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Background. Transplantation of ethanol-induced steatotic livers causes increased graft injury. We hypothesized that upregulation of
hepatic ICAM-1 after ethanol produces increased leukocyte adherence, resulting in increased generation of reactive oxygen species
(ROS) and injury after liver transplantation (LT). Methods. C57BL/6 wildtype (WT) and ICAM-1 knockout (KO) mice were
gavaged with ethanol (6 g/kg) or water. LT was then performed into WT recipients. Necrosis and apoptosis, 4-hydroxynonenal (4-
HNE) immunostaining, and sinusoidal leukocyte movement by intravital microscopy were assessed. Results. Ethanol gavage of WT
mice increased hepatic triglycerides 10-fold compared to water treatment (P < 0.05). ICAM-1 also increased, but ALT was normal.
At 8 h after LT of WT grafts, ALT increased 2-fold more with ethanol than water treatment (P < 0.05). Compared to ethanol-
treated WT grafts, ALT from ethanol-treated KO grafts was 78% less (P < 0.05). Apoptosis also decreased by 75% (P < 0.05), and
4-HNE staining after LT was also decreased in ethanol-treated KO grafts compared to WT. Intravital microscopy demonstrated a
2-fold decrease in leukocyte adhesion in KO grafts compared to WT grafts. Conclusions. Increased ICAM-1 expression in ethanol-
treated fatty livers predisposes to leukocyte adherence after LT, which leads to a disturbed microcirculation, oxidative stress and
graft injury.

1. Introduction

After cold ischemic liver storage for transplantation, reperfu-
sion injury may lead to poor initial graft function and even
graft failure. This injury is more severe and causes increased
morbidity and mortality when steatotic donor livers are used
[1, 2]. Because of the increasing incidence of nonalcoholic
steatohepatitis in the general population and the association
of vehicular accidents with steatosis-causing alcohol use and
abuse, an important fraction of potential human donor livers
is steatotic. Such marginal steatotic livers are increasingly

used as liver grafts because of the liver donor shortage and
the expanding waiting list for liver transplantation.

Sinusoidal endothelial cells and hepatocytes are partic-
ularly susceptible to ischemia/reperfusion (I/R) injury and
consequent apoptotic and necrotic cell death, as shown
by both in vitro and in vivo studies [3–6]. After liver
I/R, recruitment of neutrophils and other inflammatory
cells aggravates injury [7, 8]. Neutrophil recruitment also
contributes to liver injury after endotoxin, sepsis, and
chronic ethanol treatment [9–12]. Hepatic infiltration with
neutrophils results in production of reactive oxygen species
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(ROS) and oxidative stress, resulting in neutrophil-mediated
liver cell killing.

Intercellular adhesion molecule-1 (ICAM-1) is an
endothelial- and leukocyte-associated transmembrane pro-
tein important in adherence of neutrophils to liver cells,
including hepatocytes [13], and promotion of adherence-
dependent oxidant stress, a major factor in neutrophil-
mediated hepatocyte killing [10, 14]. However in a previous
study, antibody blockade of ICAM-1, although decreasing
white blood cell adherence, did not protect against I/R
injury in a rat model of lean liver transplantation [15]. The
importance of ICAM-1 in fatty liver transplantation has
not been assessed. Accordingly, we compared liver injury in
a murine model of fatty liver transplantation using wild-
type and ICAM-deficient liver grafts. Our results show that
ethanol treatment increases hepatic ICAM-1. Such ICAM-
1 upregulation predisposes to leukocyte adherence, micro-
circulatory disturbances, oxidative stress, and increased graft
injury after liver transplantation.

2. Materials and Methods

2.1. Ethanol Treatment and Donor Operation. All experi-
ments were conducted using protocols approved by the
Institutional Animal Care and Use Committee. Male
C57BL/6 (wild-type) and ICAM-1-deficient mice, B6.129S4-
ICAM1tm1Jcgr /J on a C57BL/6 background, were gavaged
with 6 g/kg ethanol or water alone. Twelve hours after gavage,
livers were harvested under ether anesthesia and stored in ice
cold University of Wisconsin (UW), as previously described
[16]. Time for the donor operation averaged 22 min.

2.2. Recipient Operation. Livers from wild-type and ICAM-
1-deficient mice were transplanted without rearterialization
into wild-type mouse recipients under ether anesthesia, as
previously described [16]. Both donor and recipient mice
weighed 19–24 g. The recipient operation averaged 45 min,
and portal vein clamp time averaged 15 min. For sham
operations under ether anesthesia, wild-type and ICAM-
1-deficient mice were laparotomized. After 45 min, the
abdomen was closed.

2.3. Tissue Triglyceride Content. Liver tissues (50 mg) of both
wild type and ICAM-1 deficient mice were homogenized in
water, and lipids were extracted into CHCl3 [17], dried in
a vacuum centrifugal evaporator (Jouan RC 10.10, Thermo
Scientific Inc., Atlanta, GA), and resuspended in 1 mL of
CHCl3. An aliquot (50 μL) was dried and resuspended in
100 μL of isopropyl alcohol, 1% Triton X-100. Triacylglycerol
(TAG) content was then determined using an enzymatic col-
orimetric method (Triglyceride Test Kit, Stanbio Laboratory,
Boerne, TX).

2.4. Alanine Aminotransferase (ALT). Blood samples to mea-
sure ALT were collected from the inferior vena cava 8 h after
transplantation for analysis by standard methods.

2.5. Histology. Histology was evaluated 8 h after liver
transplantation. Liver tissues were fixed by immersion in
4% paraformaldehyde in phosphate-buffered saline and
embedded in paraffin. Sections (4 μm) were stained with
hematoxylin and eosin (H&E). Ten random fields were
assessed for necrosis by standard morphologic criteria (e.g.,
loss of architecture, vacuolization, karyolysis, increased
eosinophilia). Images were captured on a microscope (Zeiss
Axiovert 100 microscope, Thornwood, NY), and the area
percentage of necrosis was quantified using a computer
program (AxioQuant, BD Bioimaging Systems, San Jose,
CA).

2.6. Cell Death Immunohistochemistry. Terminal deoxynu-
cleotidyl transferase-mediated dUTP nick-end labeling
(TUNEL) was performed on paraffin sections using an in situ
cell death detection kit (Roche Diagnostics, Penzberg, Ger-
many). TUNEL-positive parenchymal and nonparenchymal
cells were counted by light microscopy in 10 random high-
power fields (HPFs).

2.7. Lipid Peroxidation Immunohistochemistry. Lipid perox-
idation was assessed immunocytochemically by detecting
4-hydroxy-2-nonenal (HNE) adducts with a rabbit 4-HNE
antibody (Alpha Diagnostic International, San Antonio, TX)
with visualization by anti-rabbit IgG horse radish peroxidase
(HRP) and diaminobenzidine (DAB) chromogen according
to the manufacturer’s instructions (DAKO corporation,
Carpinteria, CA). The slides were then counterstained with
hematoxylin.

2.8. Intravital Imaging of White Blood Cell Adherence. At
4 h after transplantation, recipients were anesthetized with
pentobarbital (50 mg/kg) and connected to a small animal
ventilator via a tracheostomy and respiratory tube (20-gauge
catheter), as previously described [16]. Briefly, a catheter
(0.4 mm inner diameter, Zeus, Inc., Orangeburg, SC) was
inserted into the right carotid artery. Using a syringe pump,
rhodamine 6G (1 μmol/mouse) was infused via the catheter
over 20 min. During this time a laparotomy was performed
using the previous incision line. After prone positioning
of the mouse, the liver was gently withdrawn from the
abdominal cavity and placed over a glass coverslip on the
stage of a Zeiss Axiovert 100 microscope (Thornwood, NY).
Images of rhodamine 6G fluorescence were collected with
a 40X 1.2 NA water-immersion objective lens through a
spinning disk confocal imaging attachment (Attofluor CARV
Optical Module, BD Bioimaging Systems, San Jose, CA) to a
12-bit cooled CCD camera (Hamamatsu, Bridgewater, NJ).
In 10 sec movies of 5 random fields per liver, white blood cells
were scored for sticking (permanent adherence) and rolling
(margination and slowing of white blood cell flow). Image
analysis was performed in a blinded fashion using MetaFluor
v.5.0 (Universal Imaging Corp., Downingtown, PA).

2.9. Statistical Analysis. Data are presented as means ± S.E.,
unless otherwise noted. Statistical analysis was performed by
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Figure 1: After ethanol gavage, mouse livers have increased fat content and ICAM-1 protein expression. Representative images of hepatic
histology after ethanol gavage in wild type (a) and ICAM-1 deficient mice (b) are shown. Hepatic triacylglycerol (c), serum ALT (d), and
hepatic ICAM-1 protein expression by Western blot (e) were assessed 12 h after water (H2O) and ethanol (EtOH) gavage, as described in
Section 2. (e) shows upregulation of ICAM-1 after ethanol treatment and the absence of ICAM-1 in ICAM-1 deficient (KO) mice. Size of
individual groups was 3-4. Bar is 50 μm. ∗P < 0.05 versus H2O.

Student’s t-test or ANOVA plus Student-Newman-Keuls test
as appropriate, using P < 0.05 as the criterion of significance.

3. Results

3.1. ICAM-1 Upregulation in Ethanol-Induced Fatty Livers.
Wild type and ICAM-1 deficient mice were gavaged with
ethanol or water, as described in Section 2. At 12 h after

ethanol gavage, marked steatosis occurred to an equal extent
in the livers of wild type and ICAM-1 deficient mice, which
were indistinguishable histologically (compare Figures 1(a)
and 1(b)). Overall, no differences in histology in livers of wild
type and ICAM-1 deficient mice were observed either before
or after ethanol treatment. After 12 h, serum ALT levels were
normal and comparable in both wild type and ICAM-1
deficient mice (Figure 1(c)). However, triacylglycerol levels
increased 10-fold after ethanol treatment compared to water
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Figure 2: ALT release is decreased after transplantation of ICAM-
1 deficient fatty livers. Serum ALT was assessed 8 h after sham
operation (Sham) and 2 and 8 h after mouse liver transplantation
(LT), as described in Section 2. Transplants were performed into
WT recipients after ethanol treatment of wild type (WT) or ICAM-
1 deficient (KO) liver donors. Sham groups had normal and
comparable values to unoperated animals, and only sham is shown.
Group sizes were sham WT and KO, 3; LT WT, 5; LT KO, 6. ∗P <
0.05 versus KO grafts.

treatment (P < 0.01, Figure 1(d)). Western blotting of
homogenized liver tissue revealed increased ICAM-1 expres-
sion at 12 h after ethanol treatment and, as expected, absent
ICAM-1 expression in ICAM-1 deficient livers (Figure 1(e)).
Overall, although ICAM-1 upregulation did not occur in
ICAM-1 deficient mice, hepatic histology, steatosis, and ALT
release were comparable in wild type and ICAM-1 deficient
mice after acute ethanol treatment.

3.2. Decreased ALT Release and Graft Necrosis after Trans-
plantation of ICAM-1 Deficient Fatty Livers. At 8 h after
sham operation in ethanol-treated animals, wild type and
ICAM-1 deficient mice had normal and comparable serum
ALT averaging 118 ± 13 U/L (Figure 2). In contrast, ALT
increased markedly in recipient mice after ethanol treatment,
12 h storage, and transplantation of livers. At 2 h after
transplantation, ALT increased to 4,431 ± 1,636 U/L and
1,423 ± 656 U/L (P = 0.1), respectively, in recipients
of wild type and ICAM-1 deficient livers. At 8 h after
transplantation, ALT increased to 9,870 ± 2,344 U/L and
2709 ± 458 U/L, respectively (P < 0.05) (Figure 2). Thus,
at 8 h following transplantation, ALT was 72% less in ICAM
knockout than wild type liver recipients.

Graft injury was also assessed histologically. Liver his-
tology was normal and indistinguishable in wild type and
ICAM-1 deficient mice with and without sham operation
(Figure 3(a) and data not shown). At 8 h after transplantation
of wild type livers, large areas of necrosis were present

with a predominantly pericentral and midzonal distribution
(Figure 3(b)). By comparison, necrosis was decreased after
transplantation of ICAM-1 deficient livers (Figure 3(c)).
Morphometry revealed a decrease of hepatic necrosis from
25± 5.3% after wild type liver transplantation to 6.5± 3.1%
after transplantation of ICAM-1 deficient livers (P < 0.05)
(Figure 3(d)). Thus, transplantation of ICAM-1 deficient
fatty livers decreased hepatic necrosis by three quarters.

3.3. Decreased Graft Apoptosis after Transplantation of ICAM-
1 Deficient Fatty Livers. TUNEL was performed on tissue
sections to assess double-stranded DNA breaks that are
characteristic of apoptosis. TUNEL-positive cells were rare
in wild type and ICAM-1 livers with and without sham
operation, averaging less than 1 cell/HPF (Figures 4(a) and
4(d), and data not shown). At 8 h after transplantation with
wild type livers, TUNEL in nonnecrotic areas increased to
12.2 ± 4.8 cells/HPF without apparent zonal localization
(Figures 4(b) and 4(d)). After transplantation of ICAM-
1 deficient livers, TUNEL decreased by about two-thirds
to 3.5 ± 1.1 cells/HPF (P < 0.05, Figures 4(c) and 4(d)).
As a percentage of all cells, TUNEL was 2.6 ± 1.3% after
transplantation of wild type livers versus 0.7 ± 0.3% after
transplantation of ICAM-1 deficient livers (P < 0.05).

3.4. Decreased White Blood Cell Adhesion in Fatty ICAM-1
Deficient Liver Grafts. At 4 h after sham operation, intravital
confocal microscopy revealed bright fluorescence of rho-
damine 6G-labeled white blood cells moving through hepatic
sinusoids. No differences were seen in wild type or ICAM-
1 deficient mice after sham operation and only occasional
margination (rolling) and sticking of rhodamine 6G-labeled
cells were noted in sinusoids (Figures 5(a) and 5(b), and
Video A of supplemental data in Supplementary Material
available online at doi:10.11/2012/480893). By contrast, at
4 h after liver transplantation of fatty wild type livers,
marginating (rolling) and adherent (stickers) rhodamine
6G-stained cells increased markedly (Figure 5, Video B of
supplemental data).

After transplantation of ICAM-1 deficient livers, fewer
nonmobile rhodamine 6G-stained cells (stickers) were
present in hepatic sinusoids (Video C of supplemental data).
Rhodamine 6G-stained rollers and stickers were scored and
counted for each liver. In ethanol-treated sham-operated
livers, 1.6 ± 0.36 stickers/100 μm2 were identified. After
transplantation of fatty WT livers, stickers increased to 15.0±
4.04/100 μm2, a more than 8-fold increase. Similarly, rollers
increased by 2.5-fold after wild type transplantation com-
pared to sham (Figures 5(a) and 5(b)). After transplantation
of ICAM-1 deficient livers, stickers decreased 54% to 6.9 ±
1.04 per 100 μm2 (P < 0.05 versus wild type) (Figure 5(b)).
By contrast, rollers did not decrease in ICAM-1 compared
to wild type liver grafts (Figure 5(a)). Thus, sinusoidal
adherence (sticking) but not initial margination (rolling)
of white blood cells was decreased in ICAM-1 deficient
compared to wild type grafts after liver transplantation.
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Figure 3: Necrosis is decreased after transplantation of ICAM-1 deficient fatty livers. Mouse livers were transplanted, as described in
Section 2. At 8 h postoperatively, necrosis was assessed by H&E histology after sham operation (a), transplantation of wild type (WT)
livers (b), and transplantation of ICAM-1 deficient (KO) livers (c). (d) shows necrosis as percent area in liver sections averaged from 5 livers
per group. Necrosis in sham-operated WT and KO livers was absent. Bar is 50 μm. ∗P < 0.05 versus WT grafts.

3.5. Decreased Oxidative Stress after Transplantation of Fatty
ICAM-1 Deficient Livers. We used 4-HNE immunocyto-
chemistry as a marker of oxidative stress in liver grafts at
2 h and 8 h after reperfusion. HNE adduct formation is
a consequence of lipid peroxidation resulting from ROS
generation. In livers of ethanol-treated wild type and ICAM-
1 deficient mice at 8 h after sham operation, HNE brown
staining was nearly undetectable (Figures 6(a) and 6(b)). By
contrast, at 2 h after transplantation of fatty wild type livers,
HNE staining in the cytoplasm and nuclei of hepatocytes was
present in a mosaic pattern throughout the tissue sections
(Figure 6(c)). After 8 h, HNE staining became confluent in
midzonal and pericentral areas with sparing of periportal
areas (Figure 6(e)).

Compared to wild type, far fewer hepatocytes of fatty
ICAM-1 deficient liver grafts stained for HNE both at 2 h and
8 h after reperfusion (Figures 6(d) and 6(f)). Thus, oxidative
stress in ICAM-1 deficient fatty liver grafts was decreased
compared to wild type fatty grafts.

4. Discussion

The limiting factor in clinical liver transplantation is donor
shortage, which leads to death of patients on the waiting list.

Expanding the donor pool by including marginal steatotic
donor livers would help shorten wait times and increase
the availability of donor livers for transplantation. However,
such increased use requires overcoming the increased sus-
ceptibility of fatty liver grafts to poor initial function and
failure. Targeting specific pathways to decrease reperfusion
injury of cold stored steatotic livers might thus be a beneficial
approach to improve the function and survival of fatty liver
grafts.

The aim of the present study was to evaluate the
importance of ICAM-1 in graft injury after transplantation
of ethanol-induced steatotic mouse livers. ICAM-1 has
previously been shown to contribute to hepatic injury after
various nonsurgical liver stresses [18, 19] and ICAM-1
blockade demonstrated less white blood cell adherence after
lean rat liver transplantation [15]. We tested the hypothesis
that ICAM-1 upregulation in ethanol-induced fatty livers
leads to necrosis and apoptosis after transplantation through
sinusoidal leukocyte adherence and subsequent ROS genera-
tion. We evaluated graft injury by enzyme release, necrosis
and apoptosis, white blood cell adherence by intravital
microscopy, and oxidative stress by HNE immunocytochem-
istry after transplantation. Our findings demonstrate that
ethanol treatment upregulates ICAM-1 expression and that



6 HPB Surgery

(a) (b) (c)

Sham
WT
KO

∗

20

10

0

Tu
n

el
 (

ce
lls

/H
P

F)

(d)

Figure 4: Apoptosis is decreased after transplantation of ICAM-1 deficient fatty livers. Mouse livers were transplanted, as described in
Section 2. At 8 h postoperatively, TUNEL was assessed in tissue sections after sham operation (a), transplantation of wild type (WT) livers
(b), and transplantation of ICAM-1 deficient (KO) livers (c). (d) quantifies the TUNEL-positive cells per high power field (HPF). TUNEL
for WT sham was virtually zero and comparable to KO sham, and only KO sham is plotted. Bar is 50 μm. ∗P < 0.05 versus WT grafts.

ICAM-1 deficiency decreases injury, leukocyte adherence
and oxidative stress in ethanol-induced steatotic liver grafts.
Our results are consistent with the conclusion that protection
in ICAM-1 deficient grafts is the consequence of decreased
sinusoidal adherence of white blood cells and decreased ROS
formation.

Previous studies utilizing rodents demonstrate that doses
of 5-6 g/kg ethanol increase hepatic triglyceride and decrease
graft survival after transplantation substantially [20, 21].
Such a dose produces a peak blood ethanol concentration
of about 370 mg/dL after 2 h in rats, which declines to
undetectable levels in 8 to 10 h. No respiratory suppression
is observed in these ethanol-treated animals receiving this
treatment. In humans, fatty liver occurs to a similar extent
after an acute ethanol binge [22]. Accordingly, rodent models
have been used for decades to investigate the extent of
ethanol-induced liver steatosis in a variety of contexts. In our
experimental setting in mice, a single high dose of ethanol
(6 g/kg) administered by gavage produced prominent hep-
atic steatosis 12 h later and a 10-fold increase of hepatic
triacylglycerol content (Figure 1). Steatosis was associated
with increased hepatic ICAM-1 expression (Figure 1(e)).
Although blood alcohol peaked at about 580 mg/dL at 40 min

after this treatment (data not shown), increases of necrosis,
apoptosis, and serum ALT were negligible, and mortality
did not occur. Interestingly, ethanol-induced upregulation of
ICAM-1 alone did not increase white blood cell adherence
before cold storage and reperfusion (Figure 5 and Video
A of supplemental data). However, after transplantation
of ethanol-induced fatty livers, white blood cell adherence
increased markedly, an effect attenuated by more than half in
ICAM-1 deficient liver grafts (Figure 5 and Videos B and C
of supplemental data). Injury was also decreased in ICAM-1
deficient grafts (Figures 2, 3, and 4).

Previously in a study of warm liver I/R, antibody against
ICAM-1 did not improve outcome when used alone but
only when combined with antibodies against lymphocyte-
function-associated antigen-1 (LFA-1) and beta 2 integrin,
(CD-18), which are binding partners for ICAM-1 present
on leukocyte membrane surfaces [23]. Similarly, after lean
liver transplantation, ICAM-1 antibodies failed to prevent
graft injury, although leukocyte adherence was decreased
[15]. Thus, ICAM-1-dependent leukocyte adherence may
itself be insufficient to cause liver injury and instead may
act synergistically with other alterations to cause tissue
damage. In the setting of transplantation of ethanol-induced
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Figure 5: ICAM-1 deficient grafts show decreased leukocyte adherence but unchanged rolling margination after ethanol-induced fatty
mouse liver transplantation. Livers were transplanted (LT) or subjected to sham operation (Sham) and visualized by intravital confocal
microscopy of rhodamine 6G fluorescence after 4 h, as described in Section 2. Rhodamine 6G-fluorescing leukocytes were scored for slow
flow rolling margination (Rollers, (a)) and no flow adherence to sinusoidal walls (Stickers, (b)) as either fold increase versus sham (a) or as
absolute number per μm2(b). WT and KO sham groups were comparable, and only the KO sham group is plotted. Individual group size was
4. ∗P < 0.05 versus WT grafts.
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Figure 6: Decreased lipid peroxidation occurs in ICAM-1 deficient liver grafts. At 2 and 8 h after transplantation or sham operation,
immunohistochemical staining was performed for 4-hydroxynonenal-modified proteins (4-HNE, brown), as described in Section 2. Panels
are sham-operated wild type (WT) livers (a), sham-operated ICAM-1 deficient (KO) livers (b), WT liver grafts at 2 h after reperfusion (c),
KO liver grafts at 2 h after reperfusion (d), WT liver grafts at 8 h after reperfusion (e), and KO liver grafts at 8 h after reperfusion (f). Brown
HNE immunoreactivity was present in WT grafts after 2 and 8 h ((c) and (e)), which was markedly decreased in KO livers ((d) and (f)). Size
of groups was 4. Bar is 50 μm.
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fatty livers, our studies would suggest that ethanol-induced
sinusoidal ICAM-1 upregulation is a first hit that alone is
insufficient to cause hepatic injury. After transplantation,
however, activation of leukocytes may represent a second
hit, which when combined with the first hit causes hepatic
necrosis, apoptosis, and enzyme release. ICAM-1 in our
setting of fatty liver transplantation had more impact on
injury than in previous models of warm hepatic I/R and
lean liver transplantation. Ethanol-induced upregulation of
ICAM-1 prior to I/R or transplantation stress may be partic-
ularly important in predisposing livers to injury, and ICAM-
1 upregulation could potentially represent a biomarker to
susceptibility of fatty livers to storage/reperfusion injury in
human clinical transplantation.

Although leukocyte adherence (sticking) was decreased
in ICAM-1 deficient liver grafts, rolling margination of
leukocytes was unchanged (Figure 5, Videos B and C in
supplemental data). These observations are consistent with
earlier studies showing that endothelial selectins mediate
rolling margination of leukocytes in response to chemokines
and other proinflammatory signals, whereas ICAM-1 medi-
ates adherence and infiltration into tissue [24].

ROS production by ischemic tissue after reperfusion is
widely held as a major factor contributing to I/R injury.
ROS generation also contributes to cold storage/reperfusion
injury [21, 25–32]. ROS induces tissue damage by activating
mitochondrial pathways leading to necrosis and apoptosis
and through direct attack on proteins, lipids, and DNA.
HNE is a product of ROS-dependent peroxidation of ω-6
polyunsaturated fatty acids, such as linoleic and arachidonic
acid [33]. HNE reacts with protein sulfhydryls to form cova-
lent adducts that can be detected by immunocytochemistry.
In the present study, HNE adducts developed after wild
type liver transplantation that were markedly decreased in
ICAM-1 deficient liver grafts (Figure 6). Even at 2 hours
after transplantation before onset of necrosis, HNE adducts
were increased in wild type grafts but markedly decreased in
ICAM-1 deficient grafts (Figure 6). These findings indicate
that ROS production is temporally upstream of necrosis,
which does not occur maximally until 4 or more hours after
transplantation (Figures 2 and 3 and data not shown, see
also [25, 26, 34–36]). Thus, ICAM-1-dependent leukocyte
margination likely contributes to ROS generation and graft
injury after wild type liver transplantation.

In summary, our results demonstrate involvement of
ICAM-1 in storage/reperfusion injury to ethanol-induced
fatty liver grafts. Prior to transplantation, ethanol treatment
causes steatosis and upregulation of ICAM-1 expression
in donor wild type livers. Such ICAM-1 upregulation
was associated with increased leukocyte adherence, ROS
generation, and injury to liver grafts. Thus, ICAM-1 upreg-
ulation and signaling in fatty liver grafts could represent a
biomarker and target to identify and decrease susceptibility
to storage/reperfusion injury of fatty liver grafts. However,
the effects of chronic alcohol exposure or other means of fatty
liver induction on graft injury, oxidative stress, and leukocyte
recruitment may be different from those observed after
acute ethanol administration. Thus, future studies will be
needed to determine what benefit, if any, ICAM-1 targeting

might have on fatty liver grafts in human clinical liver
transplantation.
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