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Abstract
Purpose—Complete response to induction chemotherapy is observed in ~60% of patients with
newly diagnosed non-M3 acute myelogenous leukemia (AML). However, no methods exist to
predict with high accuracy at the individual patient level the response to standard AML induction
therapy.

Experimental Design—We applied single-cell network profiling (SCNP) using flow
cytometry, a tool that allows a comprehensive functional assessment of intracellular signaling
pathways in heterogeneous tissues, to two training cohorts of AML samples (n = 34 and 88) to
predict the likelihood of response to induction chemotherapy.

Results—In the first study, univariate analysis identified multiple signaling “nodes” (readouts of
modulated intracellular signaling proteins) that correlated with response (i.e., AUCROC ≥ 0.66; P ≤
0.05) at a level greater than age. After accounting for age, similar findings were observed in the
second study. For patients <60 years old, complete response was associated with the presence of
intact apoptotic pathways. In patients ≥60 years old, nonresponse was associated with FLT3
ligand–mediated increase in phosphorylated Akt and phosphorylated extracellular signal-regulated
kinase. Results were independent of cytogenetics, FLT3 mutational status, and diagnosis of
secondary AML.

Conclusions—These data emphasize the value of performing quantitative SCNP under
modulated conditions as a basis for the development of tests highly predictive for response to
induction chemotherapy. SCNP provides information distinct from other known prognostic factors
such as age, secondary AML, cytogenetics, and molecular alterations and is potentially
combinable with the latter to improve clinical decision making. Independent validation studies are
warranted.
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Acute myelogenous leukemia (AML) displays biological and clinical heterogeneity due to a
complex range of cytogenetic and molecular aberrations that result in downstream effects on
gene expression, protein function, and cell signal transduction pathways, ultimately affecting
proliferation, survival, and cellular differentiation (1–4). Historically, morphologic and
cytochemical methods have formed the basis for AML classification (3), although they fail
to adequately inform therapeutic decision making for most patients. Other methods such as
cytogenetics (5–7), gene expression profiling (8, 9), microRNA profiling (10, 11),
epigenetic profiling (12), and proteomic profiling (13, 14) have been used to elucidate the
biological and clinical heterogeneity of AML, and some of the molecular changes identified
in these studies have now shown to be associated with disease outcomes (15–31).
Karyotype, NMP1 gene mutation, and overexpression of the brain and acute leukemia
cytoplasmic (BAALC) and meningioma 1 (MN1) genes at presentation have been shown in
different studies to be associated with response to induction therapy (32–34), and the first
two markers are currently considered in the treatment decision-making process for non-M3
AML patients, particularly if 60 years of age or older. However, the association of those
markers with patient outcomes is not perfect and there is room for further improvement.
Because chromosomal, genetic, epigenetic, and other molecular alterations converge at the
level of protein function and cell signaling pathways, we reasoned that tools assessing this
aspect of disease biology will potentially have a high predictive value. Basal protein
expression profiling patterns in AML as measured by reverse-phase protein arrays were
recently shown to correlate with known morphologic features, cytogenetics, remission,
relapse, and overall survival (13). Although these studies show high sensitivity and
reproducibility for baseline measurements of protein levels at the individual patient level,
they do not provide an evaluation of dynamic protein responses to external stimuli in
specific cell subpopulations (such as leukemic stem cells) that are present in a heterogeneous
population of AML cells from bone marrow or peripheral blood.

Single-cell network profiling (SCNP), using flow cytometry, characterizes cell signaling on
exposure of cells to extracellular modulators, revealing network properties that would not be
seen in resting cells, thus allowing for detection of functional heterogeneity between AML
samples as well as within an AML sample (4). Pathway responses can include failure to
become activated, hypersensitivity/hypo-sensitivity of the pathway to modulators, altered
response kinetics, and rewiring of canonical pathways. This method of mapping signaling
networks has potential applications in clinical medicine with the development of tests
predictive of therapeutic response and in drug development (e.g., when applied to pathways
shown to be important in disease pathology) to improve the overall efficiency of the process
(4, 35–37).

In the current study, using two sequential training cohorts, SCNP was used to do a
comprehensive analysis of modulated Janus-activated kinase (JAK)/signal transducer and
activator of transcription (STAT), phosphatidylinositol 3-kinase (PI3K) pathways,
phosphatase activation, and apoptosis signaling in AML blasts to identify most important
proteomic profiles associated with disease response to AML induction chemotherapy.

Materials and Methods
Patient samples

In accordance with the Declaration of Helsinki, all patients provided informed consent for
the collection and use of their samples for research purposes. Each study was approved by
the Institutional Review Board of the respective institution. Clinical data were deidentified
in compliance with Health Insurance Portability and Accountability Act regulations. Sample
inclusion criteria included diagnosis of non-M3 AML (note that M3 AML patients receive a
different standard of therapy), collection before initiation of induction chemotherapy, and
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availability of disease and treatment annotations. All samples underwent Ficoll-Hypaque
fractionation before cryopreservation in FCS and 10% DMSO and storage at liquid nitrogen
temperature.

The first sample set consisted of 35 cryopreserved peripheral blood mononuclear cell
(PBMC) samples collected from AML patients treated at hospitals affiliated with the
University Health Network [Princess Margaret Hospital (PMH)/UHN], University of
Toronto, between September 1998 and September 2007. Induction chemotherapy consisted
of one cycle of standard cytarabine-based induction therapy (daunorubicin, 60 mg/m2 × 3
days; cytarabine, 100–200 mg/m2 continuous infusion × 7 days). Response to therapy was
measured after one cycle of induction therapy. The second sample set consisted of 134
cryopreserved bone marrow mono-nuclear cell (BMMC) samples collected from AML
patients treated at M.D. Anderson Cancer Center (MDACC) between September 1999 and
September 2006. Induction chemotherapy consisted of one or two cycles of cytarabine (200
mg/m2 to 3 g/m2) in combination with an anthracycline (daunorubicin or idarubicin) or an
additional antimetabolite (e.g., fludarabine or troxacitabine), and sometimes an experimental
agent (Table 1). Best response was measured after completion of induction therapy (>90%
received one cycle, remaining two cycles).

Standard clinical and laboratory criteria were used for defining complete response (CR) in
both studies (38). Leukemia samples obtained from patients who did not meet the criteria for
CR or samples obtained from those who died during induction therapy were considered non-
CR [i.e., nonresponse (NR) for the analyses]. Each study had one patient that met all the
criteria for a clinical CR with the exception of platelet recovery (CRp). These CRp samples
were included in the CR group for the analysis. In order for patient samples to be included in
the analysis (evaluable), >500 viable cells in the leukemic cell population (defined below)
per condition were required. Thirty-four of 35 samples were evaluable for study 1 and 88 of
134 samples for study 2 (Table 1).

Study design
Two prospectively designed training studies were conducted sequentially with archived,
cryopreserved, clinically annotated diagnostic AML samples. The first was a smaller study
that was unintentionally enriched for patients of younger age with de novo AML and
primary refractory disease. The sample size for the first study was driven by availability of
samples in the UHN tissue bank meeting patient and sample requirements described above.
The second study was larger and included AML samples collected from an AML patient
population more representative, in terms of baseline disease characteristics, of the U.S.
AML population. Based on the data from the first study, we estimated that with ~40 patients
for each treatment outcome group (CR and NR), the second study would have >0.95 power
at a significance level of 0.05. The sample size of 134 was based on an expected ratio of 2:1
for CR to NR patients plus 10% overage. False discovery rate analysis was done in both
studies to estimate the rate of chance correlation in the data sets. All assays were conducted
in a blinded fashion to clinical outcomes.

Pathways evaluated
Four groups of cellular functions (Fig. 1), chosen based on their relevance to AML
pathophysiology, were evaluated:

• Response to chemokines, cytokines, and growth factor (“CCG” pathways):
Modulated cell signaling pathways known to be altered in hematologic
malignancies and for which commercial reagents exist were measured. These
included stem cell factor (SCF) and FLT3 ligand (FLT3L)–mediated PI3K/Akt
activation (important for maintaining the hematopoietic stem cell pool; refs. 39, 40)
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and phospholipase Cγ (PLCγ)/cyclic AMP–responsive element binding protein
(CREB) pathways; granulocyte colony-stimulating factor (G-CSF)–mediated JAK/
STAT activation (important for neutrophilic differentiation of hematopoietic
progenitor cells; ref. 41); interleukin (IL)-6 family members, including IL-27–
mediated JAK/STAT and CREB activation (important in regulating proliferation,
differentiation, and functional maturation of cells belonging to multiple
hematopoietic lineages; ref. 42); and IL-10–mediated JAK/STAT activation
(important in modulating the immune response of monocytes and macrophages and
shown to play a role in AML blast proliferation; ref. 43).

• Phosphatase activity: The role of phosphatases in signaling regulation was
determined through the use of H2O2, an intracellular second messenger and general
tyrosine phosphatase inhibitor (44), used as a single agent or in combination with
another modulator (44). Of note, H2O2 has also been described as having effects
via generation of reactive oxygen species.

• Expression of surface proteins: Expression of drug transporter proteins, known to
be associated with adverse prognosis in AML (45, 46), and surface myeloid growth
factor receptors, such as c-Kit and FLT3R, was measured.

• Apoptosis: Transformed cells evade apoptosis by activating survival pathways and/
or disabling apoptotic pathways. Caspase-dependent apoptosis pathways were
measured after in vitro exposure of AML samples to etoposide or 1-β-D-
arabinofuranosylcytosine (ara-C)/daunorubicin and staurosporine (in the presence
and absence of ZVAD).

SCNP assay terminology
The term “signaling node” is used to refer to a proteomic readout in the presence or absence
of a specific modulator. For example, the response to G-CSF stimulation can be measured
using phosphorylated (p)-STAT5 as a readout. That signaling node is designated “G-
CSF→p-STAT5.” Several metrics (normalized assay readouts defined below and
summarized in Fig. 2) are applied to interpret the functionality and biology of each signaling
node and are referenced following the node (e.g., “G-CSF→p-STAT5 | Fold,” “G-CSF→p-
STAT5 | Total,” or “p-STAT5 | Basal.”

A total of 147 nodes were evaluated in study 1 (18 basal states, 8 surface markers, and 121
modulated readouts; see pathway evaluation above). Based on findings from study 1
(specifically identification of nonfunctional signaling nodes), the number of signaling nodes
evaluated in study 2 was reduced to 90 (16 basal states, 5 surface markers, and 69 modulated
readouts; Supplementary Table S1). Each node was evaluated with 1 to 3 metrics, for a total
of 304 and 182 node/metrics, respectively.

Sample cell recovery and viability
Cell recovery and viability after cryopreservation and thaw were variable. For study 1, ~6.8
× 106 cells were required to interrogate all 147 nodes for each patient. All 34 evaluable
patient samples had sufficient cells to measure 101 nodes; 26 patient samples had sufficient
cells to measure all of the additional 46 nodes. For study 2, ~4.7 × 106 cells per sample were
required to measure all 90 nodes. However, several samples had far fewer cells than
required. Consequently, depending on the node/metric, the number of patients for which
data were available varied between 88 and 9. Of note, the number of cells available for each
sample was not correlated with patient age, blast count, cytogenetic group, or clinical
response (data not shown). The numbers of donors available to do analyses are documented
in relevant tables.
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SCNP assay
SCNP assays were done as described previously (4). Cryopreserved samples were thawed at
37°C, washed, and centrifuged in PBS, 10% fetal bovine serum (FBS), and 2 mmol/L
EDTA. The cells were resuspended, filtered to remove debris, and washed in RPMI
1640/1% FBS before staining with Aqua Viability Dye to distinguish non-viable cells. The
cells were resuspended in RPMI 1640/1% FBS, aliquoted to 100,000 cells per condition, and
rested for 1 to 2 hours at 37°C. For apoptosis assays, cells were incubated with cytotoxic
drugs for 6 hours (e.g., staurosporine) or 24 hours (e.g., etoposide or ara-C and
daunorubicin) and restained with Aqua Viability Dye. For all other assays, cells were
incubated with modulators (Supplementary Table S2A) at 37°C for 3 to 15 minutes. After
exposure to modulators, cells were fixed with 1.6% paraformaldehyde (final concentration)
for 10 minutes at 37°C, pelleted and permeabilized with 100% ice-cold methanol, and stored
at −80°C overnight. Subsequently, cells were washed with fluorescence-activated cell
sorting buffer (PBS/0.5% bovine serum albumin/0.05% NaN3), pelleted, and stained with
cocktails of fluorochrome-conjugated antibodies (Supplementary Table S2B). These
cocktails included antibodies against two to five phenotypic markers for gating cell
populations (e.g., CD45 and CD33), up to three antibodies against intracellular signaling
molecules, or against surface markers for an eight-color flow cytometry assay. Isotype
controls or phosphopeptide blocking experiments were done to qualify phospho-antibodies.

Flow cytometry data acquisition and analysis
Flow cytometry data were acquired on an LSR II and/or FACSCanto II flow cytometer
using the FACSDiva software (BD Biosciences). All flow cytometry data were analyzed
with FlowJo (TreeStar Software) or WinList (Verity House Software). Dead cells and debris
were excluded by forward scatter, side scatter, and Amine Aqua Viability Dye measurement.
All analyses were based on leukemic cells (20–95% of a given cell preparation), which were
identified as cells fitting the CD45 and CD33 versus right-angle light scatter characteristics,
consistent with myeloid leukemia cells and lacking the characteristics of mature
lymphocytes (CD45+, CD33−; ref. 47).

Metrics, statistical methods, and stratifying node analysis
Metrics—Several metrics were developed to measure the biology of functional signaling
proteins (Fig. 2; Supplementary Fig. S1). To measure basal levels of signaling in the resting,
unmodulated state, the “Basal” metric was applied. With modulation, the “Fold” metric
identifies the inducibility or responsiveness of a protein or pathway. The “Total” metric was
developed to assess the magnitude of total activated protein. Total incorporates both basal
and induced pathway activation and is more relevant in measuring pathways regulated by
activity thresholds.

For surface markers, the Relative Protein Expression (“Rel. Expression”) was used to
measure the amount of surface expression, and the Percent Positive (“PercentPos”) was used
to quantify the frequency of cells positive for a surface marker relative to a control antibody.

For apoptosis conditions, the percentage of cells in a two-dimensional flow plot quadrant
“Quad” region [i.e., defined by low levels of p-Chk2 (measuring DNA damage response)
and high levels of caspase product cleaved poly (ADP-ribose) polymerase (PARP;
measuring cell death); p-Chk2−,c-PARP+ quadrant] was used to quantify levels of cellular
apoptosis in response to cytotoxic drugs.

Reproducibility—Cell lines, healthy BMMC, and healthy PBMC were included as
controls to monitor assay performance in both studies. Two vials of cryopreserved cells
were available for each evaluable patient sample (n = 34) in study 1, thus allowing
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assessment of reproducibility; duplicate vials were processed on separate days.
Reproducibility for a total of 62 CCG node/metrics was assessed by calculating Pearson
correlation coefficients (R) on replicate assays. Limited numbers of cells in vial 2 precluded
the comparison of all conditions; therefore, apoptosis and surface markers were not included
in run 2.

Correlations between node/metrics—Pearson correlation coefficients were computed
between all pairs of node/metrics. In addition, for reproducibility evaluation, Spearman
correlation is provided to better assess the possible effect of outliers.

Association between node/metric and clinical response—univariate analysis
All node/metrics (n = 304 in study 1; n = 182 in study 2) were independently tested for their
ability to classify patients based on their disease response to standard induction therapy. Due
to the small sample size and non-normal distribution (based on visual inspection) of some
node/metrics, both Student’s t test and Wilcoxon P values were computed. False discovery
rate and overall significance of the number of node/metrics found to classify at a given P
value were addressed through simulations described in Supplementary Materials and
Methods. Simulation methods were used in preference to a multitest correction because of
high correlations between many node/metrics and a higher tolerance for false-positive
results in these early training studies mainly focused on the reduction of candidate
stratifying nodes rather than on the selection of a specific classifier. The area under the
curve of the receiver operator characteristic (AUCROC; refs. 48–50) was computed to assess
classification accuracy of each node.

Association between multiple node/metric and clinical response—multivariate analysis
We explored combining node/metrics into a multivariate classifier with improved outcome
classification ability using a simple rule-based approach combining pairs or triplets of
individual stratifying node/metrics independent of each other. Given the limited size of this
data set, this modeling exercise was done to explore potential combinations within or across
pathways that might be of interest in future studies. In brief, this method divides subjects
into two classes (dichotomized response to induction therapy) using one, two, or three node/
metrics. For individual node/metrics, a threshold or cutoff value was selected that correctly
classifies all CRs. These thresholds are then combined logically in pairs or triplets to create
regions in either two or three dimensional. These two- or three-dimensional regions are
expected to include most members of the CRs and to exclude most of the NRs. Because of
the significant differences in the number of donors for which data were available for
different nodes (due to limited cell recovery), multivariate analysis was not deemed
appropriate for study 2.

Results
Study 1

Patient and sample characteristics—Thirty-four of the 35 cryopreserved AML PBMC
samples in the study were evaluable after thawing. This sample set was chosen based on the
availability of a large number of cryopreserved cells collected at the time of diagnosis. This
created a bias toward patients with high initial white blood counts and, hence, an overall
worse prognosis. In comparison with the general AML patient population, this group was
biased toward younger patients (<60 years), female, of Asian race (29%), intermediate-risk
cytogenetics (76%), and NRs after induction chemotherapy (Table 1). Ten of 18 (56%)
cytogenetically normal samples contained a FLT3 ITD mutation, indicating a poor-
prognosis patient group (20, 28, 31).
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Assay reproducibility—Pearson coefficient was ≥0.8 in 32 of 62 CCG signaling node/
metrics of the replicated assays (Supplementary Table S3). Assay reproducibility was
highest for those node/metrics with the largest range of signaling [e.g., PMA→p-S6 | Fold
(R = 0.95), SCF→p-S6 | Fold (R = 0.91), FLT3L→p-Akt | Fold (R = 0.92), and G-CSF→p-
STAT5 | Fold (R = 0.86)] and lower for nodes with low signaling [e.g., SDF1α→p-S6 |
Fold (R = 0.12) and IL-27→p-S6 | Fold (R = 0.2)]. Only node/metrics reproducible and
differentially associated with CR/NR outcomes were considered good candidate nodes for
future clinical assays.

Association between node/metric and clinical response—univariate analysis
—Univariate analysis was done on 304 node/metrics for the ability to classify patient
response to AML induction therapy, and AUCROC curves for each node/metrics were
calculated. Patient age is a known prognostic factor associated with likelihood of AML
response to induction therapy (with AUCROC of ~0.65 in this study). Therefore, node/
metrics were considered stratifying only if they had an AUCROC of ≥0.66 and a P value of
≤0.05 using either the Student’s t test or the Wilcoxon test. Fifty-eight node/metrics (18% of
the node/metrics assessed) met these criteria (Supplementary Table S4). An assessment of
false discovery rate (Supplementary Fig. S2A) indicated that the number of “significant”
nodes occurring by chance in this data set was <2%. Table 2A shows a summary of these
stratifying nodes listed by pathways, whereas Supplementary Table S4 provides the raw
supporting data. In study 1, basal levels of a few phosphorylated signaling proteins (n = 5)
stratified patients by clinical response to induction therapy as indicated by their AUCROC
values: p-CREB | Basal (0.87), phospho–extracellular signal-regulated kinase (p-ERK) |
Basal (0.77), p-PLCγ2 | Basal (0.79), p-STAT3 | Basal (0.81), and p-STAT6 | Basal (0.76);
specifically, NR samples showed higher basal level of these phosphorylated proteins
compared with CR samples (Table 2A). Modulated signaling for four of five of these
proteins also classified patient response, and several nodes that did not stratify in the basal
state showed correlation to induction therapy response when assessed in the modulated state.
For the majority of stratifying nodes (48 of 58), modulation of signaling was required to
allow correlation with response. These modulated readouts confirm previous findings that
samples from NR patients show increased growth factor–mediated signaling compared with
samples from CR patients (4). In addition, etoposide-mediated decreased levels of p-Chk2
and increased levels of c-PARP (etoposide→p-Chk2− and c-PARP+ | Quad) were seen more
often in CR samples than in NR samples (0.81; Table 2A).

Correlations between nodes/metrics—Pearson correlation coefficients were
calculated for all pairwise combinations of stratifying node/metrics (AUCROC ≥ 0.66; P ≤
0.05). For brevity, the results are shown for Fold metric on the CCG readouts
(Supplementary Table S5). Higher correlations were observed (and expected) between nodes
measuring signaling events in the same pathway, such as FLT3L→p-Akt | Fold and
FLT3L→p-S6 | Fold (R = 0.63), suggesting that these nodes measure common biology. By
contrast, lower correlations were observed between nodes measuring signaling events in
different pathways (such as SCF→p-Akt | Fold, IL-3→STAT3 | Fold (R = 0.01),
SDF1α→p-Akt | Fold, and G-CSF→p-STAT5 | Fold (R = −0.01), suggesting that these
nodes are measuring different biology and might be combined to produce a multivariate
model with higher association with AML response to standard induction therapy.

Finally, comparing the expression level of a receptor tyrosine kinase and the modulated
downstream signaling readout for that receptor shows that the signaling readouts provide
independent information. In fact, comparison of FLT3R expression levels, regardless of
mutational status, with the corresponding ligand-activated pathway readouts showed only
moderate correlation with FLT3L→p-S6 | Fold (R = 0.44) and FLT3L→p-Akt | Fold (R =
0.16), whereas both receptor levels and downstream signaling nodes stratified for response.
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Similar results were observed for c-Kit expression levels and SCF-induced signaling
[SCF→p-Akt | Fold (R = 0.59) and SCF→p-ERK | Fold (R = 0.29)].

Association between multiple node/metric and clinical response—rule-based
multivariate analysis—The rule-based method was applied to all node/metrics with an
AUC of ≥0.66 to assess whether combinations of two or three might provide superior
stratification to individual nodes of interest for classifier development in future studies. This
analysis suggests that some node combinations have better sensitivity/specificity in
distinguishing CRs from NRs. For example, when considered independently, SCF→p-ERK
| Fold (<0.17) correctly classifies all CRs as does IL-27→p-STAT3 | Total (<1.1; Fig. 3C),
but 17 and 8 NRs are incorrectly classified, respectively (i.e., have high sensitivity but low
specificity as single node classifiers). Combining the two nodes resulted in a two-
dimensional region that retained correct classification of all CRs and misclassified fewer
NRs (n = 6; i.e., same sensitivity but increased specificity). When used in combination with
a third node, as shown in Fig. 3D, all CRs are correctly classified and the number of
misclassified NRs (n = 2) is further reduced.

Nodes advanced for additional training into study 2—Nodes from the first training
study were included in the second training study if they met at least one of the following
criteria: (a) were stratifying (AUCROC ≥ 0.66; P ≤ 0.05) and/or (b) exhibited good
reproducibility between replicate assays (R ≥ 0.8). Based on these criteria, 87 of 147 nodes
from study 1 were advanced into the second study. Three additional nodes for which a new
assay had been developed after completion of study 1 were included in the second study:
ara-C/daunorubicin mediated apoptosis and expression of MDR1 and MRP1 drug
transporters. Each node was assessed for multiple metrics (e.g., basal, fold, and total),
leading to a total of 182 node/metrics.

Study 2
This study evaluated the reduced set of node/metrics (n = 182) on BMMC samples (study 1
used peripheral blood as source of blast cells) collected at an independent center, from a
larger patient pool, with different clinical and demographic patient characteristics that were
more representative of the overall AML patient population compared with the first study
sample set.

Patient and sample characteristics—Eighty-eight of the 134 cryopreserved AML
BMMC samples in the study were evaluable after thawing. In contrast to the patient
characteristics for study 1, the patient characteristics in study 2 were representative of the
U.S. AML patient population and response rates except for the age distribution (Table 1). As
expected, age, cytogenetic group, and secondary AML were statistically associated with
clinical response to induction therapy. Due to a nonuniform sample falloff, the distribution
of clinical characteristics varied across individual node/metrics.

Association between node/metric and clinical response—univariate—
Univariate analysis, unadjusted for multiple testing, was done. All 182 node/metrics were
tested for their ability to classify patients by clinical response to induction therapy. A total of
17 node/metrics were stratifying (AUCROC ≥ 0.66; P ≤ 0.05 on either Student’s t test or
Wilcoxon test; Supplementary Table S6). This number of nodes was lower than expected
based on the results from the first training study, but higher than expected by chance
(Supplementary Fig. S2B). Notably, 10 nodes overlapped with study 1 and represented the
same three broad groups of biology interrogated, indicating that the CCG signaling
pathways, phosphatase activity, and apoptosis pathways were important in predicting
response to induction chemotherapy. We hypothesized that the lower number of classifying
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node/metrics observed in this patient sample set compared with study 1 was a consequence
of differences in demographic and baseline clinical characteristics between the two studies
(Table 1). To understand the potential differences between CR and NR donors within
clinical subgroups, additional analysis was done by incorporating clinical covariates.

Nodes associated with clinical response in patient subsets as defined by
clinical covariates—Age, performance status, diagnosis of secondary AML, and
cytogenetic analysis determined at diagnosis are generally recognized as the most valuable
prognostic factors in AML (7, 51). Therefore, as expected, these parameters were associated
with response to induction therapy in our sample set (Table 1).

Age as a covariate: Age was incorporated into the analysis in two ways. First, it was used
as a dichotomous variable. Analysis of the older patient cohort samples (≥60 years) revealed
unique node/metrics that classified patients for response to induction therapy (Table 2B;
Supplementary Table S7A). These included FLT3L→p-Akt | Fold (0.85) and IL-27→p-
STAT3 | Fold (0.83). Thirteen node/metrics were found to stratify patients for response to
induction therapy in the younger patient group (<60 years; Table 2B; Supplementary Table
S7B). Notably, eight of these nodes were also found in study 1 (Table 2; Supplementary
Table S7), including IFNα→p-STAT1 | Fold (0.75 versus 0.75), IL-27→p-STAT3 | Total
(0.9 versus 0.83), and etoposide→(p-Chk2−,c-PARP+) | Quad (0.81 versus 0.72). As found
in study 1, where most patients were <60 years of age, classifying nodes were from the CCG
biological category, including the JAK/STAT and CREB signaling pathways. Intact
apoptotic machinery was again found to predict response to induction chemotherapy in this
group. The combination of age, as a clinical variable, with certain node/metrics (e.g.,
IL-27→p-STAT3 | Fold) increased the predictive value of either age or the node/metric
itself (Fig. 4). Importantly, these data show the ability of SCNP to identify proteomic
profiles that improve on age as a clinical prognostic indicator for clinical response.

Presence or absence of secondary AML: Univariate analysis of secondary AML revealed
stratifying nodes from pathways overlapping with those found in the older population
(Supplementary Tables S7 and S8), suggesting that in this sample set, age at diagnosis might
be considered as a surrogate marker for a different disease biology. In contrast, no
correlation between age and response to therapy was found when age was examined as a
variable across the secondary AML sample subset. This finding suggests that the underlying
biology of secondary AML is different from that of de novo AML and that age is not
prognostic for response in the secondary AML patient subset.

Cytogenetics: All patient samples with a favorable cytogenetic grouping had a CR to
induction chemotherapy in this study. Incorporation of the cytogenetic group as a covariate
for patients with intermediate and high-risk cytogenetics revealed several node/metrics (n =
14) that significantly added to the predictive value of the cytogenetic group itself and
overlapped with nodes observed in other univariate analyses. These included members of the
CCG group [e.g., IL-6→p-STAT5 | Fold (0.98) and IL-27→p-STAT3 | Fold (0.81)] and the
apoptosis group [e.g., ara-C/daunorubicin→(p-Chk2−,c-PARP−) | Quad (0.74)].

FLT3 mutational status: As expected, FLT3R mutational status was not predictive of
response to induction therapy in this data set (P values in Table 1).

Discussion
The two studies reported here show that characterization of intracellular pathway biology in
AML from individual patients using modulated SCNP can be performed with high technical
accuracy and reproducibility. Furthermore, this characterization was associated with
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response to AML induction therapy and distinct from other known prognostic factors (such
as age, secondary AML, and cytogenetics).

The data presented are from two independent, sequentially tested cryopreserved AML
sample sets obtained from the leukemic cell banks of two distinct cancer centers: PMH/
UHN and MDACC. The sets differ substantially in sample number, source of leukemic
cells, and patient clinical characteristics. In the first study, PBMCs were collected from a
relatively homogeneous population of predominantly female patients <60 years, enriched for
patients whose disease did not respond to standard induction chemotherapy. By contrast, the
second training study included 88 evaluable BMMC AML samples obtained from a more
heterogeneous group of patients with the expected (for age) rate of response to cytarabine-
based induction therapy. In both sets, there were few samples from older patients responsive
to induction chemotherapy, thus limiting the strength of observations for this patient subset.
However, the second sample set was more representative of the general AML population, so
additional analysis by clinical characteristics was possible. Previous studies have shown that
protein levels in AML cells do not seem to exhibit biologically relevant differences between
specimen sources (13) and clinical outcome seems to be independent of cytarabine dose
(100 mg/m2 to 3 g/m2; ref. 52). As such, interpretation of the SCNP analyses was
hypothesized to be independent of source of leukemic blasts and cytarabine dose.

Despite the above study limitations, important observations can be made. First, the SCNP
assay shows the level of reproducibility needed for clinical application. Second, univariate
analysis in the first study identified 58 of 304 statistically significant node/metrics
(AUCROC ≥ 0.66; P ≤ 0.05) associated with clinical response to induction therapy. These
node/metrics included G-CSF–induced p-STAT3 and p-STAT5, previously shown to be
potentiated in AML (4), and reported here for the first time: IL-27–, IL-10–, and IL-6–
mediated p-STAT1, p-STAT3, and p-STAT5. Importantly, apoptosis activated by both
etoposide and ara-C/daunorubicin was shown to stratify patients by clinical outcome in both
studies (Table 2). Third, the limitations of the first study in terms of sample size and skewed
baseline disease characteristics preceded a second study performed with a larger sample set,
more representative of the general AML population (and therefore more heterogeneous in
terms of baseline disease characteristics). Analysis of the data suggests that differences in
baseline characteristics of donors in the two studies played a significant role in the
differences observed in the stratifying node/metrics. However, similar trends for some of the
stratifying node/metrics (such as IL-27–mediated p-STAT1 and p-STAT3 signaling and
etoposide-mediated cleaved PARP) were observed when clinically similar subsets of
patients, although small, were compared. Another important observation that emerged from
this second study was the ability of SCNP assays to reveal different pathways that correlated
with patient outcome within patient subgroups defined by clinical prognostic characteristics
such as age, cytogenetics, and presence or absence of secondary leukemia (Supplementary
Tables S7 and S8). Specifically, in patients younger than 60 years, intact communication
between a DNA damage response and the apoptotic machinery after in vitro exposure to
chemotherapeutic agents emerged as an important biological characteristic that identified
CR samples. By contrast, for patients >60 years or with secondary AML, lack of response to
induction chemotherapy was associated with increased FLT3L-induced p-Akt and p-ERK.
Importantly, combining age with some predictive node/metrics (such as IL-27–mediated p-
STAT1 or p-STAT3) increased the AUCROC from 0.65 for age alone to 0.89 and 0.87,
respectively (Fig. 4). This showed that SCNP assays add important and independent
information that distinguishes AML disease biology beyond age. Finally, although
univariate signaling node/metrics predicted response to induction therapy, the combination
of independently predictive node/metrics resulted in improved classifier performance.
Future studies will continue this development work with a more extensive multivariate
modeling exercise using a variety of techniques including logistic regression and decision
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trees (random forests) in combination with bootstrapping to lock down a robust classifier
predictive of response to induction therapy to be validated on an independent patient sample
set. Additional studies are in progress to compare SCNP analyses conducted on
cryopreserved versus fresh, fractionated AML samples. The latter conforms to current
clinical practice in which timely generation of information from a diagnostic AML sample is
necessary for immediate disease management decisions.

In summary, the data show that AML characterization using SCNP can be performed with
high technical accuracy and reproducibility to quantitatively characterize the biology of
AML in individual patient samples. The results emphasize the value of a comprehensive
evaluation of biologically relevant intracellular signaling pathways in AML blasts using
SCNP as the basis for the development of highly predictive tests for response to therapy.
Furthermore, these proteomic profiles were predictive of disease outcome in response to
specific therapeutic interventions and distinct from other known prognostic factors such as
age, secondary AML, and cytogenetics.

Ultimately, prospective studies with fresh samples collected from well-designed therapeutic
studies in the patient ≥60-year and <60-year age groups will be required to show the clinical
utility of this approach. Working with fresh samples would decrease cell viability issues
after freeze/thaw and could lead to real-time predictive tools for patients, detailing which
pathways are most perturbed, thus guiding therapies with inhibitors of the specific signal
transduction pathways.
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Translational Relevance

Current acute myelogenous leukemia (AML) prognostic markers are based on clinical
characterization, such as age and performance status, or static measurements of leukemia
biology at diagnosis, such as cytogenetics and molecular events (e.g., FLT3 ITD and
NPM1 mutations). Although these methods offer directionally predictive information on
disease outcomes, their accuracy is suboptimal, supporting further improvements. Single-
cell network profiling (SCNP) is a tool that allows a comprehensive functional
assessment of biologically relevant signaling pathways at the single-cell level in
potentially heterogeneous tissues. This study shows SCNP as a new way to characterize
AML based on single patient disease biology, making the assay a potentially valuable
tool in guiding clinical decision making.
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Fig. 1.
Nodes, pathways, and biological categories evaluated in the two training studies. A node is
defined as a combination of a specific proteomic readout in the presence or absence of a
specific modulator. Text in blue indicates assay readouts (phosphoproteins, cleaved proteins,
or receptors/drug transporters). The four biological categories of nodes are indicated by
color: (a) chemokine, cytokine, and growth factor signaling pathways; (b) phosphatase
activity; (c) surface markers; and (d) apoptosis.
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Fig. 2.
Role of each metric in assessing different aspects of signaling biology. Summary schema of
all metrics used in the two studies and the role each has in assessing different aspects of
signaling and pathway biology.
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Fig. 3.
Univariate analysis—first training study. Univariate analysis of modulated signaling and
functional apoptosis nodes stratifies NR and CR patient groups. A, stratification of NR and
CR patient groups with SCF modulated, but not basal, p-Akt signaling. B, stratification of
NR and CR patients using functional apoptosis assays. Combinations of nodes can improve
stratification by single nodes. Examples show how corners and thresholds for the classifiers
are set. O, CR; X, NR. C, doublet combination (SCF→p-ERK | Fold and IL-27→p-STAT3 |
Total). D, triplet combination (etoposide→p-Chk2−, c-PARP+ | Quad, IL-27→p-STAT3 |
Total, and SCF→p-Akt | Fold).
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Fig. 4.
Nodes complement age in stratifying patient response to induction therapy—second training
study. IL-27→p-STAT1 | Fold and IL-27→p-STAT3 | Fold improve sensitivity and
specificity of age as a classifier for response to induction therapy. Significant P values (slope
= 0) for the node found after accounting for age in the logistic regression. ROC plots
illustrate CR and NR stratification using the model incorporating node/metrics IL-27→p-
STAT3 | Fold and IL-27→p-STAT1 | Fold with age.
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Table 2

Common nodes and pathways associated with AML induction therapy response in both studies

A. Study 1 CR NR

Surface markers

 ABCG2, c-Kit, FLT3R — ↑

Basal

 p-CREB, p-ERK, p-PLCγ, p-STAT3, p-STAT6 — ↑

Modulated signaling

 Growth factor–mediated signaling — ↑

  G-CSF, GM-CSF→p-STATs

  FLT3L→p-Akt, p-CREB, p-S6

  SCF→p-Akt, p-CREB, p-PLCγ2

 Cytokine-mediated signaling — ↑

  IL-6, IL-10, IL-27→p-STATs

  IFNα→p-STATs

 Apoptosis ↑ —

  Etoposide→p-Chk2−,c-PARP+

B. Study 2 CR NR

Patients <60 y

Modulated signaling

 Cytokine-mediated signaling — ↑

  IL-27→p-STATs

  IFNα→p-STATs

 Apoptosis ↑ —

  Etoposide→p-Chk2−,c-PARP+

  Ara-C + daunorubicin→p-Chk2−,c-PARP+*

Patients >60 y

Modulated signaling

 Growth factor–mediated signaling — ↑

  FLT3L→p-Akt, p-ERK, p-S6

  SCF→p-S6

 Cytokine-mediated signaling — ↑

  IL-27→p-STATs

NOTE: For detailed information for each study, see Supplementary Tables S5 and S10.

*
Ara-C + daunorubicin was only assessed/added for study 2.
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