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Abstract. Molecular imaging techniques for protein therapeutics rely on reporter labels, especially
radionuclides or sometimes near-infrared fluorescent moieties, which must be introduced with minimal
perturbation of the protein’s function in vivo and are detected non-invasively during whole-body
imaging. PET is the most sensitive whole-body imaging technique available, making it possible to
perform biodistribution studies in humans with as little as 1 mg of injected antibody carrying 1 mCi
(37 MBq) of zirconium-89 radiolabel. Different labeling chemistries facilitate a variety of optical and
radionuclide methods that offer complementary information from microscopy and autoradiography and
offer some trade-offs in whole-body imaging between cost and logistic difficulty and image quality and
sensitivity (how much protein needs to be injected). Interpretation of tissue uptake requires
consideration of label that has been catabolized and possibly residualized. Image contrast depends as
much on background signal as it does on tissue uptake, and so the choice of injected dose and scan timing
guides the selection of a suitable label and helps to optimize image quality. Although only recently
developed, zirconium-89 PET techniques allow for the most quantitative tomographic imaging at
millimeter resolution in small animals and they translate very well into clinical use as exemplified by
studies of radiolabeled antibodies, including trastuzumab in breast cancer patients, in The Netherlands.
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INTRODUCTION

Tissue distribution studies of protein therapeutics, often
monoclonal antibodies, typically require invasive sampling
and quantitative recovery of the target protein from the tissue
milieu. In this setting, molecular imaging offers the very
attractive prospect of tracking the protein distribution
through time and throughout the whole body, non-invasively,
at least at the level of individual organs.

Molecular imaging might be defined as the generation of
images in which the intensity at a particular point is proportional
to the quantity of a specific predeterminedmolecular species. This
is in contrast to other imaging approaches where image contrast is
generated by mechanisms that have an unspecified molecular
origin, such as X-ray attenuation or optical phase contrast.

Few therapeutic proteins possess intrinsic properties that
permit direct molecular imaging inside the body, some

theranostic (1) exceptions aside. Generally, we are forced to
rely on indirect detection through molecular labels or probes
coupled to the protein of interest. It is this necessary labeling
step that sets up many of the strengths, limitations, and
nuances of each experiment and which must be considered
critically in the design of an effective study. However, these
labeling techniques are easily generalized to most proteins of
interest and can be used in studies from mouse to man.

Optical imaging is perhaps the most active area of label
development, particularly with near-infrared fluorescent (NIRF)
labels that can be detected at greater tissue depths than the visibly
colored reagents employed in studies of cells and tissue slices (2).
NIRF labels make whole-body studies feasible in small animals
(3) and may be suitable for applications such as illuminating
positive margins in real time during tumor resection surgeries
(4,5). They should also allowmicroscopic examination of antibody
distribution and the cellular origins of the signal (tumor cell versus
macrophage, for example). However, despite the great appeal of
stable labels, simplified logistics, and freedom from ionizing
radiation, the inherent limitations of detection depth and
difficulties with dynamic range and quantitation remain serious
drawbacks to optical tomography. Ultrasound detection of
optically stimulated probes (photoacoustic imaging) offers to push
practical detection depths from millimeters to centimeters (6).
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For situations where quantitative whole-body tomo-
graphic data are required, we are principally concerned with
radioactive labels imaged with SPECT or (especially) PET.
Perhaps deceptively familiar, these molecular imaging techni-
ques perform much better than they did 20 or even 10 years
ago, as new reagents, instruments, and image reconstruction
methods have become available (7).

Figure 1 schematically illustrates an antibody labeled
with lysine-linked moieties that facilitate detection by PET
(Zr-89 chelated in desferrioxamine) and near-infrared fluo-
rescence (IRDye800CW). This reagent was used in elegant
dual-modality studies of antibody imaging reagents by Cohen
et al. (4).

Various factors must be considered in the experimental
design: the spatial resolution and anatomical extent required
in the final images, the lifetime of a label and the duration of
the study, the detection sensitivity and specificity, the relative
contributions of blood and tissue, label residualization, and so
on. A common starting point is matching protein and label
half-lives to ensure that a radioactive label has a half-life that
is long enough to provide information on the biologically
relevant timescale, but not much longer, so that the radiation
exposure is minimized. The relevant timescale is dictated not
just by the labeled protein’s behavior in a binding tissue, for
example, in tumor, but also by the excess of label in the
background, usually the blood pool. Having low background
signal at the desired imaging time point is essential if true
tissue uptake is to be conspicuous. Next, we must consider the
related matter of how much protein will be injected for the
experiment and if that much material can be detected in
tissues given the expected distribution and clearance patterns.
This is an area where high sensitivity imaging, with PET for
example, buys the advantage of being able to explore trace as
well as higher (therapeutic) protein dosing levels, 1 mg of
antibody per patient versus 5 mg/kg, for example.

Broad descriptions of molecular imaging can be found by
the interested reader in the literature (8,9), but this review
will concentrate on a few protein labeling and molecular
imaging strategies that have proven to be useful in studies of
protein therapeutics and which have enduring value. In
particular, the relatively recent availability of the PET isotope

zirconium-89 (Zr-89) is proving to be game-changing in
studies of monoclonal antibodies, in mice and men (10).

TOPICS

Labeling: First, Do No Harm

A label may directly perturb the function of a protein,
but the reaction conditions used to introduce the label may
inadvertently promote some undesirable change such as
oxidation, deamidation, side-chain isomerization, or aggrega-
tion (11). The basic absence of gross changes in pharmaco-
kinetics or molecular weight are not always sufficient
characterization of labeled proteins, and binding or other
functional assays may be needed to assess the integrity of an
imaging probe. The case of annexin V illustrates a number of
difficulties that can be encountered in trying to develop a
benignly labeled protein (12) highlights the benefits that can
come from site-specific labeling (13) and shows the need for
binding assays that properly reflect the physiological process
(14). For antibodies, ligand or cell binding assays are needed
to determine the immunoreactive fraction, an important
quality control parameter. The Lindmo assay (15) is very
widely used for this purpose, but flattering results are easily
obtained if the assay is not performed under strict conditions
(16). These assays are critically dependent on knowing the
true protein concentration, but the presence of a label may
complicate the extinction coefficients (17) or (with chelating
groups) interfere with copper-dependent Lowry and bicin-
choninic acid protein assays.

Labels may also alter the protein biodistribution through
non-specific changes (18) in bulk, charge, or hydrophobic
interactions. This has been a major barrier to the adoption of
many otherwise excellent fluorescent labels. Controlling the
labeling sites and limiting the stoichiometry (19,20) should
minimize the risk of immunogenicity and the problems of
batch-to-batch heterogeneity, helping the validation of fluo-
rescent labels in clinical and other critical settings (4). With
optical and radioactive labels alike, incorporating more labels
per protein [up to 10 of each in Sampath et al. (21)] gives rise
to a temptingly “brighter” protein with higher specific activity
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Fig. 1. Schematic of a dual-modality PET/optical construct used to explore the properties of
IRDye800CW conjugates by Cohen at al. (4). Left Zr-89 chelated with desferrioxamine B. Right An
IRDye800CW moiety. Both linked to lysine side groups on the antibody
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or fluorescent yield, but this is a siren call risking compro-
mised behavior in vivo (4) and would require even more
cautious validation. One site-specific label per protein is the
ideal.

Figure 2 illustrates a near-infrared fluorescence image in
a mouse injected with a dual-modality labeled derivative of
bevacizumab.

Catabolism, Residualization, and Biological Artifacts

Any label should remain coupled to its conjugate protein
for the duration of the experiment and, ideally, make no
difference to its behavior, but what is the appropriate fate of a
label when the protein is finally catabolized? This is a
fundamental question in choosing an appropriate label for a
particular experiment. The label itself will remain optically
active or radioactive, and be detected in any images, but it no
longer reveals the presence of the therapeutic protein per se.
The distribution of excreted or catabolized labels can
confound the imaging of certain tissues, especially in and
around the hepatobiliary system and gut, the kidneys, and
urinary bladder. When imaging abdominal sites, for example,
this can be a limitation and has been a major driver in the
selection among imaging agents based on annexin V (22,23).

Some labels are membrane permeant or are actively
excreted from the catabolic cell, while others remain trapped
inside the cell because of their charge and can persist for the
lifetime of the cell. The iodinated labels typically fall into the

first group, with iodotyrosine leaving the cell for recycling and
dehalogenase enzymes scavenging the iodine for processing
in the thyroid gland. These enzymes are particularly active
toward iodine atoms sitting ortho- (adjacent) to a hydroxyl
group on a phenyl ring, which are the product of most
common iodine labeling chemistries for proteins including the
indirect Bolton–Hunter reagent. Some chemical strategies
have been devised to incorporate iodine labels into moieties
(24–26) that resist dehalogentaion, but the protein catabolites
still leave the cell. Images from proteins labeled with iodine
typically include conspicuous thyroid glands due to catabo-
lized iodine; the skin is also sometimes pronounced because
of the highly active sodium/iodide symporters in that tissue.
Since the iodine catabolites leave the cell, the imaging signal
in the tissue reflects mostly intact protein and partial
degradation products.

This property of residualizing in the cell after catabolism
is possessed by most radiometal labels, which are usually
lysine- or cysteine-linked to the protein of interest through
chelating groups such as diethylenetriaminepentaacetic acid
(DTPA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic
acid, or desferrioxamine B (DFO) (27). Upon catabolism,
they tend to remain cell-trapped as charged lysine adducts
(28,29). Their signal remains visible along with that of intact
or partially degraded protein. Thus, the imaging signal of a
residualizing label represents the current or final location of
the protein, approximating the total amount accumulated at
that site, comparable to measuring the area under the curve
in time–activity curves obtained with non-residualizing labels.
For some purposes, such as locating tissue sinks or estimating
immunotoxin delivery by a targeting antibody (30), this
residualizing behavior is beneficial.

Know Your Tissues: The Importance of Supporting Data

Knowledge of the tissue distribution at the organ level is
useful, but sometimes insufficient. Images alone do not
always sufficiently distinguish between thin tissues in close
proximity, such as mineral bone and bone marrow, and
follow-up experiments are required. Individual blood vessels
may be resolved in the brain, but this may be insufficient to
determine the fate of a labeled protein: High brain signal
might be the result of protein trapped inside the cells of the
blood–brain barrier, or it may result (with significantly
different biological function) from protein transported and
delivered into the brain parenchyma (31). Distinguishing
these outcomes requires supporting information from com-
plementary techniques. Tissue harvesting and gamma count-
ing remain staples of preclinical validation, along with
quantitative whole-body autoradiography (32).

In tumors, molecular imaging with PET can quantify the
gross tumor uptake of a therapeutic antibody such as
cetuximab. Figure 3 illustrates a time series of PET images
from tumor-bearing mice injected with Zr-89 cetuximab.
These images are informative but cannot show the spatial
distribution of cetuximab relative to individual tumor cells
and the capillaries supplying them. However, high-resolution
spatial and compartmental information about antibody and
antigen can be necessary to understanding the interplay of
affinity, delivery, and efficacy (33–36). In the case of anti-

Fig. 2. Near-infrared fluorescence imaging with Zr89-bevacizumab-
IRDye800CW from Cohen et al. [4]. Mouse with bilateral FaDu
tumors (white arrows) imaged 24 h after injection with 40 μg of
antibody (265 pmol, approximately 1.3 mg/kg) labeled 1:1 with
IRDye800CW and 100 μCi of Zr-89. From the Zr-89 signal, it can
be estimated that the signal arises from 6 to 12 pmol of dye. The
image was acquired in 1 s. Despite this very sensitive detection in the
superficial tumor, note the absence of signal from within the body
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epidermal growth factor receptor antibodies, these spatial
relationships (37) helped explain a puzzling lack of correla-
tion (38–40) among expression (as immunohistochemistry),
molecular imaging studies, and efficacy.

Instrumentation and Isotopes

More detailed descriptions of radionuclide production
(cyclotrons and generators), imaging instruments, and iso-
topes can be found in the literature cited, particularly Cherry,
Sorenson, and Phelps (41); Valk, Bailey, Townsend, and
Maisey (42); Sandler et al. (43); and von Schulthess (44).
For reference, Table I presents a list of the principal radio-
isotopes that may be employed in the study of protein
biodistribution, grouped according to the imaging modality
they require and noting some pertinent properties of half-life,
chemistry, and applications.

Radiolabeling with Iodine

One of the main attractions of molecular imaging
with radioiodine labels is the already widespread use of
iodinated proteins, including antibodies (45,46), minimiz-
ing the need to develop and characterize novel reagents.
Iodinated proteins are commonly used for measuring
biodistribution through autoradiography (32,47) and in
biochemical experiments such as ELISA (48) and com-
petitive binding assays (49). Iodination chemistries can
allow the preparation of labeled proteins with a very high
specific activity, i.e., a high level of radioactivity per mass
of protein (60 mCi/mg of antibody, for example), which
facilitates experiments requiring trace doses of protein.
Iodine is a notably small molecular label, a single atom in
its simplest form, compared to the 400 or 500 Da or more
for a chelated metal or small fluorophore.

Using I-125 (60-day half-life, 35 keV energy), it is
logistically easy to prepare reagents and perform experiments
without tight time constraints, and the very low energy
gamma rays are ideal for autoradiography in tissue slices
(45). However, such low energy rays are highly attenuated by
absorption and scattering in the body, making I-125 unsuit-
able for imaging in large animals or humans, but it can work
well for small animal imaging (50) where appropriate
detectors are more available.

I-123 (13-h half-life, 159 keV energy) is highly amenable
to SPECT imaging (51), but its short half-life brings logistical
difficulties when working with proteins and limits its applica-
tion here.

I-124 (4-day half-life, 2.13 MeV positron energy; gamma
rays, 0.6–1.7 MeV) offers a chemical bridge between SPECT
and PET versions of the same reagent. Unfortunately, I-124
has particularly high energy positrons and extraneous gamma
rays. The resultant image blurring is marked in small animals
but can be improved with advanced reconstruction methods
(52).

I-131 (8-day half-life; 284, 364, and 637 keV gamma rays)
is a high-energy isotope that requires substantial shielding to
form a properly functioning collimator. Less common in small
animal scanners because of this, in humans, it has “theranos-
tic” possibilities for simultaneous therapeutic and diagnostic
imaging applications (1,53).

Radiolabeling Proteins with Metal Ions and Fluoride Ions

Radiometal labeling is a two-step process: First, a protein
is conjugated to a suitable polydentate chelating agent and
stored until required; second, immediately prior to use, the
radiometal is incorporated in a chelation step. This is
illustrated schematically in Fig. 4. Only a small fraction,
<1 %, of the chelating groups become populated with
radiometal ions during the chelation step. With large proteins,
unlike peptides and small molecules, there are no practical
chromatographic steps to increase the specific activity by
enriching the radiolabeled fraction in the final product, so
optimizing the chelation reaction is the key to achieving good
specific activity.

Tc-99m (half-life, 6 h; gamma energy, 140 keV) is
ubiquitous in diagnostic imaging because it can be produced
locally in a relatively inexpensive Mo-99 (half-life, 67 h)/Tc-
99m generator. One attractive site-specific labeling strategy
makes use of carbonyl chemistry and His-tags that are part of
the expressed protein (54), but conventional covalently
coupled chelators are available (22). The PET analog Tc-
94m (half-life, 53 min; positron energy, 2.47 MeV) has poor
imaging properties and is not widely used.

For antibody applications that demand a longer-lived
label, there is In-111 (half-life, 3 days). This requires chelator
groups (28,55) such as DTPA that are different from those

Fig. 3. Time series of quantitative Zr-89 cetuximab image slices in mice, from Aerts et al. [39]. Note the blood pool progressively clears as the
bilateral HT29 tumors (red arrows) show progressive antibody uptake over time. The mouse was injected with 100 μg of antibody carrying
200 μCi of Zr-89 (protein dose of approximately 3.3 mg/kg), which was sufficient to obtain images out to 5 days post-injection. The scan time
was 25 min. Reprinted by permission of the Society of Nuclear Medicine from Aerts et al. [39] (Fig. 2)
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employed with Tc-99m because of the different coordination
chemistry of In-111. Several clinically approved In-111
antibody-based imaging agents exist (56–58) for scintigraphy
or SPECT, and there are some suggestions that In-111 can
also have dual roles in imaging (gamma ray) and therapy
(Auger electron) (59).

Given the sensitivity and quantitation benefits of PET
compared to SPECT systems, the use of positron-emitting
rather than single photon isotopes has become more compel-
ling, so protein labeling with PET isotopes has been an active
area of recent development. Several radiometal PET isotopes
have been developed and evaluated for radiolabeling pep-
tides and proteins. As a possible alternative to Tc-99m, Ga-68
(half-life, 68 min) is a PET isotope produced in a convenient
generator from Ge-68 (half-life, 9 months) that combines
good imaging properties and a simple non-covalent point-of-
use labeling strategy applied to peptide reagents such as
somatostatin analogs (60) and Affibodies (61). Generator-
produced Ga-68 was presumed to be much easier and
cheaper to work with in the radiopharmacy setting than the
cyclotron-produced F-18 (half-life, 110 min), which typically
requires relatively complex covalent radiochemistry for
labeling proteins and peptides (62–64). However, recent
breakthroughs in non-covalent labeling with F-18 fluoride
through chelated AlF complexes (65,66) challenge this
presumption, and the longer half-life, excellent imaging
properties, and wide availability of F18 fluoride could be
powerful advantages.

Considerable effort has gone into making cyclotron-
produced Cu-64 (half-life, 12.7 h, very similar to I-123)
available in the USA (67): It has been applied to imaging
the biodistribution and tissue kinetics of several antibodies in
non-human primates including trace doses of anti-CEACAM-
6 (68). Despite the excellent image quality at time points up
to 24 h, the duration of the Cu-64 studies was limited to
3 days at most, constrained by the half-life. Its optimal
application may lie with smaller antibody fragments and
peptides.

The Advent of Zirconium-89

Combining a reasonably long half-life for antibody
biodistribution and tumor uptake studies with excellent
PET image quality and quantitation, Zr-89 (half-life,
3.3 days) is a very significant newly available reagent for
imaging tissue distribution of protein therapeutics and
diagnostics (10,69). It is already proven with numerous
antibodies (39,70–74) and other proteins (75,76) through
the efforts of groups in The Netherlands where it has been
developed in both preclinical and, with good manufacturing
practices (GMP) production for tracer production and
validation, in clinical settings. Although Zr-89 does have
an extraneous high-energy gamma ray (909 keV), the
image quality is good and the overall radiation burden is
well tolerated (77). Figures 5 and 6 illustrate the use of Zr-
89 trastuzumab in breast cancer patients (71), demonstrat-
ing the good signal/noise properties available 5 days after
the injection of 1 mCi of tracer, and the small metastatic
lesions that can be resolved. Zirconium requires new
chelating agents developed (78–80) from desferrioxamine
B (Df, DFO, or Desferal™), a chelator used to treat iron
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overload. Weakly chelated zirconium catabolites can be
bone-seeking (81), leading to conspicuous signal from
actively remodeling bone in mice, an artifact that can be
confused with bone marrow at late time points. This does
not appear to be a significant problem in patient studies.

SINGLE-PHOTON EMISSION COMPUTED
TOMOGRAPHY

Gamma ray imaging has been clinically ubiquitous for
decades, first with planar scintigraphy (two-dimensional) and
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Fig. 4. Radiolabeling with Zr-89: covalent conjugation of a chelating group, followed later by chelation of Zr-89 at the time of use. The bifunctional
(lysine-reactive, zirconium-chelating) reagent shown is the commercially available p-isothiocyanatobenzyl-desferrioxamine B

24 hours 48 hours 120 hours 
Fig. 5. Time series of representative Zr-89 trastuzumab images (frontal view) in a patient receiving
trastuzumab therapy as described in Dijkers et al. (71). Note the heart and great vessels with blood pool
diminishing slowly over 5 days. Note the absence of antibody in the brain cavity, except for blood pool and
a previously undetected metastatic brain lesion that is visible at the top of the skull and shows progressive
uptake over the 5 days. The injected dose was 10 mg of Zr89-trastuzumab, 38 MBq (1 mCi) of Zr-89
illustrating the sensitivity of the imaging
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more recently with SPECT (three-dimensional). One or more
gamma detectors record two-dimensional projection images
where the trajectory of gamma rays arriving at the detector can
be deduced because they have been limited by collimation, i.e.,
passage through narrow parallel tubes like a honeycomb or
narrow apertures like a pinhole camera (82). Unfortunately, the
collimation process absorbs the vast majority of the gamma rays,
often more than 99 %, and the detection sensitivity is
correspondingly poor compared to PET, which is performed
without collimation. While sensitivity is relatively poor, image
resolution can be excellent in modern SPECT instruments:
Although there are trade-offs to be made in long acquisition
times and high amounts of radioactivity required, resolution as
fine as 0.35 mm has been demonstrated (50), better than any
commercially available PET machine.

One potential benefit of SPECT is the ability to simulta-
neously detect and discriminate two or more isotopes by their
different gamma energies (83). This is not possible with PET.
However, the practical prospects of studying two or more
proteins simultaneously are disappointingly limited because of
the difficulties in finding two or more well-matched labels with
protein-compatible half-lives, especially if residualizing labels
are needed.

POSITRON EMISSION TOMOGRAPHY

PET imaging also relies on the detection of gamma rays,
but the ray trajectories are determined without collimation.
Instead, PET relies on the physics of an ejected positron
traveling a short distance before annihilation with an electron
to yield a pair of gamma rays simultaneously flying away in
opposite directions. Simultaneous events can be identified
and are presumed to be the two opposing gamma rays,
revealing a “line of response” between the two detector
positions. A modern small animal scanner can give image
resolution measured as 1.5–1.8 mm (84,85). New clinical

systems can achieve spatial resolution of approximately 4 mm
(86), giving richer anatomical detail in humans (diameter
approximately 400 mm or 100 times the resolution) than is
currently available in mice (diameter approximately 30 mm
or 20 times the resolution).

Both PET and SPECT reconstruction computations can
employ co-registered anatomical scans to make quantitative
corrections to the image intensity and deliver images correctly
calibrated in absolute units (Bq/mL). Critical to accurate
quantitation in humans, this can affect even mouse scans by
about 15 %.

SUMMARY

The choice of a suitable labeling chemistry sets up the
molecular imaging experiment and defines its limitations.
Radionuclide imaging, particularly Zr-89 PET, offers excel-
lent sensitivity and accurate quantitation from mouse to man,
making it close to ideal for whole-body tissue distribution
imaging studies for protein therapeutics with long plasma
half-lives, such as monoclonal antibodies. These techniques
address applications such as looking to confirm tissue delivery
or to identify normal tissue sinks or rule out unexpected
uptake. In small animals, there is more flexibility to use
SPECT and NIRF to simplify the logistics and reduce the
cost. Higher resolution complementary studies with fluores-
cent microscopy and autoradiography are invaluable.
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