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Within the last two decades, genomics and bioinformatics have profoundly impacted our
understanding of the molecular mechanisms of Parkinson’s disease (PD). From the descrip-
tion of the first PD gene in 1997 until today, we have witnessed the emergence of new
technologies that have revolutionized our concepts to identify genetic mechanisms impli-
cated in human health and disease. Driven by the publication of the human genome se-
quence and followed by the description of detailed maps for common genetic variability,
novel applications to rapidly scrutinize the entire genome in a systematic, cost-effective
manner have become a reality. As a consequence, about 30 genetic loci have been unequiv-
ocally linked to the pathogenesis of PD highlighting essential molecular pathways underly-
ing this common disorder. Herein we discuss how neurogenomics and bioinformatics are
applied to dissect the nature of this complex disease with the overall aim of developing
rational therapeutic interventions.

“Knowing is not enough; we must apply. Will-
ing is not enough; we must do.”

The pathogenesis of Parkinson’s disease
(PD) as we understand it today includes a
broad spectrum of metabolic pathways, from
oxidative stress caused by mitochondrial dys-
function, inflammation, abnormal protein me-
tabolism, and aging (reviewed in Dawson and
Dawson 2003; Dauer and Przedborski 2003).
Most of these pathophysiological links with
PD are the result of studying the functional
consequences of gene mutations implicated in
familial PD. With the introduction of modern

genomic technologies numerous genetic risk
loci involved in the more common nonfamil-
ial form of PD are also being uncovered iden-
tifying novel pathways, raising new research
questions and hopes to better understand and
treat this neurodegenerative condition more
effectively.

In this article, we will introduce some of the
main concepts and discussions in PD genetics,
outline the current status of PD genomics, dis-
cuss the impact of new sequencing technologies,
and chart the necessary steps for translating
these findings into targeted therapeutics.
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“MENDELIAN” VERSUS COMPLEX DISEASE:
SIMILAR IDEAS, DIFFERENT CONCEPTS

For simplicity, geneticists have separated genetic
diseases into two main categories. The first one
refers to “Mendelian” diseases such as Hunting-
ton’s disease, muscular dystrophy, and cystic fi-
brosis. “Mendelian” diseases are defined as the
classical familial forms of disease in which the
underlying genetic defect causes disease in a
large proportion of mutation carriers and there-
fore typical inheritance patterns can be inferred.
Previously, this disease category was the main-
stay of genetic research; this is primarily because
of the fact that until recently the standard ge-
netic approach for disease gene discovery was a
linkage study, a technique that relies on ascer-
taining large families with multiple affected in-
dividuals. For the most part, this approach was
very successful with nearly 3000 Mendelian dis-
orders deciphered to date (Lander 2011); how-
ever, a linkage study design is only applicable to a
small proportion of human ailments that are
typically rather rare in the general population.
Studying the genetics of complex diseases, which
constitute the second disease category, proved to
be more challenging. Indeed, PD is a good ex-
ample of a complex neurodegenerative disease;
only a small subset of PD patients report a pos-
itive family history of PD, and it is not surprising
that the first mutations identified as a cause for
PD were identified in this small subset of pa-
tients. In the vast majority of patients, however,
a family history of PD is absent and the etiology
is less clear. It is in these patients that most of
theresearch inthe last few yearshasbeenfocused.

The differences in studying complex disease
as opposed to familial disease lie within the
techniques used, the study designs, the amount
at which a particular genetic variant confers risk
to disease, and the mechanistic ideas of disease
pathogenesis. To illustrate these concepts we
have to introduce some technical terms.

The distinction between association and cau-
sation. When a genetic variant is investigated for
a potential contribution to disease, a number of
questions need to be addressed. Is the variant
commonly present in the population? If so, is
the frequency of this variant significantly differ-

ent in cases versus controls? If this is the obser-
vation, significant association with a particular
phenotype has been determined. It is important
to emphasize that establishing significant asso-
ciation should not be misconstrued as drawing
inferences about causation. For example, the
APOE14 allele on chromosome 19 has been con-
sistently associated with increased risk for devel-
oping Alzheimer’s disease, but carrying this risk
allele is neither necessary nor sufficient to cause
disease. Although an association signal some-
times implies genes or genetic regions that play
acausativerole in thepathogenesis ofdisease, it is
not appropriate to assume that this applies to all
instances in which associations are observed.

“Common disease–common variant hypoth-
esis” versus “common disease–rare variants hy-
pothesis.” In contrast to monogenic diseases in
which a single mutation is sufficient to cause
disease, complex diseases are thought to be
caused by a combination of multiple genetic,
environmental, and stochastic factors. Two dis-
tinctive concepts have been postulated for the
detection of genetic variants underlying com-
mon, complex diseases. The “common disease–
common variant hypothesis” posits that multi-
ple, common small-risk variants of small effect
size interact to cause common disease (Reich
and Lander 2001). This hypothesis is the core
basis for genome-wide association studies
(GWAS), a study design that relies on testing
several hundred thousand common genetic var-
iants throughout the human genome in large
case-control cohorts. Over the past few years,
hundreds of new gene loci and pathways, in-
cluding sixteen PD loci (Fig. 1) (Simon-San-
chez et al. 2009; Consortium IPDG 2011; Con-
sortium IPDG unpubl.), have been implicated
with various human disease traits using a GWAS
design (an updated catalog of identified genetic
risk loci can be found at www.genome.gov
/gwastudies/).

Despite the interest of the immediate past,
heritability estimates have shown that large pro-
portions of genetic risk underlying complex dis-
ease have not yet been explained (Manolio et al.
2009). In PD for example only �60% of herita-
bility is understood, depending on the popula-
tion studied (Consortium IPDG 2011). This
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“missing heritability” is at the center of much of
the current debate, and possible explanations
that have been brought forward include lack of
power to detect common low-risk variants, rare
variants, gene–gene interactions, gene–environ-
ment interactions, structural variants such as
deletions or duplications, and inversions (Ma-
nolio et al. 2009). Inparticular the“commondis-
ease–rare variants hypothesis” has gained much
traction, mainly because of the introduction of
advanced sequencing technologies that allows
cost-effective sequencing of entire genomes. An
early lesson learned from these next-generation
sequencing technologies is that there are numer-
ous rare variants in the human genome, which
have not yet been systematically explored. It is
hoped that over the next couple of years more
insights will be gained into the pathogenic rele-
vance of rare genetic variability.

DISSECTING THE GENETICS OF COMPLEX
DISEASE: THE REVOLUTION OF GENOMICS
AND BIOINFORMATICS

Genomic research in the past few years has been
defined by the rapid integration of technologi-

cal advances as the immediate ramifications
of the human genome project. To reconstruct
the developments, successes and challenges in
genomic PD research, we will point out some of
the past milestones of the genomics revolu-
tion, and discuss the events and developments
achieved so far (Fig. 2 illustrates the selected
landmark discoveries in genomic PD research).

The year 1997 marks the starting point for
PD genomics. Using a linkage study approach,
Polymeropoulos et al. (1997) reported the dis-
covery of missense mutations in the SNCA gene,
coding for a-synuclein, to underlie a rare fa-
milial form of PD. This finding was crucial in
that it provided clear evidence that there are
genetic forms of disease, a view of which was
evolving from the concept that PD was only
a nongenetic disease. In consequence of this
seminal work, the availability of a disease-caus-
ing gene allowed the generation of cell- and
animal-based model systems for studying the
functional mechanisms in disease pathogenesis
(Feany and Bender 2000; Masliah et al. 2000).
Moreover, subsequent screening studies showed
that variability at the SNCA locus not only plays
a role in this familial form of PD, but is also
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Figure 1. An overview of the genetic loci implicated in the pathogenesis of PD. The position of each locus relative
to the ideogram of each chromosome is depicted. The background color of each box indicates the method that
was used to identify this locus. Abbreviation: GWAS, genome-wide association study.
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associated with risk for disease in sporadic cases
(Farrer et al. 2001; Maraganore et al. 2006).
Soon after the discovery of SNCA other “Men-
delian” PD genes (Parkin, PINK1, DJ1, and
LRRK2) were revealed using a linkage mapping
design (KItada et al. 1998; Valente et al. 2001;
Bonifati et al. 2003; Paisan-Ruiz et al. 2004;
Zimprich et al. 2004).

In contrast to the advances in dissecting the
genetics of rare familial forms of PD, the genetic
factors influencing common sporadic cases re-
mained enigmatic. The publication of the hu-
man genome sequence in 2001 marked an ex-
citing turning point (Lander et al. 2001; Venter
et al. 2001). For the first time researchers had
the opportunity to examine the sequence of an
entire human genome, and four years later a
detailed catalog of common genetic variants
(the HapMap) became available (http://hap
map.ncbi.nlm.nih.gov/). This catalog was the
starting point for studying the genomics of
complex diseases. Soon microarray platforms
for genotyping hundreds of thousands of these
common variants throughout the human ge-
nome were developed and genome-wide asso-
ciation testing became a reality. The revolution-
ary aspect of this new technology was that it
provided a cost effective tool to rapidly scan
hundreds of thousands of variants in the ge-
nome in thousands of individuals. In PD,
genome-wide association strategies have been
remarkably successful; because of this new tech-

nology the number of risk loci implicated in PD
pathogenesis has doubled over the last 3 years
(Fig. 2).

As new sequencing technologies for se-
quencing entire genomes emerge, the era of
GWAS is diminishing in importance. In the
same way as GWAS was the standard technology
used to search for common risk variants, next-
generation sequencing technologies are going
to determine the exploration of rare genetic var-
iability and of structural genomic rearrange-
ments. With costs of sequencing dropping and
the speed of genomic data generation reaching
unprecedented scales, data handling and analy-
sis have become big challenges in modern PD
research. In fact, the generation of genomic data
has accelerated so rapidly that the amount of
data produced exceeds the exponential growth
of computer processing speed known as Moore’s
law. In other words, the bottleneck for genomic
discovery is no longer generating extensive data-
sets, but rather storing and analyzing the infor-
mation; this problem has even generated interest
in the lay press (Pollack 2011). To put the ad-
vances of genomics into perspective, it took sev-
eral thousand researchers 13 years to sequence
the first human genome at a cost of $3 billion
(http://www.genome.gov/); today, one techni-
cian can sequence an entire genome in less than
a week for about $5000. With even faster se-
quencing technologies about to be released, the
$1000 genome, a commonly used benchmark
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Figure 2. Highlights of key genomic discoveries in PD over the past decade and a half.
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at which genomic sequencing is considered eco-
nomical for routine diagnostic testing, is immi-
nent (Mardis 2006).

At the same time as genomics hastily moves
on, the innovation of computational medi-
cine and its diverse applications, commonly re-
ferred to as bioinformatics, is confronted with
challenging demands to develop user-friendly
methods to parse, analyze, and share genomic
data. Automation of sequence data filtering,
alignment with reference genomes, variant call-
ing and statistical analyses across various plat-
forms still pose a daunting task. Moreover, in
depth analyses of epistatic effects, or gene–gene
interactions, as well as investigations of gene–
environment interactions, which are at the cen-
ter of research ambitions aimed at resolving the
complete genomic architecture of complex dis-
eases, depend on sophisticated bioinformatics
algorithms.

INFORMATICS OF GENOMICS,
TRANSCRIPTOMICS, PROTEOMICS,
AND METABOLOMICS

Developing comprehensive informatics tools
requires, concurrent with the development of
genome-centric algorithms, a deeper under-
standing of the functional consequences of
genetic variability on disease vulnerability. In
other words, how do we translate the relatively
invariant nature of our genomes into what is
surely a dynamic, evolving risk of disease? This
understanding involves connecting genetic in-
formation onto the full molecular space, which
includes genetics, epigenetics (i.e., noncoding
changes such DNA methylation, chromatin
conformation, noncoding RNAs—all affecting
the read-out of the genome), gene expression,
protein expression, and the resultant metabolic
output of all of these processes. So far, techno-
logical advances in gene expression analyses
(RNA expression or transcriptomics) have par-
alleled those in genome analyses, as similar
chemistries allow for the rapid, high-through-
put ascertainment of both DNA and RNA. For
example, studies have begun to link data from
PD GWAS to specific gene expression and epi-
genetic changes in brain tissue, as was recently

reported by the International Parkinson’s Dis-
ease Genomics Consortium (2011). However,
moving forward will involve a more complex
understanding of the relationships between the
static genome, the epigenome, and RNA expres-
sion, including regulatory RNAs such as small
interfering RNA (siRNA) and microRNA. Ad-
ditionally, the technologies for detecting and
quantifying nucleic acids are progressing, as
are methods for detecting and quantifying pro-
teins (proteomics) and metabolites (metabolo-
mics). Thus, the next step forward is coupling
the information in the nucleic acid space to the
proteomic (both at the transcriptional and
posttranscriptional levels) and the metabolo-
mic spaces. Collectively, we refer to the science
and technology of measuring these biological
molecules as “-omics”—genomics, epigenom-
ics, transcriptomics, proteomics, and meta-
bolomics. The ongoing revolution in “-omics”
technologies, coupled with advances in bioin-
formatics, has greatly expanded our ability to
link genetic architecture to its functional out-
put, namely the expression of genes, proteins,
and metabolites. Thus, a key challenge to the
field is to detect and quantitatively measure
the full complement of biological molecules
and to integrate these into a meaningful under-
standing of both normal function and dysfunc-
tion (e.g., disease).

Although “-omics”-driven research holds
great promise in understanding disease biology,
enthusiasm should be tempered. The current
state-of-the-art technologically to meaningfully
interpret large and diverse datasets is limiting.
We greatly expand the complexity of analyses as
we integrate data across multiple domains,
which includes not just those from the molec-
ular space (e.g., RNA, protein, and metabolite
expression), but also the clinical space, which
includes neuroimaging among other sources.
For example, how does genetic risk translate
from the subcellular organelle (e.g., mitochon-
drion), cellular (e.g., midbrain dopaminergic
neuron), circuit (e.g., nigrostriatal system), or-
gan (central nervous system) levels to an indi-
vidual’s risk for developing PD? This is further
complicated by the complex interactions we as
individuals have with other organisms, be they
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the microbiome of our gastrointestinal systems
to the human interactions that create our social
and environmental communities. Indeed, the
relevance of this holistic view is exemplified by
the pioneering work of neuropathologist, Heiko
Braak. On examining human postmortem tis-
sues, Braak proposed a new framework for PD
wherein the disease process begins outside the
midbrain, the traditional locus of vulnerable
nigrostriatal dopaminergic neuronal cell bodies
that are the uniformly affected in PD (Braak
et al. 2002, 2003a). Braak’s most recent concept
is that PD could be initiated in the enteric ner-
vous system with ascending pathology to in-
volve the dorsal motor nucleus of the vagus
(Braak et al. 2003b, reviewed in Hawkes et al.
2010). As we test new hypotheses of pathogen-
esis such as these and others additional data will
be needed, which will further increase infor-
matic complexity. One possibility is that the
informatic challenges will require the integra-
tion of -omics data with other data to derive
empirically testable biological networks—those
that explain an individual’s risk for PD. Once
risk is stratified, we may then be positioned to
consider earlier interventions that could alter
the natural history of PD.

IDENTIFICATION OF ABERRANT
NETWORK ACTIVITIES

As discussed above, increasing evidence indi-
cates that complex diseases such as PD are as-
sociated with multiple genetic polymorphisms
that are postulated to affect biological networks
(Schadt 2009; Tan et al. 2009; Meyerson et al.
2010). Biological networks represent series of
actions among molecules that lead to a certain
specific change in a cell (Croft et al. 2011). These
networks may subserve many categories of cel-
lular activities (Chang et al. 2009; Wang et al.
2009), including cell signaling networks, pro-
tein–protein interactions, and metabolic net-
works (Kim et al. 2010). Identifying aberrancies
involving small numbers of genes in specific
biological networks may lead to more precise
diagnosis and treatment of a disease. How-
ever, because tens or hundreds of genes are
often involved, conventional experimental sys-

tems developed for identifying aberrant gene(s)
are inadequate for deciphering aberrancies in
network activity. High throughput technolo-
gies enable the simultaneous detection of a large
number of alterations in molecular compo-
nents, or nodes in network parlance. As noted
above, these high throughput technologies were
developed to fill this gap and the first successful
use of technology was in DNA sequencing
(Sanger et al. 1977), which later developed into
a gambit of genomics. As other -omics technol-
ogies developed and enabled the simultaneous
detection of a large number of alterations in
protein expression and metabolites, the corre-
lations and dependencies between molecular
components have become complex. However,
these studies, when understood in a network
context, offer a systems level perspective on pro-
cesses underling disease initiation and progres-
sion.

Analyses of high dimensional data using ro-
bust new informatics tools allows for the inte-
gration of these different data sources to yield
new information about network functions and
dysfunctions. Figure 3 depicts the workflow
of a typical study involving high dimensional
-omics data to identify aberrant network activ-
ities. Such data analyses often reveal that our
current understanding of molecular and chem-
ical biology underlying cellular functions re-
mains incomplete (Ochs et al. 2011). However,
an increasingly greater number of open-access
databases complement the analysis of aberrant
network activities from these high dimensional
data (Peri et al. 2003; Kanehisa et al. 2004; Schae-
fer et al. 2009). In addition, numerous tools have
been developed for visually exploring and ana-
lyzing biological networks, including Cytoscape
(Smoot et al. 2010), VisANT (Hu et al. 2009),
GeneGO (http://www.genego.com/), Ingenui-
ty (http://www.ingenuity.com/), and Pathway
Studio (Nikitin et al. 2003).

In recent years, questions have been raised as
to how genetic differences between individuals
lead to differences in disease networks and, thus,
to differences in phenotypes (Taylor et al. 2009;
Vaske et al. 2010). Data driven computational
models, such as PARADIGM (Vaske et al. 2010)
and ResponseNet (Yeger-Lotem et al. 2009)
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among others (Amit et al. 2009; Tan et al. 2009;
Kreeger and Lauffenburger 2010; Chien et al.
2011), have been especially useful in this area.
For example, progress has been made in apply-
ing information about aberrant networks to the
identification of functional modules; that is,
groups of biological entities (e.g., gene, protein)
that perform biological tasks (e.g., protein deg-

radation) that are dependent on each constit-
uent part (Qiu et al. 2009; Wu et al. 2010).
However, sequenced mutations, copy number
alterations, gene fusion events, or epigenetic
changes are not well represented in these mod-
els. Nevertheless, information derived from pu-
tative aberrant network activities will facilitate
the detection of biomarkers (Singh et al. 2009),

Genomics

Sample collection/preparation High-throughput data acquisition

Transcriptomics

Proteomics

Metabolomics

PubMed KEGG

Databases and literature

Identification and validationIdentification of networksApplications

HMDB Ingenuity MetaGene

Data analysis

Figure 3. A hypothetical systems based approach to identify aberrant networks of disease. Data (including
biological, clinical, imaging) and samples are collected from a population. High-dimensional -omics data are
acquired, integrated with clinical data, analyzed, and validated to identify networks involved in disease. Geno-
mics will predict aberrant networks, whereas transcriptomics, proteomics, and metabolomics will report the
outcomes of these networks. In turn, these networks and the aberrant nodes that are perturbed in disease can
then be used to develop biomarkers, prognostic markers (e.g., markers that report disease progress or thera-
peutic efficacy), and rational therapeutics. The process is not inherently unidirectional nor is it intended to be
single pass. Instead, as technologies improve, the process can be employed in an iterative fashion to refine nodes
within aberrant disease networks and to generate better biomarkers, targets, and therapies. The approach is
predicated on robust bioinformatics, and analytics that are critical to our abilities translate high-dimensional
data to our understanding of disease and its treatment. (Image is from Wang et al. 2012; reprinted, with
permission, from the author.)
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the identification of novel drug targets (Andre
et al. 2009), the classification of disease types
(Gatza et al. 2010), and the prediction of clinical
outcomes (Taylor et al. 2009; Cerami et al. 2010;
Chen et al. 2010; Gatza et al. 2010). Increasing
use of -omics data driven methodologies for
identifying biomarkers and therapeutic targets
will also include machine learning methods
(Andre et al. 2009; Singh et al. 2009), graph
theory (Taylor et al. 2009), and statistical meth-
ods (Singh et al. 2009).

Obviously, understanding of the aberran-
cies in biological networks responsible for com-
plex diseases is far from complete and the use of
high dimensional data together with large-scale
biological databases (e.g., protein–protein in-
teraction and pathway databases) will be crucial
for uncovering aberrant biological processes.
However, the challenge is to accommodate the
large volume of -omics data, which is growing
exponentially. Additionally, much work needs
to be done to identify the subnetworks of met-
abolic reactions associated with diseases such
as PD. Moreover, a reliable computational ap-
proach to identify subnetwork-associated dis-
ease processes is currently limited by the incom-
pleteness of the available interactome maps and
limitations of the existing tools.

As widely acknowledged, gaining an inte-
grated understanding of the interactions among
the genome, proteome, metabolome, and envi-
ronment as mediated by the underlying cellular
network, may offer a basis for future advances.
However, some of the most difficult problems in
this area include discovering dynamic (rather
than static) processes in cells, connecting mo-
lecular level network activities to functional
behavior at the cellular level, developing data-
driven computational models that reflect the
causal relationships between molecules (in-
cluding those designated as drug targets), bio-
markers (as potential read-outs of network
modulation as would be the case with a disease
modifying therapy), measuring the consequent
changes that occur in cellular dynamic process-
es, and predicting the impact of an intervention
on the system to effect a change consistent with
a beneficial outcome. An especially challenging
focus of importance is to find ways to model

changes in biological entities which could affect
the dynamics of the biological process using
large scale and diverse -omics data. To accom-
modate these challenges, network-based re-
search is shifting toward integrated multiple net-
works or networks composed of heterogeneous
large-scale data elements. To process large-scale
-omics data, we need to develop next-generation
algorithms and tools to study the relationships
between aberrant human genes, proteins, and
interactome networks. It is in this context that
we delineate new disease-associated biological
molecules in relation to disease-specific net-
works, that we understand how network pertur-
bations can lead to disease, and that we use this
knowledge to develop better diagnostics and
therapeutics for disease. It is in the integration
of these various datasets both temporally and
spatially that we begin to see the emergent prop-
erties of disease-specific networks and that we
then use this knowledge to modify disease nat-
ural history (Fig. 4).

INFORMATICS IN BIOMARKER
DISCOVERY

In the era of -omics, moving forward in the
clinical management of PD will require the de-
velopment of specific and sensitive biomarkers
that could detect disease early, define a prognos-
tic trajectory of disease, and/or provide an in-
dicator of response to therapy. Ideally, these bio-
markers would be present early enough in the
disease course that interventions could halt pro-
gression or even reverse damage. Risk alleles in
and of themselves are biomarkers, measurable
entities that denote risk for disease; however,
they do so in a nonspecific and nonsensitive
manner. The technologies outlined above pro-
vide a way forward as we link genetic informa-
tion to the other molecular and organismal lev-
els, translating disease risk to disease-specific
networks. In fact, a number of studies have
used various -omics approaches to identify po-
tential PD biomarkers (reviewed in Caudle et al.
2010). As we increase our understanding of
these disease-specific networks, we can begin
to identify other tissues which may be affected
and which could be used as surrogates for on-
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going monitoring of disease processes within
the CNS. For example, induced pluripotent
stem (iPS) cells derived from patients may be-
come an important resource not only for un-
derstanding disease biology (Park et al. 2008)
and fueling biomarker elucidation, but also as
a strategic part of therapeutics development
(Wernig et al. 2008; Cooper et al. 2010). A
more immediate application of recent advances
in genomics and informatics to biomarker de-
velopment is as an initial screen for risk. As
more risk loci are identified and as the costs of
screening decline, more widespread screening of
populations of individuals will become feasible.
Although this would not be a particularly sen-
sitive or specific screen, it would provide for an
economical triaging of high-risk subjects for

more in-depth screening. It is also important
to note that modalities other than molecular
markers will form an important component
of our biomarker armamentarium and that
these modalities will need to be integrated with-
in the network-centric approach. These modal-
ities range from the relatively inexpensive and
insensitive (history of constipation; hyposmia)
to the expensive and sensitive (PET or SPECT
neuroimaging).

As noted above, GWAS have been per-
formed to reveal the genetic association of dis-
ease with SNPs. Despite the success of GWAS,
the heritability of common disorders such as
PD cannot be fully explained by the genes that
have been discovered. A similar pattern is seen
when we expand our search for biomarkers of
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Metabolomics

MetabolitesProtein
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‘‘-Omics’’-based biomarkers Validation Application
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monitor therapies
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Figure 4. Application of “-omics” based biomarker strategy to discover, validate, and apply molecular profiles to
disease diagnosis, prognosis, and therapeutic development. Biomarker discovery efforts follow a predictable
model. A discovery cohort of case (red) and control (green) subjects is amassed. Biological samples along with
clinical, demographic, and other data are collected. High-dimensional genomic, transcriptomic, proteomic, and
metabolomic data are generated and integrated with clinical data to elucidate the dynamic networks and their
critical nodes that contribute to risk and evolution of disease. These pathways are then validated in a separate
cohort of cases and controls. Robust, sensitive, and specific profiles can then be applied on a population scale to
provide readouts for individuals’ risk (pink) for disease. These profiles can be informative to disease diagnosis
(pink to red), to prognosis and disease stratification (affected individuals with different temporal progression
and severity), and in developing and monitoring therapies that slow, halt, or reverse disease progression.
Additional historical (environment, lifestyle), clinical, and imaging data (e.g., PET, SPECT) will be integrated
with molecular pathway data that will also be informative in disease diagnosis, stratification, and therapies.
(PTMs, posttranslational modifications.) Images of myoglobin structure (http://en.wikipedia.org/wiki/File:
Myoglobin.png) and ribosome/mRNA translation (http://en.wikipedia.org/wiki/File:Ribosome_mRNA_
translation_en .svg) have been released to the public domain.
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disease risk to the other -omics. A number of
reasons can be ascribed to the limitations of
these studies for common diseases with com-
plex traits. One explanation is that the current
biostatistical analyses are agnostic or unbiased
and thus ignore what is known about disease
pathology. In addition, the linear modeling in
GWAS analyses usually considers only one SNP
at a time, whereas ignoring the genomic and
epigenomic factors of each SNP. However, re-
cently, there has been a shift away from this
approach toward a more holistic one that rec-
ognizes the complexity of the genotype–pheno-
type relationship that is likely characterized by
significant genetic heterogeneity and gene–
gene and gene–environment interactions. Fur-
thermore, strategies have been used to iteratively
mine GWAS data, including the identification
of potential PD targets and pathways using
meta-analyses of previous GWAS and neuronal
transcriptomic profiling studies (Zheng et al.
2010; Edwards et al. 2011).

The limitations of a linear model and other
parametric statistical approaches have motivat-
ed the development of data mining and ma-
chine learning methods (Hastie et al. 2009).
The advantage of these computational ap-
proaches is that they make fewer assumptions
about the functional form of the model and the
effects being modeled. In effect, data mining
and machine learning methods are much more
consistent with the notion of having the data
direct the model, rather than forcing the data
to fit a predetermined model. Several recent re-
views highlight the need for these newer meth-
ods, including machine learning approaches
such as random forests (RFs) and multifactor
dimensionality reduction (MDR), which have
been developed to address some of these issues
(Tarca et al. 2007; Ressom et al. 2008; Moore
2010; Sun 2010). It is also clear that evolving
informatics approaches will play an important
role in addressing the complexity of the under-
lying molecular basis of many common human
diseases. These methodologies have the poten-
tial to identify other molecular species (pro-
teins, metabolites), which could serve as disease
biomarkers in addition to the genome and in-
teractome. In identifying nodal proteins, pro-

teins that are present at the nodes of a network,
proteomics approach provides a great platform,
which typically assesses proteins in an unbiased
fashion and provides the means to study the
proteomic profile of a complex biological sys-
tem on a large scale. Several technologies con-
tinue to evolve that are composed of integrated
technical components, including separation
technology, mass spectrometry (MS), and bio-
informatics data processing. With advances in
analytical technology and statistical analyses,
several studies have set out to develop proteomic
“molecular profiles” of PD tissues, including
blood, CSF, and postmortem brain (reviewed
in Caudle et al. 2010). Similar methodologies
and analytical approaches are being used in
the search for “metabolic profiles” of PD, which
include compounds such as lipids, amino acids,
fatty acids, amines, alcohols, sugars, organic
phosphates, hydroxyl acids, aromatics, purines,
and other high abundance or clinically impor-
tant molecules; however, these databases are in-
complete for secondary metabolites, drugs, and
environmental compounds.

As technology and analytic methods im-
prove, we will generate more complete anno-
tations of the genomic, transcriptomic, proteo-
mic, and metabolic spaces, which would greatly
enhance the analysis of specific pathways and
molecules involved in PD and would yield ad-
ditional insight into the pathogenesis of the dis-
ease. In addition, it would provide a platform
for future meta-analytic studies, which could
assuage much of the between-study variability
currently encountered when analyzing multi-
ple studies. However, despite the advance in
-omics, there are still several issues that need
to be addressed and resolved. Most importantly,
issues around data integration, analysis, and in-
terpretation pose a great challenge, especially in
context of ever expanding data being generated.

TRANSLATING GENOMICS INTO
RATIONAL THERAPEUTICS

Drug discovery is the process by which new
drugs are identified. The traditional method re-
lies on trial-and-error in testing chemical sub-
stances against purified molecules and cultured
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cells, and subsequently examining their effects
on a model of disease before taking such a can-
didate into clinical studies. However, in the last
few decades, a new approach, termed rational
drug discovery (RDD) has been adopted, which
relies on characterized molecular mechanisms
of disease. RDD posits that modulation of a
specific target, putatively causal in disease path-
ogenesis, will have therapeutic value. This raises
two fundamental questions: What is a specific
target? and How is a modulator of this target
found? The first question is at the core of drug
discovery.

Current drug discovery assumes that diseases
can be characterized by a faulty protein structure
or aberrant expression of a protein encoded by a
variant gene, and that identification of candidate
drugs that modulate the activity of the proteins
will have an effect on phenotype and/or disease
outcome. This view is exemplified by expecta-
tions heralded with human genome sequencing
technology, in which it was estimated that about
8000 genes would be available as drug targets
(Imming et al. 2006). Currently, the number
of drug targets correlated with genetic variation
or polymorphisms is �220 (Russ and Lampel
2005). As we move from monogenic diseases to
complex diseases, there is no consensus as to
how genetics will inform drug discovery. How-
ever, it is expected that discovery of aberrant
genetic networks, populated by aberrant prote-
omic and metabolic nodes, will provide target
candidates for therapeutics development. It is in
this arena that disease specific networks and
nodes can be used for the rational design of
common and even personalized therapeutics.

From the above, it should be clear that de-
fining a disease target is not formulaic. How-
ever, once a target is chosen, its prosecution un-
folds in one of two ways: target-based or ligand-
based drug discovery. Target based-drug discov-
ery starts with the three-dimensional structure
of a target. If a three-dimensional structure of
the target is not available, it may be empirically
determined by crystallography or generated in-
formatically via homology modeling using pro-
teins with similar domains as a template.

Alternatively, ligand-based drug discovery
starts with structural information of a known

or predicted ligand. In either case, a pharmaco-
phore is designed as bait. A pharmacophore is
an abstract description of the molecular features
that are required for interaction between a li-
gand and a target. More specifically, the IUPAC
defines a pharmacophore to be “an ensemble of
steric and electronic features that are necessary
to ensure the optimal supramolecular interac-
tions with a specific biological target and to
trigger (or block) its biological response” (Wer-
muth et al. 1998). Because target/ligand inter-
actions are “polar positive,” “polar negative,” or
“hydrophobic,” typical features considered in
designing a pharmacophore are hydrophobic,
aromatic, a hydrogen bond acceptor, a hydrogen
bond donor, cation, or anion moieties. Because
ligand-based drug discovery relies on knowledge
of other molecules known to bind a biological
target, the minimum necessary structural char-
acteristics derived from these molecules are used
in designing the pharmacophore, which then
can be used to identify similar compounds via
screening of chemical libraries or through de
novo synthesis. The basic principle is that similar
molecules behave similarly. In other words, sim-
ilar chemical groups and entities will have sim-
ilar biological effects. This gives rise to the con-
cept of the structure-activity relationship, or
SAR. As three-dimensional structures of biolog-
ical targets increase, and detailed information
about molecular interactions between ligand
and target become available, the application of
SAR has become more complex. Drug discovery
has evolved with the use of high performance
computing to enable computer aided drug de-
sign (CADD) and sophisticated statistical algo-
rithms and molecular dynamic tools to provide
quantitative methodologies for SAR (QSAR) to
rank order the potential potency of a number of
biologically similar compounds. Once a series of
compounds is identified using the above ap-
proach, theyare labeled as “hits,” which are ready
to be tested in biological assay systems. As illus-
trated by the analytical bottlenecks in PD geno-
mics and biomarker discovery, the evolution of
bioinformatics will be critical to the successful
development of improved PD therapeutics.

The role of bioinformatics in connecting
aberrant networks and nodes fundamental to
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PD pathogenesis with validated targets devel-
oped through computational chemistry and
target modeling is anticipated to accelerate the
process of drug discovery.

THE ROAD AHEAD . . .

The main aim of genomic research is to identify
pathways that are suitable for targeted therapeu-
tic interventions to prevent, slow, halt, or re-
verse neurodegenerative disease processes. To
that end, the success of translational research
rests on the resolution of the complex genomic
architecture of human disease, translating this
to understanding aberrant networks and nodes
associated with disease, and implementing this
knowledge in the rational design of therapeu-
tics, which could be tailored to the individual
(Personalized Therapy, Fig. 5). However, this
success is not only dependent on advancement

of technologies and their applications. Success
will also depend on regional, national, and even
international collaborative efforts. In much the
same way that the neurogenetics field has
evolved, moving forward will require the collec-
tive efforts of scientists, clinicians, healthcare
providers, policy makers, and importantly, pa-
tients. The impact of these efforts will also go
beyond translational research and therapeutics
development. Given the potential to revolution-
ize medicine, a host of societal issues will need
to be addressed, including socioeconomic, eth-
ical, clinical acceptance, medical education, cost
effectiveness, and regulatory considerations.
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Figure 5. Genomics will play an integral role in the development of personalized therapeutics. The availability of
detailed phenotype data from large patient/control cohorts is an important prerequisite for high-throughput
genetic screening studies, including GWAS and genomic sequencing. After genetic risk loci have been dissected,
in silico, in vitro, and in vivo analyses establish the underlying functional pathways and help to posit targets for
rational, personalized therapies.
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