < 0.01 0.222
Home has forced-air heat Main –0.12 (0.02) < 0.01 0.166
Windows open ≥ half time in past summer Main 0.08 (0.02) < 0.01 0.069
Home has double pane windows Main –0.05 (0.02) < 0.01 0.023
Windows open ≥ half time in past winter Main 0.05 (0.02) < 0.01 0.014

2-week specific modeld 0.66 0.13 
Warm season (n = 198) 0.75 0.74 0.12

Intercept NA 0.63 (0.03) < 0.01 NA
Central AC used at all in past July Main –0.16 (0.02) < 0.01 0.563
Central AC used ≥ 6 days during sampling Infiltration –0.11 (0.03) < 0.01 0.102
Windows open ≥ 11 days during sampling Infiltration 0.16 (0.03) < 0.01 0.048
Windows open ≥ half time in past summer Main 0.09 (0.02) < 0.01 0.025
Windows open 6–10 days during sampling Infiltration 0.10 (0.03) < 0.01 0.014

Cold season (n = 269) 0.56 0.53 0.13
Intercept NA 0.54 (0.02) < 0.01 NA
Windows open ≥ 11 days during sampling Infiltration 0.09 (0.02) < 0.01 0.242
2-week average outdoor temperature (°C) NA 0.01 (0.00) < 0.01 0.131
Home has forced-air heat Main –0.11 (0.02) < 0.01 0.119
Central AC used ≥ 11 days during sampling Infiltration –0.17 (0.05) < 0.01 0.025
Home has double pane windows Main –0.04 (0.02) < 0.01 0.019
Windows open ≥ half time in past summer Main 0.05 (0.02) < 0.01 0.014
HEPA or ESP used ≥ 11 days during sampling Infiltration –0.11 (0.04) < 0.01 0.013

NA, not applicable.
aThe specific questions used to derive the predictors are listed in Supplemental Material, Tables 3 and 4 (http://dx.doi.org/10.1289/ehp.1104447). bIncludes only variables available for 
the full cohort. cIncluded as a main effect in a significant interaction term. dIncludes both variables available for the full cohort and variables specific to the 2-week sampling period.
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The agreement between responses on 
the main questionnaire and responses on the 
time-specific infiltration questionnaire varied 
across behaviors. For window opening there 
was reasonable agreement (Kendall’s tau-b 
≥ 0.46), whereas the agreement for central 
AC use in summer was very good (Kendall’s 
tau-b = 0.70). For HEPA filters or electro-
static precipitator use, which was reported rel-
atively infrequently, the agreement was poorer 
(Kendall’s tau-b = 0.21).

The frequency with which sulfur I/O ratios 
exceeded corresponding PM2.5 ratios ranged 
from 4% in Rockland County to 42% in Los 
Angeles (Figure 3A). Differences were observed 
across the Los Angeles study region after strati-
fying homes into those recruited from the main 
MESA study (Alhambra) and the two MESA 
Air new recruitment areas (coastal Los Angeles 
and Riverside County). In coastal Los Angeles, 
Alhambra, and Riverside County, 36%, 37%, 
and 58% of the observations, respectively, had 
a sulfur I/O ratio that exceeded the correspond-
ing PM2.5 ratio (Figure 3B).

Discussion
This is the first data set developed specifically to 
predict Finf for exposure assessment in a large 
cohort study. We found considerable variation 
in Finf, suggesting that differences in Finf may 
be an important source of heterogeneity in 
exposure to PM2.5 of outdoor origin, even in 
studies focused on within-city gradients. The 
models explained a substantial portion of this 
variation using relatively easily collected and 
intuitive predictors.

Our generalizable models explained 
60% of the variance in 2-week averaged Finf 
(RMSE = 0.13). To our knowledge, the only 
other attempt to model Finf in a large num-
ber of homes in multiple communities was 
the Relationships of Indoor, Outdoor, and 
Personal Air (RIOPA) study, which mod-
eled 114 Finf measurements from Houston, 
Texas; Elizabeth, New Jersey; and Los Angeles 
(Meng et al. 2009). Despite including mea-
sured air exchange rate in their model, the 
model-based R2 was 0.49. The partial R2 of air 
exchange was 0.36, whereas central AC and 
outdoor temperature made small contribu-
tions to the R2. Other attempts to model Finf 
have relied on relatively small data sets and 
have had mixed success (Clark et al. 2010; 
Hystad et al. 2009; Koenig et al. 2005).

Most air pollution epidemiologic stud-
ies use outdoor concentration as a surrogate 
for exposure to pollution of outdoor origin; 
only a few panel studies have explicitly con-
sidered Finf as part of the exposure assess-
ment (Allen et al. 2008; Ebelt et al. 2005; 
Koenig et al. 2005). Outdoor-source expo-
sure is a function of outdoor concentration 
and an attenuation factor. The magnitude of 
attenuation is a weighted average of Finf and 
time spent outdoors (Sheppard et al. 2011), 
and because people spend most of their time 
indoors (Klepeis et al. 2001), Finf is the most 
important component of outdoor attenua-
tion. When outdoor concentration is used 
as a surrogate for exposure the health effect 
parameter estimated is the product of the 
toxicity and outdoor attenuation (Sheppard 

et al. 2011; Zeger and Diggle 2001). Using 
outdoor-source exposure in place of outdoor 
concentration in epidemiologic studies should 
result in less attenuated health effect parameter 
estimates (Koenig et al. 2005). Although a 
reduction in classical-like measurement error 
(Szpiro et  al. 2011) could contribute, the 
dominant reason for the decreased attenu-
ation is the change in the target parameter. 
This understanding is consistent with results 
from time-series studies suggesting that AC 
(as a surrogate for Finf) may be an important 
modifier of the relationship between outdoor 
concentrations and health. For example, Bell 
et al. (2009) reported that communities with 
more prevalent AC use had lower PM effects 
on cardiovascular hospitalizations, and that 
central AC prevalence explained 17% of the 
between-community variability in PM2.5 effect 
estimates. However, central AC is only one of 
several factors influencing Finf, and interpreta-
tion of effect modification by (ecologic) AC 
prevalence is problematic (Vedal 2009).

Our model predictors are consistent with 
previous findings. Studies have found lower 
Finf in homes with central AC (Clark et al. 
2010; Meng et al. 2009), which may influ-
ence Finf by discouraging window opening 
and/or by increasing PM deposition on filters 
or in air ducts (Howard-Reed et al. 2003). 
Window opening increases Finf by increasing 
the home’s air exchange rate. For example, 
Wallace et al. (2002) found that air exchange 
rates in a Reston, Virginia, house averaged 
0.65/hr over a 1-year period but increased to 
2/hr with windows open. The most important 

Figure 2. Comparisons of measured Finf (x-axes) with values predicted from a 10-fold CV (y-axes) for the generalizable models shown in Table 2. Lines  
represent 1:1.
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predictor of cold-season Finf was outdoor 
temperature, consistent with our results from 
Seattle, Washington (Koenig et al. 2005). This 
variable probably contributed additional infor-
mation on window opening beyond that cap-
tured by questionnaire. Forced-air heat was 
associated with lower Finf, presumably also due 
to deposition of PM on filters or in air ducts 
(Howard-Reed et al. 2003).

In exploratory community-specific Finf 
models, we found consistency in predictors 
among communities (Table 1). This result, 
and the small sample sizes in individual com-
munities, motivated us to develop models 
across all communities. This approach poten-
tially allows our models to be used outside 
of the MESA Air cohort. The similarity 
between the 10-fold (Figure 2) and leave-one-
community-out CV results [Supplemental 
Material, Figure 2 (http://dx.doi.org/10.1289/
ehp.1104447)] suggests that the models pre-
dict important sources of variability across 
communities. Moreover, the diverse commu-
nities in MESA Air suggest the potential for 
applying this Finf model to other communities 
in future epidemiologic studies, although the 
generalizability of our models to other com-
munities will need to be determined using 
independent observations.

The generalizability of our models is 
enhanced by the types of questions that were 
used to derive many of the predictors (for 
questions, see Supplemental Material, Table 3 
(http://dx.doi.org/10.1289/ehp.1104447). 
In chronic exposure studies it is not feasible 
to obtain temporally resolved information on 
participant behaviors over the entire duration 
of follow-up. Therefore, we asked MESA Air 
participants questions about typical behavior 
during summer and winter and found that 
responses to these questions agreed reasonably 
well with actual behaviors during the 2-week 
I/O sampling periods. This was particularly 

true for central AC use, which was the most 
important warm-season predictor of Finf. 
Because of this agreement, our generalizable 
models performed nearly as well as models 
using predictors specific to the 2-week sam-
pling period (Table 2).

Finf varies with PM size, with a maximum 
for PM of approximately 0.1–0.5 μm (Sarnat 
et al. 2006). Sarnat et al. (2002) found that 
sulfur PM, which is in the 0.2–0.7 μm size 
range, adequately traced PM2.5 infiltration 
but cautioned that sulfur overestimates Finf 
for PM < 0.06 μm or > 0.7 μm. Finf also varies 
with PM composition. Because it is nonvola-
tile, sulfur may overestimate PM2.5 Finf when 
the outdoor PM2.5 contains large quantities of 
volatile species. Sarnat et al. (2006) compared 
Finf for PM2.5, black carbon (a nonvolatile 
component), and nitrate (a volatile compo-
nent) in Los Angeles homes. The median Finf 
for PM2.5 (0.48) fell between those for nitrate 
(0.18) and black carbon (0.84), indicating 
a loss of nitrate indoors. The indoor volatil-
ization of nitrate may explain the sulfur I/O 
ratios that exceeded PM2.5 ratios in several of 
our Los Angeles homes and the spatial pattern 
of those exceedances. Nitrate contributions to 
PM2.5 in greater Los Angeles [31% at down-
town Los Angeles and 46% at Rubidoux (Kim 
and Hopke 2007)] are greater than in other 
MESA Air communities [23% in Baltimore 
(Ogulei et al. 2005), 20% in Chicago (Rizzo 
and Scheff 2007), 8–18% in New York (Qin 
et al. 2006), and 6–9% in Winston-Salem 
(Aneja et al. 2006)]. Nevertheless, although 
it may overestimate PM2.5 in some settings, 
sulfur is currently the best tracer of PM2.5 Finf. 
The incorporation of Finf into the exposure 
assessment in MESA Air represents a signifi-
cant advance over previous studies that have 
not considered Finf and thus assumed an unre-
alistic constant relationship between outdoor 
concentrations and personal exposures.

Conclusions
Our finding of wide variation in residential 
PM2.5 Finf suggests that it is an important 
source of exposure heterogeneity in epide-
miologic studies of exposure to PM2.5 of out-
door origin. Using a large, unique data set 
collected specifically to predict infiltration in 
an ongoing cohort study, we developed intui-
tive models that explain a substantial portion 
of infiltration variation using relatively eas-
ily obtained predictors. Using these models, 
MESA Air will be the first large epidemiologic 
study to incorporate variation in residential 
Finf into an exposure assessment. This will 
provide more variable estimates of exposure 
and potentially allow for more accurate and 
precise estimates of the cardiovascular risks of 
outdoor-generated PM2.5.
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