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Undulatory locomotion of micro-organisms through geometrically complex, fluidic environ-
ments is ubiquitous in nature and requires the organism to negotiate both hydrodynamic
effects and geometrical constraints. To understand locomotion through such media, we exper-
imentally investigate swimming of the nematode Caenorhabditis elegans through fluid-filled
arrays of micro-pillars and conduct numerical simulations based on a mechanical model of the
worm that incorporates hydrodynamic and contact interactions with the lattice. We show
that the nematode’s path, speed and gait are significantly altered by the presence of the
obstacles and depend strongly on lattice spacing. These changes and their dependence on lat-
tice spacing are captured, both qualitatively and quantitatively, by our purely mechanical
model. Using the model, we demonstrate that purely mechanical interactions between the
swimmer and obstacles can produce complex trajectories, gait changes and velocity fluctu-
ations, yielding some of the life-like dynamics exhibited by the real nematode. Our results
show that mechanics, rather than biological sensing and behaviour, can explain some of
the observed changes in the worm’s locomotory dynamics.

Keywords: locomotion; biofluid dynamics; fluid—structure interactions;
complex media; C. elegans

1. INTRODUCTION

Undulatory locomotion, as induced by the propagation of
a travelling bending wave, is a mode of self-propulsion
used by many species of terrestrial and aquatic organisms
[1-6]. As typified by the swimming of spermatozoa, this
mode of locomotion is particularly prevalent among
swimming cells and small organisms moving through flu-
idic environments at low Reynolds number where viscous
forces dominate over inertia [7—9]. While undulatory
locomotion at low Reynolds numbers has been studied
extensively using computational, experimental and theor-
etical approaches, it is often only considered in
unbounded domains, or in the presence of planar bound-
aries [10]. There are, however, many instances in nature
where swimming organisms must make their way through
a fluid embedded with obstacles that are comparable in
size with the swimmers themselves. One example is nema-
todes moving through wet soil. Another is that of
mammalian sperm that swim through cervical mucus
composed of an aqueous fluid matrix containing a poly-
meric fibre network [11]. In bovine vaginal and cervical
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fluids, these fibres have a mean diameter of 0.3 wm and
the network mesh size ranges from 0.7 to 27 pm. This cre-
ates a meso-structure of pores 0.1-0.5 times the length L
of the bull sperm (L ~ 60 wm) [12] through which the bull
sperm must swim. Yet another example is the male game-
tocyte of the malaria parasite Plasmodium, which must
navigate a dense suspension of red blood cells in the diges-
tive tract of the mosquito as it searches for its female
counterpart [13,14]. In this case, the male gametes have
a length L~ 15 pm while the red blood cells are 6-8
pm in diameter [15] and make up greater than 50 per
cent of the volume, a percentage higher than the typical
hematocrit [16]. While both the mucus and red blood cell
suspension themselves are examples complex fluids that
can be modelled as continuous materials, the undulating
body must interact with discrete elements of the
embedded microstructure. These interactions lead to
local hydrodynamic and contact forces experienced by
the swimmer that are not incorporated into the
continuum-level models.

Although each organism (mentioned earlier) has
some locomotory features unique to its particular physi-
ology, there are many open questions regarding the
general nature of the motion of an undulating body
swimming through a complex, obstacle-laden environ-
ment. For example, how does an organism manage to
successfully navigate around the obstacles while still
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restricted by the reversibility constraints associated
with viscously dominated swimming [7]? What path
will it take through this composite medium and how
might it vary with obstacle size or spacing? Does the
organism modify its kinematics in response to the
embedded structure and if so what are these changes?
To what extent are changes in kinematics owing to bio-
logical sensing, or owing to a passive response induced
by geometrical constraints and hydrodynamic inter-
actions? To answer these questions, possibly applicable
to many different organisms, we not only need the kin-
ematics of their motion, but also the hydrodynamic
forces, torques and contact interactions between the
organism and the obstacles.

In this study, we begin to address these ques-
tions through a comprehensive set of experiments and
numerical simulations by examining the changes experi-
enced by an undulating swimmer when moving through
a fluid-filled array of obstacles arranged on a square
lattice. We explore in detail the changes in swimming
path, wave kinematics and locomotion speed owing to
the geometrical constraints and hydrodynamic forces
introduced by the obstacles. For the experiments, we
employ the soil-dwelling nematode Caenorhabditis
elegans as our model undulatory swimmer and observe
its motion in lattices of micro-pillars constructed
from polydimethylsiloxane (PDMS). For our simulations,
we construct a mechanical worm (MW) model from a
chain of elastically linked beads whose undulations are
driven by a wave of torques along its length. The MW
model incorporates contact interactions with the obstacles
and goes beyond simple drag-based approximations
[17-21] of the hydrodynamic forces. We capture the
swimmer—obstacle hydrodynamic interactions by solving
the Stokes equations numerically and obtain the flow field
generated by the undulations and the constraints imposed
by the obstacles. Another key aspect of this model is that
we model the forces and torques experienced by the
swimmer rather than prescribing the wave kinematics
directly. This allows the MW dynamics to be modified
by the interactions with the lattice.

There are several reasons for choosing C. elegans as
our model organism. Caenorhabditis elegans is a small
nematode, approximately 1 pum in length and 60 pm
in diameter, that lives in wet soil in the wild—a geome-
trically complex fluid-filled environment. An adult
hermaphrodite is composed of 959 cells of which 302
are neurons [22]. Owing to its simple structure and
ease of use in laboratory settings, C. elegans is one of
the most widely used model organisms in modern
biology. In addition, the basic characteristics of C. ele-
gans locomotion are well classified. When crawling on a
gel surface, C. elegans undulates at a mean frequency of
foraw1 = 0.7 + 0.1 Hz with a wavelength Aiaw &~ 1 mm
and is able to move at a velocity of Ui aw =~ 0.2 mm
s~ ' [21,23,24]. When swimming in buffer solution with
viscosity m = 0.001 Pa s, the nematode has a higher fre-
quency, fiwim ~ 1.5—2Hz, wavelength Ay yim ~ 1.5 mm,
but the resulting speed can have the range vyinm ~
0.1-0.35 mm s ' [18-21,23,25] depending on the
experimental conditions.

There have also been a number of recent studies
examining C. elegans locomotion in more complex
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environments where the worm must interact with
obstacles or channel walls in the plane of locomotion
[26,27]. In such environments, significant and some-
times surprising changes in the locomotory behaviour
of the nematode have been observed. For example, in
a wet granular medium C. elegans is found to have a
lower undulation frequency, but rather than hindering
its motion, the grains allow the nematode to move in
a more efficient manner, travelling a greater distance
per stroke [28,29]. Park et al. [25] considered the loco-
motion of C. elegans through square lattices of round,
short (h~ 100 wm) posts created on the surface of an
agar gel. Similar to earlier studies [28,29], they found
that obstacles assist in locomotion, enabling the nema-
tode to achieve speeds 10 times its normal swimming
speed in featureless fluids.

Although these studies have shed some light on the
complex navigational traits exhibited by these nema-
todes, a general understanding of the mechanisms
that allow the worm to change the kinematics of its
motion, particularly an increase in its speed, is still
lacking. While there has been some theoretical work
demonstrating that hydrodynamic interactions can
increase swimming speeds [30], most theoretical
studies of undulatory locomotion in complex media
[31-35] focus primarily on the continuum limit
where the fluid microstructure is small compared
with the swimming body. Our study not only provides
a theoretical model that includes swimmer—obstacle
interaction to describe locomotion of an undulating
swimmer through structured environments, but we
also show a direct comparison of these results with
experimental data. By considering a simple square lat-
tice of pillars, our experiments are similar to those of
Park et al. [25]. However, we differ in our design.
Firstly, we construct the arrays from PDMS rather
than agar; C. elegans has a strong affinity to crawl
on agar surface, whereas PDMS in not conducive to
crawling. Moreover, the height of the pillars (A= 350
pm) in our experiments is much larger compared
with the thickness of the worm (d= 60 pwm), which
ensures that the worm remains between the pillars
and does not swim above them. We compare direc-
tly the experimental and numerical results, and use
both to quantify changes in the locomotion speed
and swimming dynamics as the lattice spacing and
undulation frequency vary. Because the MW simu-
lations incorporate only the mechanical interactions
between the undulator and the lattice, we can accu-
rately determine their role at every stage in the
dynamics. We show that not only do the mechani-
cal interactions play a major role in the observed
changes in locomotion, particularly in allowing undu-
latory swimmers to reach exceptionally high speeds,
but they can also yield complex, ‘life-like’ paths
through the lattice environment. These paths incor-
porate rapid fluctuations in speed, as well as changes
in gait, that are characteristic to the actual worm.
By comparing experiments and simulations, we show
that much of the resultant behaviour observed in the
experiments can be attributed purely to mechanics
rather than biological sensing. On this point, we
emphasize to the reader that viewing the movies in
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Figure 1. Experimental system and numerical model. (a) An experimental image showing Caenorhabditis elegans in a lattice of
PDMS micro-pillars. (b) Experimental centreline of the worm in a lattice produced by superimposing multiple frames from a
movie (pillars not shown). The centreline is obtained from the binarized image after background subtraction (inset). (¢) The
schematic of the simulation model showing the mechanical worm (MW) in a lattice of obstacles and the relevant geometrical
parameters. Here, R is the radius of the obstacles, ¢ the lattice spacing, AL the distance between consecutive worm segments,
t the tangent to the centreline and Y gives the position of the centre of a segment. (d) A force and torque diagram detailing
the forces and torques experienced by each segment of the MW. For the forces, F® is the repulsive contact barrier force between
the segment and the obstacles, FC the constraint force owing to the inextensibility of the chain and F* the hydrodynamic force,
or drag on the segment. In the case of torques, 72 is the elastic torque that arises owing to curvature of the centreline, 7 the
constraint torque associated with centreline inextensibility, 7P the active torque that drives the undulation and 7' the viscous

torque on the segment.

the electronic supplementary material while reading
this work will be illuminating.

2. MATERIAL AND METHODS
2.1. Experiments

2.1.1. Materials

In this study, we use the wild-type C. elegans N2. Worms
are grown on nematode growth medium plates at 20 °C,
with a lawn of the bacteria OP150 as the food source.
All experiments are performed with adult 3-day-old
worms [22]. The lattices of micro-pillars were fabricated
using standard soft photo-lithographic methods [36].
In particular, we use a photo-mask of white circles on
a black background (Advanced Reproductions, MA,
USA) arranged on a square lattice. We use the negative
photoresist SU-8 2075 (MicroChem Inc., MA, USA) to
first create a positive pattern of pillars on a silicon
wafer. This SU-8 template is then used to create a nega-
tive array of PDMS holes, which is finally used to create
a positive array of PDMS micro-pillars. The radii and
the heights of the pillars across all lattices are the
same (R =175 pum, H= 350 pm). The centre-to-centre
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distance or the lattice spacing between the pillars changes
from ¢=430 to 700 pm (figure 1), i.e. for each lattice
spacing, we create a separate array and each array has a
total area A &~ 4 cm”.

2.1.2. Methods

The experimental protocol consists of recording the worm
locomotion in lattices via a stereo microscope (Olympus
SZ 61T), under bright-field configuration (figure 1la).
For this, an adult worm is transferred from the culture
plate into a small Plexiglas box containing 5 ml of M9
buffer solution for washing. In this phase, the swimming
worm sheds bacteria attached to its body. After 5 min,
the worm is transferred to a second box containing fresh
M9 solution. The free-swimming of the washed worm is
recorded for 5 min at a frame rate of 10 frames per
second. The worm is then transferred to a lattice of
micro-pillars. The lattice has open boundaries (top and
sides) and is filled with M9 buffer almost up to the
height of the pillars, while ensuring that the level of
fluid never reaches above the pillars. This is performed
so that the nematodes always swim between the pillars
and not above. In practice, this is achieved by depositing
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a fixed volume of fluid using a micropipette. Each worm in
a lattice is observed for 30 min. The worm-picker used to
transfer the worm to the lattice stimulates the worm. As a
result, during the first 3—5 min in the lattice, the worm
will either remain stationary or travel within a small
neighbourhood. We discard the initial 3—5 min of data
from any subsequent analyses. Thus, we have 25 min
of data for each worm in a lattice, where the worm has
acclimated itself. At the end of this data collection, the
worm is picked out of the lattice and placed in fresh M9
buffer and then back to a fresh agar plate with food. The
process is repeated for other worms, and also for the
same set of worms in other lattices. In this manner, we
acquire data for an ensemble of worms of different lengths,
moving in lattices with different spacing.

2.1.3. Image processing

The movies are processed via scripts written in MATLAB.
The main steps involved in processing each movie
consist of reading each frame, background subtraction
to remove pillars from the images, thresholding the grey-
scale image to create a binary image of the worm and
erosion of the binary worm image to obtain the ‘skeleton’
or the centreline of the worm. Figure 1b shows repre-
sentative images after each step. The main panel
shows a representative example of the motion of the
worm by superimposing multiple centrelines. The inset
(figure 1b) shows the binary image of the worm after
background subtraction, which is used to find the centre-
line. The centroid of the worm is also obtained to measure
linear displacements and velocities, and the centreline is
used to calculate the amplitude of the gait. The frequen-
cies are obtained by frame counting. The quantities of
interest that describe the mechanics of locomotion, such
as the velocity and undulation frequency, are averages
over multiple runs. We emphasize again that the first
3—5 min of any run are not included in the data analyses.

2.2 Numerical simulations

In our MW simulations, C. elegans is represented by an
inextensible chain of N elastically linked spherical par-
ticles (figure 1l¢) subject to forces and torques as
described here and in the electronic supplementary
material. By modelling the forces and torques on the
worm segments rather than prescribing their motion,
the MW will change its dynamics in response to the
hydrodynamic and contact interactions with nearby
obstacles. The inclusion of these interactions is essential
to providing an accurate characterization of the motion
of the undulating body in the lattice.

In the MW, each bead, indexed by n, has radius a, is
centred at Y,, and has an orientation t, (figure 1c).
The vector t, is also used as the unit tangent to the
worm’s centreline, making the ansatz that this vector
varies linearly between each successive pair of beads,

tn+1 —t, I
t(l) = AL I+t,, (2.1)
where [€ [0,AL] and AL is the distance between
the beads. The total length of the chain is, therefore,
L= NAL.
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Because the Reynolds number associated with C. ele-
gans swimming is small, Re~10""' and the mass
density of the worm is close to that of the surrounding
fluid, we ignore the forces of inertia and gravity in our
simulation model. Accordingly, the forces and torques
on each bead sum to zero

FC+FI+FB =0 (2.2)

and

T+ T T =0.

n n n v

(2.3)

In equations (2.2) and (2.3), FS and 75 are constraint
forces and torques, respectively, introduced to keep
AL fixed. The torques 7- are the elastic torques associ-
ated with the worm’s flexural rigidity and are induced
by curvature of the centreline. The force F? is a pair-
wise-repulsive force between the worm and the
obstacles owing to solid-body contact. F and 74
are the viscous forces and torques on the beads owing
to the surrounding fluid. Finally, the torques 75 drive
the undulation of the chain and mimic the worm’s
muscular contractions. These torques are captured
using a target curvature model [37] where the worm
attempts to achieve a preferred time-dependent shape
with curvature

K(s,t) = —ko(s)sin(ks — 27ft), (2.4)
where s € [0,L], and
B K, s < 0.5L
Ko(s) = { 2Ky (L— )L, s>05L 2P

Each of these forces and torques are illustrated in
figure 1d, and a detailed description of the methods
used to calculate them is provided in the electronic
supplementary material.

As shown in figure 1¢, the obstacles are spherical par-
ticles of radius R that lie in the plane of locomotion. For
each obstacle n, the force and torque balance is

FO+FI+FP =0 (2.6)

and

7+ =0, (2.7)

where FII, F2 and 7! represent the same forces and tor-
ques as those in the MW model. Here, the constraint
forces and torques (FS and 75) keep the obstacles
from translating and rotating, i.e. V,,=0 and 2, = 0.

To capture the hydrodynamic interactions between
the worm and the obstacles, we first solve the Stokes
equations numerically to determine the fluid flow, u,
resulting from the forces and torques on the MW and
obstacles (see the electronic supplementary material).
The particle velocities, V,,, and angular velocities, {2,
are then extracted from u using the force-coupling
method [38,39]. The proximity of the obstacles affects
the hydrodynamic forces experienced by the worm.
These effects are captured approximately by the force-
coupling method, though near-field lubrication forces
are neglected. On the latter, a proper characterization
of the lubrication layer that takes into account the com-
pliance and corrugation of the worm cuticle is a difficult
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Figure 2. Wave motion and curvature of the simulated mechanical worm (MW) in the absence of obstacles. (@) The wave motion over
one period for the MW model tuned to reproduce free-swimming worm-like kinematics. The parameters specifying the driving torque
that yield this motion are W= 22.6, k= 1.5 7w /L, and K, = 8.25/L. In this image, the MW is moving downward and the gray level
fades as time progresses. (b) The contour image shows the propagation of the curvature waves for this free-swimming MW. These
waves closely match experimentally measured values for speed and amplitude [19]. (Online version in colour.)

and open issue. Nonetheless, as we show in §3, when
compared with experimental data, our simple numerical
model appears to capture the basic dynamics quite well.

After computing V,, and (2,, we then integrate the
equations of motion

dY,
= Vn 2.8
T (2.8)
and
dt,,
=0, xt, 2.9
T x (2.9)
using a second-order explicit multi-step scheme

described by Karniadakis et al. [40].

An important parameter in the simulations is related
to what is sometimes termed the Sperm number, Sp
[41], but we refer to here as the Worm number, W=
fnL4/ K, = Sp*. The Worm number provides the ratio
of the viscous to elastic forces, and hy = L/(W)"* is
the characteristic length scale over which bending
occurs when a passive elastic filament is oscillated at
one end [42]. Here, however, because 7, L and K,
are fixed values, W functions as the dimensionless
undulation frequency in the simulations.

Before examining the dynamics of the MW in the
lattice, we must first tune our model in the absence of
the obstacles. To match the aspect ratio, { = L/a, of
C. elegans ({ =~ 16), we take N=15 and AL =2.2a.
We adjust the Worm number, W, as well as the wave-
number, k, and amplitude, K;, of the preferred
curvature wave (equations (2.4) and (2.5)) to replicate
both the wave mechanics and the swimming speed of
actual worms. We find that with W= 22.6, k= 1.57/
L and K,=8.25/L, the amplitude and speed of the
resulting curvature waves closely match those measured
in experiments [19]. Figure 2a shows the resulting wave-
form over one period for the free-swimming MW and
figure 2b the propagation of curvature waves along its
length. The intensity, as shown in the colourbar, corre-
sponds to the value of the curvature scaled by the
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length of the worm. For these parameters, the distance
the MW travels per stroke V/( fL) = 0.0664 is very close
to our experimental value V/( fL) ~ 0.07.

3. RESULTS

The motion, dynamics and speed of C. elegans swim-
ming in a lattice of obstacles differ remarkably from
those in a featureless viscous fluid. During free-
swimming, C. elegans executes strokes that have the
appearance of repeated concave-convex body-bends at
a frequency of 1.5-2.0Hz [18-21,23]. The resulting
swimming speed can range from 0.1 to 0.35mms '
[19,25,28], depending on the worm’s distance from the
boundaries of the channel. In the micro-pillar arrays,
however, the gait and speed of the worm alter owing
to the geometrical constraints and modifications of
the hydrodynamic forces imposed by the lattice
structure. In this section, we present data from our
experiments and MW simulations characterizing these
effects and quantifying how the gait, the locomo-
tory path and the speed vary as a function of the
spacing between the micro-pillars. The quantitative
and qualitative similarities in the experimental and
MW simulation data demonstrate that mechanics and
hydrodynamics, rather than biological sensing, may
play a strong role in the observed phenomena.

We begin by examining the variations in the worm’s
trajectory through the lattice for different values of the
micro-pillar spacing relative to the worm’s length, ¢/L.
(This choice stems from the fact that the number of pil-
lars the worm comes in contact with depends on both
the spacing between the pillars and its length.)
Figure 3 shows experimental data for the paths tra-
versed by the worm in lattices with ¢/L = 0.37 (a—c),
q/L=0.47 (d-f) and ¢/L=0.55 (g—1). It is readily
apparent that there are distinct qualitative differences
in the trajectories for the different values of ¢/L. In
the lattice with the smallest scaled spacing, where
g/ L =0.37 (figure 3a—c and electronic supplementary
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Figure 3. Experimental tracks of the worm in lattices with scaled spacings. The radius of the pillars is 175 pm. The scale bar in
each panel is 4 mm and each lattice is 2 X2 c¢m in size. The time duration for each track is also shown. In each panel, the unfilled
square represents the starting point and the unfilled circle represents the end point of the path. At low values of ¢/ L, the worm
moves consistently along lattice diagonals, but becomes localized to small neighbourhoods after colliding with an obstacle. At
intermediate values, along with high velocity diagonal tracks, loop-like trajectories are more common. At large values, we observe
motion that is predominantly long straight-line segments, either in horizontal or vertical direction (g,h) or along the diagonals
(7). (a—c) ¢/L=0.37, (d—f) ¢/L=0.47 and (¢g—i) ¢/L = 0.55. (Online version in colour.)

material, movie S1), the worm is in constant contact
with one or more pillars and executes higher curvature,
shorter wavelength undulations compared to the free-
swimming gait. The typical locomotion paths consist
primarily of ‘trapped’ motion in a small neighbourhood,
interspersed with high velocity motion along the diag-
onals of the lattice. As the scaled spacing increases to
q/L=0.47, we observe a combination of extended
high velocity diagonal tracks and looped trajectories
(figure 3d—f and electronic supplementary material,
movie S2). Here, contacts with obstacles are less fre-
quent, and the worm can more readily weave its way
through the lattice. At ¢/L = 0.55, the lattice spacing
becomes comparable with the amplitude of a free-
swimming worm and we find that the worm predomi-
nantly swims between rows or columns of pillars,
occasionally moving along the diagonal directions
(figure 3g—i and electronic supplementary material,
movie S3). The contact between the worm and the pil-
lars occurs very rarely and typically results in a turn
and hence a change in the direction of motion.

While forward locomotion is the worm’s primary gait
in the lattice, we observe instances where it exhibits
other behaviours (electronic supplementary material,
movie S1). For example, the worm may reverse its
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direction of motion when it becomes ‘trapped’ between
pillars or when it encounters a pillar head-on. We also
observe the worm wrapping itself around a pillar and
then unwrapping and moving in a different direction.
We suspect the worm is attempting to execute an
omega turn [22], but the presence of pillars constrains
the extent to which it can bend its body.

Accompanying the changes in the swimming path
are changes in the worm’s speed of locomotion.
Figure 4a shows the distribution of speeds relative to
the free-swimming value, V/V,, for the three lattices
shown in figure 3. We measure the swimming speed
in the absence of obstacles to be in the range V=
0.1—0.15mms ', depending on the specific worm
used in the experiment. The data are averages over mul-
tiple runs for each lattice spacing and include all types
of locomotory behaviours.

The wide range of speeds the worm achieves in differ-
ent lattices is immediately apparent, particularly for the
cases where ¢/L =0.37 and ¢/L = 0.47. These speeds
range from values that are less than the swimming
speed, V/Vy <1, when the worm is ‘trapped’ and loca~
lized to a small neighbourhood, to values that are
significantly greater than its free-swimming speed.
The latter is the more prevalent case for all lattice
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Figure 4. Velocity and frequency variations in experiments and simulations. (@) The fractional count of V/V; from the experiments.
Each curve corresponds to one of the different values of ¢/ L: ¢/ L = 0.37 (dash-dotted line), ¢/ L = 0.47 (solid line) and ¢/L = 0.55
(dashed line). The arrows point to the peaks associated with swimming along the lattice diagonals. Values below V/Vy =1 corre-
spond to situations when the worm is ‘trapped’ and moves even slower than the free-swimming case. (b) Experimental data for the
nematode’s average undulation frequency fas a function of ¢/ L; f monotonically increases with increasing ¢/ L. (¢) The experimen-
tally measured values of enhanced velocity, V/ V;, when the worm moves along the diagonal, are shown as a function of ¢/L. V/V,
exhibits non-monotonic behaviour and reaches a peak value of V/ Vy ~ 9 when ¢/ L = 0.47. (d) The solid lines with symbols show the
enhanced velocity given by the mechanical worm model and are compared with the corresponding experimental values (solid tri-
angles). The solid line with squares indicates the enhanced velocity for the simulations where YW= 11.3, whereas the solid line
with the circles corresponds to those where W= 15.1. The dashed lines indicate speeds given by V = v/2¢f; for both values of W,
the simulation data for V/V, follow this relation until V/V; reaches its peak value.

spacings. For ¢/L=0.55, the strong peak centred
around V/Vya 2 corresponds to the worm swimming
between rows and columns of pillars. Although during
this motion the worm attains speeds greater than its
free-swimming value, we find that in a given lattice, the
highest speeds are achieved when it moves along the lat-
tice diagonals. The arrows in figure 4a indicate the
peaks corresponding to diagonal paths. These tracks
are particularly prevalent when ¢/L=0.47, and in
fact, we find that it is here that the worm achieves its
highest speed V/Vya9. When ¢/L=0.37, motion
along the lattice diagonals still commonly occurs, but it
does so at a speed V/V,= 6, less than when ¢/L =
0.47. For g/ L = 0.55, the peak corresponding to diagonal
tracks is dwarfed by the one corresponding to swimming
along rows. Therefore, even though the worm can achieve
much higher speeds by moving along the lattice diag-
onals, it is more often found moving between the rows
and columns of pillars.

These diagonal trajectories are of particular interest
since they are where the worm achieves the highest
speeds. In the subsequent analyses for motion on the
diagonals, we consider only forward diagonal motion
and discard any instances where the worm pauses,
becomes trapped, or wraps itself around a pillar from
the analyses. Before analysing how this speed
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enhancement varies with lattice spacing, it is important
to note that the worm’s undulation frequency also
depends on the micro-pillar arrangement. Figure 4b
shows the undulation frequency measured along the
diagonal trajectories as a function of ¢/L. We see that
f steadily increases from values that are close to the
crawling frequency at the lowest ¢/L to values that
approach the free-swimming frequency at high ¢/L.
This variation in undulation frequency is evidence
that the worm responds to different geometrical con-
straints imposed by the lattice through changes in the
rate at which it flexes its musculature. Therefore,
figure 4b shows the particular curve in ¢/L—f para-
meter space over which C. elegans chooses to
operate. Because the speed of locomotion will depend
on both of these quantities and they can be varied inde-
pendently in the simulations, the MW model serves as
an important platform with which to explore the effects
of undulation frequency and the lattice spacing inde-
pendently and understand C. elegans’ particular
choice of frequency when placed in a lattice with a
given spacing.

As noted earlier and observed in Park et al. [25], we
find that when the nematode moves along the lattice
diagonals, rather than being hindered by the micro-
pillars it achieves speeds that are much greater than its
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Figure 5. Variation of the scaled speed, V/( fL), with ¢/L and fin experiments and simulations. The scaled speed provides the
stroke efficiency, or the distance the worm travels in one stroke relative to its length. (a) V/( fL) as a function of g/L. The solid
triangles show the experimental data, whereas the solid lines with open symbols show the data from simulations for three different
values of W: W = 8.5 (diamonds), W = 14.1 (squares), and W = 17.0 (circles). The dashed line shows the value of V/( fL) when
V = v/2¢L. (b) The plot shows V/( fL) as a function of undulation frequency normalized by the free-swimming value, f,. The solid
triangles again correspond to the experimental data, whereas the dashed lines with filled symbols show simulation data for three
different values of ¢/L: ¢/ L = 0.43 (diamonds), ¢/ L = 0.46 (squares), and ¢/L = 0.51 (circles). In both (a) and (b), we see a good
agreement between the experiments and simulations regarding the trends in the variation of V/( fL) as a function of ¢/L and f/ f;,

respectively. (Online version in colour.)

free-swimming value. Figure 4c¢ shows the experimentally
measured speed relative to the free-swimming value,
V/ Vo, over the diagonal tracks, as a function of
the scaled lattice spacing g/ L. The data shown here are
from averages taken over multiple diagonal tracks of five
different worms for each lattice spacing. We see that the
speed depends non-monotonically on ¢/ L where it first
rises steadily to the peak value of Va9V, for ¢/L ~
0.47, then rapidly decays to V= 2V, for ¢/L =~ 0.6.

Now we begin to make detailed comparisons with our
numerical MW model. In the simulations, we find that
for the experimental obstacle size R/L=0.177, the
MW moves exclusively along the lattice diagonals
regardless of the value of g/L. The speed at which the
MW moves along this path, however, does depend on
the value of ¢/L. In figure 4d, we compare the exper-
imental values of V/V, with those determined from
the MW simulations for two different values of W.
The simulation data are represented by the two solid
curves with squares (W=11.3) and circles (W=
15.1), whereas the experimental data from figure 4a
are superimposed as triangles. There is an excellent
agreement between the experiments and the MW
simulations regarding both the ¢/L-location of the
peak velocity and the magnitude of enhanced velocity
(V/Vp). Such an agreement with the MW underscores
the important role of the mechanical interactions
between the worm and the micro-pillars in determining
the speed at which it moves through the environment.
This variation in the speed of locomotion along
diagonal tracks can be understood as follows. At low
values of ¢/ L, we find that the locomotion speed is gov-
erned exclusively by the geometry of the lattice and the
worm’s frequency of undulation. In fact, before reaching
its peak value, the velocity of the MW follows closely
the relation V =+/2¢f (dashed lines in figure 4d),
which signifies that the worm travels one row and one
column per stroke. In this regime, the worm is in con-
stant contact with the lattice, pushing off each pillar
it encounters and meeting another on its back stroke.
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In the frame of reference attached to the worm, the
rate of arrival of the pillars is ‘in resonance’ with the fre-
quency of undulations. The peak in enhanced velocity is
achieved when ¢/ L is such that the natural body-bends
of the worm manage to partially wrap around the pil-
lars at every half-stroke (see electronic supplementary
material, movie S4). The MW simulations show that
the ¢/L where the peak speed is realized shifts to
lower values as the undulation frequency (W) increases.
Beyond the peak value, the rate at which the worm
encounters the obstacles no longer matches its undula-
tion frequency, and the worm now requires multiple
strokes to move a single diagonal lattice spacing. This
leads to the decay in speed observed in both the
experiments and MW simulations (see electronic sup-
plementary material, movie S5). It is important to
note that even at high values of ¢/L the speed is still
twice the free-swimming value, V/Vy~2. Even
occasional contacts with the obstacles significantly
increase the speed at which the worm moves.

An important quantity that indicates the effec-
tiveness of each of the worm’s strokes is the scaled
velocity, or stroke efficiency V/(fL). The value of
V/(fL) measures the fraction of body length the
worm travels in one stroke. This quantity, therefore,
will vary with both the changes in the locomotion
speed as well as undulation frequency. The scaled vel-
ocity as a function of ¢/L is shown in figure 5a. The
triangles show the experimental data and the open
symbols with solid lines show the data from simulations
for three different values of W: W= 8.5 (diamonds),
W =14.1 (squares) and W= 17.0 (circles). We observe
that in the experiments, up to ¢/L = 0.47 where the
worm achieves its peak velocity, the scaled velocity is
roughly constant with V/fL=0.75 (i.e. the worm
travels about 75% of its body length per stroke).
Beyond this, V/fL decays with increasing lattice spac-
ing and for the highest ¢/L=0.60, it travels only
about 10 per cent of its body length per stroke. For
each of the constant W simulations, there is an initial
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linear increase in the scaled velocity for low ¢/L. For
these values of ¢/ L, the MW moves along the lattice diag-
onals and its velocity follows the relation V = v/2¢f.
The scaled velocity is therefore V/(fL) = v/2¢/L. This
relationship between V/(fL) and ¢/L is indicated by
the dashed line in figure 5a. For each W, the scaled vel-
ocity follows this relation until its peak value is
reached; the peak value itself is achieved at higher ¢/L
as W increases. As in the experiments, the MW
simulation data show a decrease in V/( fL) over larger
values of ¢/L.

As the worm modifies its undulation frequency in
response to changes in the lattice spacing, it is impor-
tant to also examine the dependence of the stroke
efficiency on the undulation frequency. In figure 50,
we show the variation of the scaled velocity with respect
to frequency for both the experiments and simulations.
Here, the frequency is normalized by its free-swimming
value, fy. For the experiments, the lattice spacing ¢/ L is
different for each data point, whereas each line corre-
sponds to MW simulations with fixed ¢/L. We find,
however, that both the experiments (triangles) and
simulations (solid symbols 4+ dashed lines) have the
same trend in the data: an initial plateau region fol-
lowed by a decrease in scaled velocity with increasing
frequency. This plateau region corresponds to cases
where the MW moves one diagonal lattice spacing in a
single stroke and V = v/2¢f. From the MW simulations,
we also see that the value f/f; where the plateau region
ends shifts to higher values as ¢/ L increases.

In comparing the experimental and MW simulation
data, we find that not only the changes in worm
dynamics, but also in quantities such as the locomotion
speed are captured by our simple mechanical model.
With the MW model, we may extend our results
beyond the range of parameters available to the
experiments as well as examine quantities that are of
physical relevance, but which are not easily measurable
in experiments, such as the viscous dissipation and
hydrodynamic efficiency. Recall that C. elegans moves
on the particular curve in the g/L— f parameter space
illustrated in figure 4b. With the MW simulation, we
can explore the complete parameter space and deter-
mine how quantities such as locomotion speed vary
with respect to both parameters. To do so, we compile
the simulation data taken over a range of (¢/L,W)
values and assemble the phase diagram shown in
figure 6a. In this figure, the colour of each symbol indi-
cates the value of V/(¢f) for that point in ¢/L—W
parameter space. We find that enhanced locomotion
along the diagonals with V = v/2¢f is realized over a
significant portion of ¢/L—W space as indicated in
the region below the diagonal line in the diagram. As
discussed earlier, this corresponds to the worm traver-
sing one diagonal lattice spacing in one stroke. The
gait of the MW in this regime is shown in figure 6¢
where the centreline of the worm is plotted every half
undulation period. We designate this stroke as a 1 — 1
stroke, signifying that the worm moves 1 row and
1 column per period of undulation (see electronic sup-
plementary material, movie S4). The diagonal line also
indicates the values of WW where the peak speed is realized
for fixed g/L. Above the line, the MW requires multiple
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strokes to traverse one diagonal lattice spacing
(figure 6d). The lowest V/(qf) are realized when the
worm requires many strokes to move one spacing (see elec-
tronic supplementary material, movie S5). These values
are found at the upper right-hand corner of the diagram
where both ¢/L and W are the largest considered.

With the MW simulations, we may also examine quan-
tities that are not readily accessible from the experiments.
One important quantity that we consider here is the
hydrodynamic efficiency. The hydrodynamic efficiency,
E=nLV?/D [4,5], where D is the average viscous dissipa-
tion over one period, provides a measure of the speed of
locomotion achieved for a fixed power output per
stroke. The values of £ are shown in figure 6b over the
g/L—W parameter space. We find that £ attains its
maximum along the transition boundary of the enhanced
locomotion region identified as the diagonal line in
figure 6a. Recall that this line also coincides with the
W values that yield the highest speed for fixed ¢/L.
This indicates that as the lattice spacing increases, the
undulation frequency must decrease in order for the
hydrodynamic efficiency or speed to continue to realize
its peak value. This is, in fact, the opposite of the trend
observed in the experiments where we found that C. ele-
gans undulation frequency increases with lattice spacing
(figure 4d). This suggests that C. elegans is not adjusting
its frequency to maximize its speed or efficiency, as what
might have been suspected beforehand.

While these simulations with obstacle size R/L =
0.177 accurately capture the important features of diag-
onal, high-velocity locomotion in different lattices, we
observe that the MW moves exclusively along the lattice
diagonals. The experiments, not surprisingly, show that
C. elegans exits from these diagonal tracks repeatedly
and changes its direction of motion, resulting in a wide
variety of paths, including loops, turns and swimming
between rows or columns (figure 3). Next, we examine
the motion of the MW in lattices with smaller obstacles
by reducing the radius of the obstacles from R/L =
0.177 to 0.121. We show that this simple modification
in the geometry reveals a regime in the parameter space
where the MW exhibits a rich variety of dynamics simi-
lar to those observed in the experiments (see electronic
supplementary material, movie S6).

The data for these MW simulations are shown in the
phase diagram in figure 7. We again find two regions of
parameter space; one where the MW requires a single
stroke to move one diagonal lattice spacing (V = v/2¢f),
and the other where multiple strokes are necessary
(V <+/2¢f). The (q/LW) points corresponding to
these two regions are the blue triangles in the lower right
corner, and the cyan triangles on the upper right, res-
pectively. For this obstacle size, we also see a third
region at low values of ¢/L. Here, the MW is able to
move out of locked diagonal tracks and exhibits the
remarkable variety of complex trajectories (see electronic
supplementary material, movie S6). The squares in the
phase diagram indicate the (g/L,W) where these non-
diagonal trajectories are observed and the colour of the
symbol designates the type of trajectory. The side panels
of figure 7 show the centreline of the worm at half-period
intervals for each of the different non-diagonal tracks.
The light blue squares indicate parameter values where
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Figure 6. Simulation data over the ¢/ L—W parameter space. (a) The values of the speed normalized by the product of the lattice
spacing and frequency. (b) The hydrodynamic efficiency £ = 1 LV?/D given by the mechanical worm (MW) model is shown over
the parameter space. Below the solid black line in (a), the worm requires a single stroke to move one diagonal lattice spacing and
consequently V = +/2¢f. The gait of the MW in this regime is shown in ( ¢) where the centreline of the worm is plotted every
half undulation period. Above the line, the worm needs multiple strokes and consequently V < v/2¢f, as shown in (d). The
hydrodynamic efficiency (b) attains its maximum values along the solid line shown in (a).

the MW executes looped trajectories. The comparable
experimental paths are shown in figure 3d—f. The green
squares correspond to swimming between rows of
obstacles, which again was seen in the experiments
(figure 3g,h). The black squares indicate cases where the
MW initially moves through the lattice, but eventually
undulates without translating. The pink squares indicate
an asymmetric 2 — 1 diagonal motion where the worm
moves two rows up and one column sideways. As in the
1 — 1 gait (figure 6¢,d), the MW can take one or multiple
strokes to move along the 2 — 1 diagonal. Both of these
cases are shown in the side panel with the pink square.
We also find another interesting type of motion, desig-
nated by red squares, and it is not observed in the
experiments. Here, the worm weaves its way along a
single column of obstacles as shown in the bottom panel
of figure 7 with the red square. This mode is prevalent at
very low values of both ¢/L and W. As shown in the
panel, this type of dynamics can manifest in several differ-
ent ways. We find the MW can weave around one row per
half-stroke (1 — 1 mode), or it moves in steps of two rows
(2 — 2mode), or it can alternate between one and two row
steps (2 — 1 mode). All the three cases are illustrated in
the bottom panel of figure 7.
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The rich variety of gaits demonstrated by the
MW is brought out fully when we consider
the remaining data points in the parameter space,
those designated by orange squares in figure 7. For
these cases, the motion of the MW through the
lattice is significantly more complex, resulting in
non-periodic trajectories where the worm switches,
seemingly at random, between the gaits already dis-
cussed. This gives rise to trajectories that appear
‘life-like’ but are solely the result of the contact and
hydrodynamic interactions between the undulating
body and the lattice of obstacles, not stochasticity
or behavioural response to sensing (electronic
supplementary material, movie S7).

Figure 8a shows an example of one of these trajec-
tories and the non-periodic and ‘life-like’ nature of the
path is strikingly clear (see electronic supplementary
material, movie S7). The track in the main panel
shows the MW in full-period intervals and the star
denotes its starting point. The MW initially establishes
a high velocity, 2 — 1 diagonal track. Box A encloses a
segment of this 2 — 1 gait and the details of the centre-
line dynamics over this window are shown in the
corresponding side panel. Instead of repeating this
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Figure 7. The phase diagram shown in the upper left-hand corner indicates the behaviour of the mechanical worm (MW) in lat-
tices with obstacle size R/L = 0.121 over the g/L-)WV parameter space. In addition to finding regions where the worm moves
exclusively along the lattice diagonals and requiring either one (blue triangles) or multiple (cyan triangles) strokes (figure 6),
the MW also exhibits a remarkable variety of trajectories which are sensitive to the specific values of g/ L and W. The red squares
indicate cases where the worm weaves its way around a single row or column of pillars, the pink squares correspond to an asym-
metric 2—1 diagonal motion, green squares correspond to swimming between rows of obstacles and the light blue squares indicate
parameter values where the MW executes closed loop trajectories. The motions of the MW corresponding to each of these cases
are illustrated in the panels where the centreline of the worm is shown at half-period intervals. The black squares indicate cases
where the MW initially moves through the lattice, but eventually undulates without translating. More complex non-periodic
motion is also observed, indicated here by orange squares, where the worm constantly changes the way it moves through the
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lattice demonstrating many of the motions illustrated in the panels. This case is shown in detail in figure 8.

gait indefinitely, the MW now turns and reverses its
direction of motion. This portion is enclosed in box B
and shown in detail in the side panel B. The MW
then transitions to swimming between two columns of
obstacles, as shown within box C. The centrelines of
this gait are shown in side panel C, where a number
of almost in-place undulations can be observed. The
MW continues to move in complex, non-periodic
fashion, even beyond the time segment shown here.
This behaviour is quite remarkable considering that
such a realistic motion emerges from our purely
mechanistic model and, moreover, accurately replicates
the motion of the worm observed in the experiments.
For comparison, figure 9a shows a segment of the exper-
imental track illustrated in figure 3a. The main panel is
formed by taking frames at half-period intervals from
the experimental video and superimposing them over
a digitally generated lattice. The boxes marked A, B
and C indicate three different gaits and correspond
to those exhibited by the MW: box A shows a 2 — 1
diagonal motion, box B shows the worm swimming
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between two columns, and box C shows a turn and
transition from inter-column swimming to a 2 — 1 diag-
onal motion. The side panels, marked A, B and C, show
images of the centrelines of the worm plotted every half-
period, for the corresponding areas in the main panel.
While in a different order, we see the simulations exhi-
bit both the gaits and transitions between them to yield
an overall path that is comparable with that observed in
the experiments.

Contributing to the ‘life-like’ quality of the MW’s
dynamics are the abrupt changes in speed that take
place as it changes gaits. Figure 8b shows the scaled
velocity V/fL of the MW, as a function of time
scaled by the period of the undulations. The shaded
areas correspond to time windows shown in A, B
and C. The scaled velocity increases from V/(fL)
0.25 to= 0.7 for window A and reaches an average
of V/(fL)~0.75 for window B where the MW turns
through the lattice. The velocity then drops rapidly
to V/(fL)=0.1 for window C, where the worm
swims between columns. Likewise, figure 9b shows



1820 Locomotion in a structured medium 'T. Majmudar et al.

(a)
B
@
b 1.0 T T 1 T T
(b) A @
<
§- 05}
-
B
0 5 10 15 20 25 30
t/IT

Figure 8. (a) Complex trajectory of the mechanical worm (MW) model through a lattice where R/L = 0.121, ¢/L = 0.331 and
W= 14.1 (see orange squares in figure 7). In the main image, the position of the centreline is plotted every undulation period
and the asterisk indicates the MW’s initial position. The accompanying panels show the details of the centreline motion for
the indicated portions of the trajectory where the MW moves (A) along the 2—1 diagonal, (B) turning and weaving through
the lattice, and (C) swimming between the rows of pillars. The inset panels show the details of the undulations in these three
modes. (b) The scaled speed, V/( fL), as a function of time scaled by the period of undulations. The shaded areas correspond
to the time windows shown in each of the insets A, B and C, respectively.

the scaled velocity V/fL as a function of time for the
experimental track. The shaded areas correspond to
time windows shown in A, B and C (notice that the
regions B and C in this figure are reversed with respect
to figure 8). While the times spent executing the
particular gaits are different, the experiments and simu-
lations have similar average values of scaled velocity
over the time period indicated for each gait. Both also
exhibit characteristic fluctuations in speed that might
off-hand be associated with behavioural changes, but in
the case of the MW, we observe that they can occur
simply from the interactions with obstacles. Further,
the simulations reproduce quite well the rapid changes
in speed seen in the experimental data as the worm tran-
sitions between gaits. These stop-and-go features
combined with the changes in gait exhibited by the
MW simulations result in overall dynamics that capture
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the character of the motion of C.elegans in this
environment.

4. DISCUSSION AND CONCLUSIONS

In this study, we have examined in detail the dynamics
of locomotion of the model organism C. elegans through
a square lattice of micro-pillars. Our experiments
demonstrate that even this simple arrangement of
obstacles significantly affects the nematode’s wave
kinematics; the speed and path of locomotion through
this environment strongly depend on the lattice spacing
and the degree of confinement. In particular, we found
that when the worm moves along the lattice diagonals,
it does so with speeds much higher than the free-swim-
ming values and can be as much as an order of
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Figure 9. Complex locomotory gaits from the experiments. (a) The trajectory of the nematode through a lattice with ¢/L = 0.37
for 32 periods of undulation. As with the previous simulation results (figure 8), the worm moves (A) along the 2—1 diagonal, (B)
straight between rows of pillars and (C) transitioning between these two modes. (b) The scaled speed, V/( fL), as a function of
time scaled by the average period of undulation. The shaded regions correspond to the time windows associated with the worm

motions detailed in the panels.

magnitude greater for certain lattices. We examined
these changes using the MW model that incorporates
the hydrodynamic and contact interactions between the
undulating worm and the obstacles. The MW model
quantitatively reproduces both the high speeds observed
along lattice diagonals, and its dependence on lattice spa-
cing and undulation frequency. The obstacles function as
points against which the worm can push and pull. Per-
haps more surprising is that like the actual C. elegans
worm, the MW is able to exhibit complex trajectories
through the lattice where it transitions between gaits,
constantly changing its direction and modifying its
speed. The correspondence between the experiments
and simulations reveals that some of the changes in loco-
motory dynamics that might, through visual inspection,
be attributed to stochasticity or biophysical sensing
mechanisms are primarily due to geometrical constraints
and hydrodynamics.

Variations in the C. elegans undulation frequency
have been a topic of current research, examined pri-
marily in Newtonian fluids with different viscosities
[19—-21]. In these studies, the wave-form remains fixed
but the frequency is found to decrease with increasing
viscosity of the fluid. These experimental observations,
in conjunction with the drag-based resistive force
model, suggest that C. elegans may be using these fre-
quency variations to maintain a constant mechanical
load or power output as the viscosity of the medium
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changes. Similar frequency changes have been observed
in wet granular media, where the frequency decreases as
the volume fraction of grains is increased [28,29]. In our
experiments, a similar increase in mechanical load is to
be expected as the lattice spacing decreases. We found
that when placed in the lattice, C. elegans lowers its
undulation frequency, approaching its crawling value
in the lattice with the smallest spacing (¢/L = 0.37)
and steadily increasing towards the free-swimming
value as the lattice spacing increases. While this modu-
lation of frequency is exhibited by C. elegans in response
to the changes in its surroundings, the MW simulations
show that it does not correlate with maximizing
hydrodynamic efficiency or locomotion speed.

As it is the mechanical interactions between
C. elegans and the micro-pillars that lead to the
increase in its speed and a modification in its path, simi-
lar changes are to be expected in other, more complex
obstacle-laden environments. In random environments,
for example, these mechanical interactions could allow
undulatory organisms to search a greater area in a
given period of time. This has indeed been observed
for C. elegans crawling on an agar gel substrate cove-
red with randomly distributed sand particles [43].
Speed enhancement and an increase in stroke efficiency
have also been observed in C. elegans locomotion
through wet granular media [28,29]. Here, the inter-
actions not only produce variations in the worm’s
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dynamics, but also allow the worm to rearrange the
surrounding grains. The effects brought about by
the mechanical interactions are also not limited to
C. elegans. Sperm cells interacting with the fibre net-
work comprising cervical mucus may rely on these
interactions to enhance their speed. In fact, the porosity
of the network varies over the course of the menstrual
cycle [44,45], affecting the spacing of the fibres and, con-
sequently, changing the speed at which the sperm can
swim. This mechanism of speed enhancement may
also be essential to gametes of the malaria parasite,
which swim through a dense suspension of red blood
cells while under assault from human antibodies
[13,14]. Gamete synthesis to fertilization takes under
30 min [13] and enhanced locomotion through mechan-
ical interactions with the red blood cells could certainly
contribute to the speed of this process as well. It is also
interesting to note that even for terrestrial locomotion
in higher organisms, such as cockroaches [46], it has
been shown that mechanics plays a significant role in
gait stabilization and, as in our study, speed selection.

In conclusion, we have established a combined
experimental and theoretical platform, to investigate
questions regarding locomotion of undulating micro-
organisms in realistic, structured environments. Our
approach of combining experiments and hydrodynamic
simulations allows us not only to address questions
regarding the locomotory behaviour of a large class of
micro-organisms, but also extract information about
quantities such as viscous dissipation and hydro-
dynamic efficiency, which are usually difficult to
measure experimentally. As a result, we can accurately
determine the competing effects of geometry, hydro-
dynamics and contact interactions on the ultimate
behaviour of an undulating swimmer. In addition, our
results may also have important implications for the be-
haviour of C. elegans in a realistic soil-like environment,
not only in terms of its ability to navigate obstacles, but
also for its overall motion in structured environments.

There are several key areas that are being investi-
gated currently. We are experimentally investigating
more complex obstacle arrangements to quantify how
gradients in the obstacle locations can further affect
the dynamics and speed of undulatory swimmers. We
are also experimentally investigating the locomotory
behaviour of a variety C. elegans mutants, which
extend the range of geometrical and kinematic para-
meters. Additionally, we are conducting experiments
to examine the kinematics of mechanosensory deficient
C. elegans mutants to ascertain the role of mechano-
sensation on end behaviour. On the simulations front,
we are currently exploring in more detail the worm’s
power output in the lattice by allowing the MW
model to freely adjust its frequency and operate with
a constant power output. Through these mutant and
modified MW studies, we aim to examine the role of
neural feedback, especially with regard to the frequency
modulation observed in our experiments. We are
also extending our MW model to explore undulatory
locomotion in more complex environments by incorpor-
ating both randomness in the obstacle locations as well
as obstacle compliance, bringing our MW model closer
to realistic soil-like environments.
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