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The c-Abl tyrosine kinase is implicated in diverse cellular activities including growth factor signaling, cell adhesion, oxidative
stress, and DNA damage response. Studies in mouse models have shown that the kinases of the c-Abl family play a role in
the development of the central nervous system. Recent reports show that aberrant c-Abl activation causes neuroinflammation
and neuronal loss in the forebrain of transgenic adult mice. In line with these observations, an increased c-Abl activation is
reported in human neurodegenerative pathologies, such as Parkinson’s, and Alzheimer’s diseases. This suggests that aberrant
nonspecific posttranslational modifications induced by c-Abl may contribute to fuel the recurrent phenotypes/features linked to
neurodegenerative disorders, such as an impaired mitochondrial function, oxidative stress, and accumulation of protein aggregates.
Herein, we review some reports on c-Abl function in neuronal cells and we propose that modulation of different aspects of c-Abl
signaling may contribute to mediate the molecular events at the interface between stress signaling, metabolic regulation, and DNA

damage. Finally, we propose that this may have an impact in the development of new therapeutic strategies.

1. Introduction

A broad range of pathological disorders is linked to oxidative
stress, including carcinogenesis and several age-dependent
disorders (i.e., as neurodegenerative diseases). Oxidative
stress is defined as an imbalance in which the production of
reactive oxygen species (ROS) overcomes the antioxidative
cell defence system. Oxidative stress can be induced by
exogenous and endogenous sources. For instance, hydrogen
peroxide and chemotherapeutic reagents are exogenous
sources of ROS, whereas mitochondrial energy metabolism is
considered a major source for the production of ROS within
the cell [1]. ROS can directly react with macromolecules,
such as DNA, lipids, and proteins. Oxidative DNA lesions,
if unrepaired, can induce mutations and deletions in both
nuclear and mitochondrial genomes [2] and chromosomal

abnormalities. Cells are also very sensitive to lipid peroxida-
tion [3] and most amino acid residues in a protein can be
oxidized by ROS. Often these modifications impair protein
function [4]. Antioxidant defences are built in a complex
network of nonenzymatic and enzymatic components of the
cell. This network has been extensively reviewed [5, 6]. In
short, Glutathione (GSH) is a nonenzymatic antioxidant,
which acts in the cellular thiol/disulfide system, with the
ratio of GSH to GSSH (glutathione disulphide) mirroring
the redox status of the cell. On the other hand, enzymatic
antioxidants include superoxide dismutases SODs, catalase,
peroxiredoxins (PRxs), and glutathione peroxidases (GPx).
The toxicity of ROS 1is only one facet of their action.
ROS are also produced at low level within the cell, where
they can play an important role in the redox-dependent
regulation of signaling [7]. Hence, ROS are implicated
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in several cellular processes, including cell proliferation,
cell cycle arrest, and programmed cell death [8]. Cellular
responses to DNA damage or oxidative stress are critical for
survival, and the direct link between ROS and oxidative DNA
damage indicates the interplay of ROS signaling with the
DNA damage response (DDR) [9]. Evidence indicates the
involvement of the phosphatidylinositol-3-kinases- (PI3K-)
related kinases, Ataxia telangiectasia mutated (ATM), DNA-
dependent protein kinase catalytic subunit (DNA-PKcs), and
ATM- and Rad-3 related (ATR) in oxidative DNA lesion
repair and signaling response [10]. This finding together with
the emerging role of c-Abl in the DDR [11] and in oxidative
DNA damage [12] seems to point out a role for these DDR
kinases as “sensors” for redox signaling. In particular, herein
we discuss how an aberrant (nonspecific) c-Abl signaling
may contribute to maintain high levels of ROS that in turn
can damage organelles, mitochondria, and DNA, with these
effects ending towards neuronal degeneration.

2. ROS and c-Abl Signaling

Oxidative stress contributes to the pathogenesis of a large
number of human disorders. No doubt that a better under-
standing of the controlled production (and of regulatory tar-
gets) of ROS should provide the rationale for novel therapeu-
tic treatments [13]. ROS signaling is reversible, tightly con-
trolled through a regulatory network. This network results
from a concerted assembly of protein complexes, built
through protein interactions mediated by interaction mod-
ules and posttranslational modifications in the binding
partners. Protein modularity and the reversible nature of
posttranslational modifications allow the dynamic assembly
of local temporary signaling circuits regulated by feedback
controls. The strength and the duration of redox signaling
are regulated via the oxidative modifications of the kinases
and phosphatases that in turn control the activity of enzymes
involved in antioxidant activities and vice versa. Oxidant
level modulates c-Abl activity [14, 15]. In turn, c-Abl can
interact (and regulate) with several enzymes implicated in
controlling the redox state of the cell. One of them, the
catalase is an immediate effector of the antioxidant cellular
defense by converting H,O, to H,O and O in the peroxi-
somes. c-Abl and the product of the c-Abl-related gene (Arg)
target catalase on the two residues Y321 and Y386 leading
to its ubiquitination and to a consequent proteasomal-
depend-ent degradation of the enzyme [16]. Similarly, c-
Abl-deficient cells display a higher level of expression of the
antioxidant protein peroxiredoxin I (Prx1) [17]. Prx1 is con-
sidered a physiological inhibitor of c-Abl. Prx1 interacts with
the SH3 domain of c-Abl and inhibits its catalytic activity
[18]. Depending on the oxidative level in the cell, glutathione
peroxidasel can be phosphorylated on Tyr-96 and activated
by c-Abl/Arg [19]. In short, c-Abl activation has mostly
a negative effect on enzymes involved in the antioxidant
defence, with rare exceptions. Moreover, c-abl, as a compo-
nent of redox regulatory circuits, can be modified by S-glu-
tathionylation, with this reversible modification leading to
downregulation of its kinase activity [20].
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3. c-Abl Signaling in
Neurodegenerative Disease

Oxidative stress, accumulation of protein aggregates, and
damaged mitochondria are common hallmarks of neurolog-
ical diseases. Aberrant c-Abl activation is linked to many
neuronal disorders as recently reviewed by Schlatterer and
coworkers [21]. In the brain, c-Abl activation can be mon-
itored by specific antibodies, which target phosphorylated
residues present only in the active conformation of the
kinase. Staining with these phosphoantibodies indicates that
c-Abl colocalized with granulovacuolar degeneration (GVD)
in brains of human Alzheimer (AD) patients. Moreover, c-
Abl phosphorylated at T735, a site required for binding 14-
3-3 in the cytosol [22], colocalized with amyloid plaques,
neurofibrillary tangles (NFTs), and GVD in the entorhinal
cortex and hippocampus and brain of AD patients [21,
23]. Tau phosphorylation mediated by c-Abl is detected in
NFTs in Alzheimer disease [21, 24, 25]. Oxidative stress
activates c-Abl in neuronal cells [26] and amyloid f results
in increased expression of c-Abl and p73 [27]. Amyloid-
B (AP) fibrils in primary neurons induce the c-Abl/p73
proapoptotic signaling, while STI571, a pharmacological c-
ADI inhibitor, prevents Amyloid S-dependent toxicity [26].
The c-Abl/p73 proapoptotic pathway is also targeted in
the cerebellum of Niemann-Pick type C (NPC) mice [28].
Niemann-Pick type C (NPC) is a neurodegenerative disorder
characterized by intralysosomal accumulation of cholesterol
leading to neuronal loss. Pharmacological inhibition of c-
Abl with STI571 rescues Purkinje neurons, reduces general
cell apoptosis in the cerebellum, improves neurological
symptoms, and increases the survival of NPC mice [29].
Evidence indicates that c-Abl binding with p73 is induced
by ROS, with NAC (the oxidant scavenger N-acetylcysteine)
treatment reducing the c-Abl/p73 activation as well as the
levels of apoptosis in NPC neurons [28].

Recent findings indicate that some effects of c-Abl
induced by glucose metabolism might be mediated through
p53 phosphorylation. In fact, c-Abl is involved in high
glucose-induced apoptosis in embryonic E12.5 cortical neu-
ral progenitor cells (NPCs) derived from mice brain. Once
more again, inhibition of c-Abl by ST571 reduced apoptosis
in NPCs by preventing the nuclear protein accumulation
of p53 in response to high glucose [30]. Moreover, admin-
istration of reactive oxygen species scavengers impairs the
accumulation of c-Abl and p53 leading to a decreased NPCs
apoptosis. In human neuroblastoma (SH-SY5Y) cells, c-Abl
targets cyclin-dependent kinase 5 (Cdk5) on tyrosine residue
Y15 in response to oxidative stress by hydrogen peroxide.
In turn, Cdk5 can modulate p53 levels and p53 activity.
Hence, both c-Abl and Cdk5 cooperatively mediate p53
transcriptional activation resulting in neuronal death [31].
A recent study also indicates that hyperglycemia-induced
apoptosis of NPCs is mediated by a PKCJ- (Protein-Kinase
C-delta-) dependent mechanism [32]. Tyrosine phosphory-
lation of PKCé by c-Abl is important for the translocation of
the PKCS-Abl complex from the cytoplasm to the nucleus.
Downregulation of PKCS (or c-Abl) or inhibition of c-Abl
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by STI571 can decrease this translocation, impairing p53
accumulation in the nucleus of NPCs [32].

A redox imbalance is apparently a predominant feature of
brains of individuals with Parkinson’s disease (PD). Evidence
derived from postmortem studies indicates an increased
oxidation of lipids, proteins and DNA, a severe decrease
in GSH concentration, and an accumulation of SOD2 (see
[33] and references therein). Oxidative DNA damage occurs
to a higher extent in Parkinson’s disease individuals com-
pared with age-matched controls [34]. Brains of Parkinson’s
patients are also enriched in autophagosome-like structures
reminiscent of autophagic stress. Interestingly, inherited
forms of Parkinson’s disease are associated with loss-of-
function mutations in genes encoding proteins that target
the mitochondria and modulate autophagy, including the
E3 ubiquitin ligase parkin (see [33] and references therein).
c-Abl phosphorylates parkin on Y143 and inhibits parkin’s
ubiquitin E3 ligase activity and its protective function.
Conversely, STI-571 treatment prevents the phosphorylation
of parkin, maintaining it in a catalytically active state. Inter-
estingly, the protective effect of STI-571 is not observed in
parkin-deficient cells. Conditional knockout of c-Abl also
prevents the phosphorylation of parkin, the accumulation
of its substrates, and results in neurotoxicity in response
to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
intoxication [35]. Briefly, STI-571 prevents tyrosine phos-
phorylation of parkin and restores its E3 ligase activity and
cytoprotective function both in vitro and in vivo. Compelling
evidence indicates that tyrosine phosphorylation of parkin
by c-Abl is a major posttranslational modification that leads
to loss of parkin function and disease progression in sporadic
PD [36]. Moreover, a selective inhibition of c-Abl offers new
therapeutic strategies for blocking PD progression [35, 36].
Another level of c-Abl-dependent-regulation impinges on
the activation of PKCJ. In cell culture models of PD, oxida-
tive stress activates PKCd through a caspase-3-dependent
proteolytic cleavage inducing apoptotic cell death [37, 38].
Interestingly proteolytic activation of PKCS is regulated
through phosphorylation of its tyrosine residues [39]. Evi-
dence regarding a functional interaction between PKC§ and
c-Abl has been provided following oxidative stress response
[14]. c-Abl phosphorylates PKC§ on tyrosine 311, with this
modification contributing to the apoptotic effect of hydrogen
peroxide [40]. On the other hand, ST571 can block PKCé§
activation protecting cells from apoptosis [41]. Moreover,
Xiao et al. identified c-Abl as a novel upstream activator of
the protein kinase MST1 (mammalian Ste-20 like kinasel)
that plays an essential role in oxidative-stress-induced neu-
ronal cell death. Upon phosphorylation of MST1 at Y433 by
c-Abl, authors demonstrated activation of FOXO3 that leads
eventually to neuronal cell death. The latter mechanism is
inhibited either by STI571 or c-Abl knockdown [42].

In short, this combined evidence stresses the physio-
logical relevance of the interface between c-Abl signaling
and redox state, metabolic regulation and DNA damage
response mediated by transcription factors, such as FOXO-
3 or members of the p53 family.

The dynamic of each signal-transduction path seems
to be governed by a small set of recurring c-Abl-mediated

regulatory circuits, that depending on their subcellular
localization and response duration may result in neuronal
death (Figure 1). Of note, inactivation of c-Abl by STI571 can
have a protective effect and can reduce neuronal loss.

4. Autophagy, Mitochondria, and Oxidative
Stress: Cross Talk with c-Abl Signaling

Protein aggregation and organelle dysfunction are peculiar
hallmarks of many late-onset neurodegenerative disorders.
Mitochondrial damage and dysfunction is indeed linked
to neurodegeneration in a variety of animal models [33].
Clearance of misfolded proteins and damaged organelles
may be considered an effective recovery strategy for stressed
neuronal cells [43]. Autophagy is a lysosome-dependent
pathway involved in the turnover of proteins and intra-
cellular organelles. It is becoming increasingly evident that
induction of a certain level of autophagy may exert a
neuroprotective function, while its inappropriate or defective
activation may result in neuronal cell loss in most neurode-
generative diseases [44]. Abnormal autophagosomes are fre-
quently observed in selective neuronal populations afflicted
in common neurodegenerative diseases, such as Alzheimer’s
disease, Parkinson’s disease, Huntington’s disease, and amy-
otrophic lateral sclerosis. However, whether accumulation of
autophagosomes plays a protective role or rather contributes
to neuronal cell death is still a controversial issue [44, 45].
Despite this uncertainty, an accurate titration of autophagy
should favor a neuroprotective response. In particular, if it
is strictly modulated through an efficient concerted action
of the complex autophagy machinery. ROS can induce
autophagy [46]. In addition, inhibition, depletion, or knock-
out of the c-Abl family kinases, c-Abl and Arg, resulted in a
dramatic reduction in the intracellular activities of the lyso-
somal glycosidases alpha-galactosidase, alpha-mannosidase,
and neuraminidase. Inhibition of c-Abl kinases also reduced
the processing of the precursor forms of cathepsin D and
cathepsin L to their mature, lysosomal forms, leading to
an impaired turnover of long-lived cytosolic proteins and
accumulation of autophagosomes [46, 47]. Together all these
findings suggest a positive role for c-Abl kinases in the regula-
tion of autophagy with important implications for therapies
[46].

In conclusion, many observations indicate that c-Abl
activity is increased in human neurodegenerative diseases
(Alzheimer, Parkinson, and tauopathies). However, where
c-Abl meets the cascade of events underlying neurodegen-
erative disorders remains still elusive. A plausible scenario
implies the involvement of c-Abl on multiple interconnected
pathways eventually acting as an arbiter of neuronal survival
and death decisions, most likely playing with autophagy,
metabolic regulation and DNA damage signaling response.
In adult mouse models, aberrant c-Abl activation causes
neurodegeneration and neuroinflammation in forebrain
neurons, thus implying c-Abl as a possible target for thera-
peutic treatments [21]. Several reports have shown that c-Abl
plays distinct roles based upon its subcellular localization.
Is the achievement of a certain/specific relocalization of c-
Abl required for the development of the neuronal disease?
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FiGURE 1: The figure illustrates the involvement of c-Abl in many cellular stress pathways. Oxidative stress, hyperglycemia, and DNA damage
response induce c-Abl activation. In human neuroblastoma (SH-SY5Y cells), c-Abl targets p73, promoting neuronal death in response
to hydrogen peroxide. In addition, c-Abl can also phophorylate Cdk5 and in tandem with Cdk5 can mediate p53 activation, promoting
neuronal death. Hyperglycemia-induced apoptosis of NPCs is mediated by the translocation of the PKC§-Abl complex to the nucleus. This
translocation impacts on p53 activation leading to neuronal death. Oxidative DNA damage in Parkinson disorder is associated with increased
c-Abl activity. c-Abl mediates tyrosine phosphorylation of Parkin and inhibits parkin’s ubiquitin E3 ligase activity.

The interplay between cytoplasmic, nuclear and mitochon-
drial localization of c-Abl is an important aspect for oxida-
tive stress-induced apoptosis. In concert with this, c-Abl
catalytic outcomes are strictly associated with its subcellular
localization. TTK, also known as PYT (Phosphotyrosine
Picked Threonine Kinase), the human homolog of MSP1
(Monopolar Spindle 1), regulates nuclear targeting of c-Abl
through the 14-3-3-coupled phosphorylation site. Nihira et
al. demonstrated that TTK-dependent phosphorylation of
c-Abl on Y735 is required for the cytoplasmic sequestra-
tion/localization of kinase. TTK/Mspl deficiency enhances
the oxidative-stress-induced apoptosis while favoring the
nuclear accumulation of c-Abl [48].

c-Abl co-localizes with the endoplasmic reticulum (ER)-
associated protein grp78 [49]. Subcellular fractionation stud-
ies indicate that over 20% of c-Abl is detectable in the ER.
Induction of ER stress with the calcium ionophore A23187,
brefeldin A, or tunicamycin is linked to translocation of the
ER-associated c-Abl fraction to mitochondria. In concert
with targeting of c-Abl to mitochondria, cytochrome c is
released in response to ER stress through a c-Abl-depend-
ent mechanism. In c-Abl-deficient cells, ER-stress-induced
apoptosis is attenuated thus implying the involvement of
c-Abl in signaling from the ER to mitochondria [49].
Kumar et al. indicated that in response to oxidative stress,
cytoplasmic c-Abl moves to mitochondria, where it mediates
mitochondrial dysfunction and cell death. Moreover, target-
ing of c-Abl to mitochondria is also dependent on activation
of PKC§ and relies on c-Abl catalytic activity. In the response
to hydrogen peroxide, pharmacological inhibition of c-Abl
with STI571 decreases c-Abl targeting to mitochondria and

attenuates mitochondrial dysfunction and cell death [50, 51].
Downregulation of c-Abl or PKC§ impaired PARP cleavage,
suggesting that both PKC§ and c-Abl can induce apoptosis
through the mitochondrial pathway in the absence of p53,
p73, and FAS upon genotoxic stress [52].

Taken together all these observations suggest that c-Abl
activation can exert a positive role both in the intrinsic and
extrinsic apoptotic signaling pathways.

5. Perspectives

Signaling networks are composed of multiple layers of
interacting proteins. Activation of most cell signaling circuits
is modulated by feedback control, and disease conditions
are often caused by the loss of the feedback control. A
comprehensive understanding of the complexities of the
signaling network is required to design therapies that are
effective without inducing off-target consequences [53]. In
neurodegenerative disorders, the duration and the spatial
organization of signaling complexes can cause a system
failure ending in neuronal loss. Evidence compiled above
indicates that c-Abl activation could act as an arbiter of
neuronal cell fate under various stress conditions. Subcellular
localization of c-Abl can play an important role to modulate
activation and assembly of signaling networks. Pharmacolog-
ical inhibition of the catalytic activity can prevent targeting of
c-Abl to mitochondria and the consequent programmed cell
death. In the nucleus, c-Abl signaling modulates oxidative-
stress-induced transcription resulting in neuronal death. In
this scenario, a new therapeutic strategy for degenerative
neurological diseases may be based on the possibility to
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rewire the network characterizing the pathological states, by
restoring a feedback control via inhibition of c-Abl signaling.
Several types of inhibitors have been designed to target
with high selectivity the c-Abl kinase by different mech-
anisms [54, 55]. Allosteric inhibitors repress the catalytic
activity by binding to a site far from the kinase-active site.
Allosteric binding does not prevent the binding of ATP-
competitive inhibitors such as STI571. Experimental data
provide evidence that both types of inhibitors can work in
synergy to inhibit aberrant activation of Bcr-Abl [55, 56].
Insufficient or excessive inhibitor doses not only may be
inefficacious but may also have adverse effects. In addition,
targeting of c-Abl to different cellular compartments is
linked to the catalytic domain conformation. A recent report
indicates that binding of STI571 to the catalytic domain can
restore the nuclear import of the Ber-Abl mutant, suggesting
that the auto-inhibited conformation of c-Abl is required
for nuclear translocation [57]. Interestingly, an allosteric
inhibitor, GNF-2, induces a translocation of myristoylated
c-Abl to the endoplasmic reticulum, competing with the
intramolecular engagement of the NH2-terminal myristate
for binding to the c-Abl kinase myristate-binding pocket
[58]. A priority is now the identification of effective com-
bination therapies for native conformations of c-Abl kinases,
allowing the reactivation of appropriate regulation circuits
in aged neurons. As mentioned, administration of reactive
oxygen species scavengers prevents the accumulation of
c-Abl and p53 leading to a decreased apoptosis of NPCs.
In line with this, treatment with curcumin, an activator
of the antioxidant Nfr2 [59] pathway can ameliorate the
neurological symptoms and survival of Niemann-Pick type C
mice [60]. This suggests the possibility to develop combined
targeted therapies of antioxidants in tandem with c-Abl
kinase inhibitors [42]. Despite the technical hurdles, rewiring
of cell signaling networks via inhibition of a single node, such
as c-Abl, may prove an effective therapeutic strategy.
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