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Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by the production of autoantibodies against
nuclear antigens and a systemic inflammation that can damage a broad spectrum of organs. SLE patients suffer from a wide variety
of symptoms, which can affect virtually almost any tissue. As lupus is difficult to diagnose, the worldwide prevalence of SLE can
only be roughly estimated to range from 10 and 200 cases per 100,000 individuals with dramatic differences depending on gender,
ethnicity, and location. Although the treatment of this disease has been significantly ameliorated by new therapies, improved
conventional drug therapy options, and a trained expert eye, the underlying pathogenesis of lupus still remain widely unknown.
The complex etiology reflects the complex genetic background of the disease, which is also not well understood yet. However, in
the past few years advances in lupus genetics have been made, notably with the publication of genome-wide association studies
(GWAS) in humans and the identification of susceptibility genes and loci in mice. This paper reviews the role of MHC-linked
susceptibility genes in the pathogenesis of systemic lupus erythematosus.

1. Introduction

Chronic autoimmune diseases have complex pathogeneses
and the course of events leading to these diseases is not well
understood. They arise from a dysfunction of the immune
system, recognizing self-antigens as foreign, which can lead
to inflammation and severe damage of tissues and organs.
One of these complex inflammatory diseases is called sys-
temic lupus erythematosus (SLE). The etiology of lupus is
multifactorial with environmental, hormonal, ethnic, and
genetic factors [1].

In the 70s and 80s of the last century mouse models of
spontaneous lupus, like (NZB × NZW) F1 hybrids, BXSB
mice (which carry the disease-accelerating Yaa gene on the Y
chromosome [2–4]), MRL/lpr mice (MRL mice homozygous
for a fas mutation [5, 6]) or MRL/gld mice (MRL mice
homozygous for a fasL mutation [7, 8]) were established [9–
12]. Research based upon these mice revealed that a number
of genes, loci, and pathways are directly associated with lupus
in both mouse and human species (reviewed in [13–17]).
In addition, by means of these models signaling pathways

were identified that are dysregulated in both human and
murine lupus. Hence, mouse models will continue to serve
as invaluable instruments for studying the genetic basis of
lupus susceptibility, because they depict the genetic facets of
the human systemic lupus erythematosus (SLE).

Recent findings suggest that aberrant epigenetic mecha-
nisms may be involved in the pathogenesis of lupus [18], and
a number of genes have been claimed to be targets of these
alterations [19]. However, the mechanisms underlying epi-
genetic changes are poorly understood. Deciphering the con-
tribution of epigenetic alterations to the pathogenesis of
lupus will provide promising insights in this complex auto-
immune disease and epigenetic pharmaceuticals will offer
new therapeutic options to treat SLE.

One of the genetic risk factors for the development
of lupus (or other immune-mediated diseases) are genes
linked to the major histocompatibility complex (MHC) [20].
In humans, HLA antigens have long been associated with
SLE and, therefore, these susceptibility genes are extensively
studied [21]. Certain HLA class II genes or haplotypes
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seem to be particularly involved on lupus pathogenesis [14,
22–24]. HLA class III genes, such as those encoding the
complement components C2 and C4, may also be considered
as risk factors for the development of a lupus-like disease
in different ethnicities [25]. In mice, it could also be shown
that the MHC class II locus directly participates in lupus
disease susceptibility similar to that observed in humans
[26]. The effect of MHC-linked complement factors on
disease expression is strongly dependent on the background
genes, reflecting the genetic unification of inbred mice in
comparison to wildtype mice.

However, the role of certain MHC haplotypes, genes, or
alleles in lupus pathogenesis is still controversially discussed.
For this reason and to update the most recent scientific
research on this topic, this paper reviews the role of MHC
genes and alleles in the pathogenesis of both human and
murine lupus.

2. The Major Histocompatibility
Complex (MHC)

2.1. Historical Overview. More than a century ago, it was
observed that tissue transplants (now called allografts) of one
animal were rejected when transferred to a different labo-
ratory mouse. At the Jackson Laboratory Gorer showed in
1937 that so-called H or “histocompatibility antigens” on the
surface of mouse cells account for this [27, 28]. Seven years
later, it was Medawar who showed that allograft rejection
is a host versus graft reaction [29, 30]. At the same time,
Snell developed congenic mice strains that were genetically
identical except at the H-2 locus. With the aid of these mice
he could show that the H-2 antigens were “controlled” by
genes at the H-2 complex on chromosome 17 and called this
multigene locus “major histocompatibility complex” (MHC)
[31–33]. In 1958, the first human alloantigen present on
leucocytes was detected by Dausset, which was later called
HLA-A2 [34, 35]. A few years later Payne and coworkers
depicted the first human multiallelic system, now known as
the HLA class I loci HLA-A and HLA-B [36]. However, it was
clear from the beginning that allograft rejection or accep-
tance is not the physiological function of MHC molecules.
In the early sixties, experiments of Benacerraf et al. with
guinea pigs and synthetic amino acid polymers showed that
there is a single genetic locus which controls the immune
system’s ability to respond to foreign antigens and called the
(autosomal dominant) genes of this locus “immune response
genes” (or Ir genes) [37–39]. In the late 1960’s, McDevitt
found that the Ir genes were linked to the MHC [40, 41]. The
concept of immune response genes was refined by Zinker-
nagel and Doherty (in 1974), who made the breakthrough
discovery that the ability of virus-specific T lymphocytes to
combat a virus infection is dependent upon the simultaneous
recognition of both “foreign” molecules of the virus and self
molecules (i.e., major histocompatibility proteins) [42]. This
limitation or narrowing of antigen recognition by T cells
was called “MHC-restricted antigen recognition” or in short,
“MHC restriction” and was subsequently confirmed in many
other systems. One year before Zinkernagel and Doherty
made their pioneering discovery, the first disease-associated

MHC allele, namely, HLA-B27, was reported. HLA-B27 is
strongly associated with ankylosing spondylitis [43, 44].

2.2. Genetics of HLA and H-2. The major histocompatibility
complex is located on the short arm of chromosome 6 in
humans and on the telocentric chromosome 17 in mice
[45, 46]. The genes coding for the classical transplantation
antigens as well as the so-called “class III” polypeptides are
located within this multigene region [47–49]. About 40% of
the expressed MHC genes encode proteins related to immune
defense [48]. Whereas the classical class I and class II trans-
plantation antigens are expressed on cells and tissues (with
the exception of proteins involved in antigen processing and
presentation of antigens to the immune system, such as
LMPs, TAPs, and Tapasin), the class III antigens are secreted
proteins which do not play a role in tissue acceptance or
graft rejection. Class III antigens comprise proteins with
immune functions such as components of the complement
cascade (C2, C4, and factor B), cytokines (TNF-α, LTA,
LTB), steroid metabolism (Cyp21B), heat shock proteins
(hsp70), and many other genes not directly associated with
immune responses [50]. For historical reasons, human MHC
polypeptides are called “human leukocyte antigens” (HLA)
and mouse MHC proteins “histocompatibility 2” (H-2) anti-
gens.

In humans, the MHC is the most gene-dense region of
the genome, and the MHC genes themselves are the most
polymorphic genes known so far. Among the ∼3 billion
base pairs of the human or murine genome, arranged on 23
and 20 chromosomes, respectively, there are 20,000–30,000
protein-coding genes [51–53]. That means that an average
of one gene was found for every 100,000 to 150,000 base
pairs. The human MHC, however, contains more than 120
functional genes and additional nonfunctional pseudogenes
in both mice and humans distributed over 3.6 Mbp [54–57].
The outcome of this is an average of approximately one gene
for every 30,000 base pairs.

MHC molecules are codominant expressed and clustered
in so-called “haplotypes”. The term was introduced by
Ceppellini et al. (in 1967), who used familial genotype
data, to explain the coinheritance of alleles at two closely
linked loci [58]. This organization is thought to facilitate
recombination events that generate new alleles and therefore,
contribute to the high polymorphism of MHC proteins.
Polymorphism derives from the creek word “πoλυμoρϕία”
(polymorphia) and means “many or complex shapes”. The
polymorphism found in the MHC class II genes is generally
limited to exon 2, which encodes the peptide-binding groove
[59]. Due to the high frequency of MHC alleles, most
individuals will be heterozygous for each different MHC gene
locus. Each MHC molecule in the population has a different
spectrum of peptide binding. This insures that no one patho-
gen can destroy the whole population by developing protein
sequences that are incapable of binding to an MHC molecule,
and thus evading the immune system (Figure 3).

In contrast to humans the number of MHC (H-2) alleles
is strongly reduced in inbred mice because of the homo-
zygosity at their MHC loci. As many peptides are not recog-
nized by the remaining alleles/haplotypes, these mice often
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have an impaired immune response against pathogens. In
fact, the MHC genes of mice were first called “immune
response (Ir) genes because of strain-dependent defects in
responses to certain antigens [38].

2.3. Evolution of MHC Diversity. In the sixties and seventies,
two different models have been developed to explain the high
heterogeneity of the MHC genes: Negative frequency depen-
dence (rare allele advantage) and heterozygote advantage
(overdominance model) [60–62]. The negative frequency
dependence postulates that rare MHC alleles (of recent
origin) may have a selective advantage, as no pathogen may
be adapted to it [63]. The overdominance model states that
polymorphism will be advantageous because heterozygous
individuals are able to recognize a wider range of pathogens
and parasites [60]. A main difference between these two types
of (balancing) selection is that overdominance is based upon
a stable polymorphism, whereas a polymorphism main-
tained by frequency dependence will be dynamic [64]. How-
ever, there is still a controversy, if the heterozygote advantage
on its own is sufficient to explain the high degree of
MHC polymorphism [65]. For instance, it has recently been
shown that balancing selection can also result from MHC-
dependent choice of mates [66].

Evolution of MHC genes and alleles is driven by the need
to maximize peptide binding diversity in order to recognize
a maximum of potential pathogens. Polymorphism and
polygeny are two (independent) genetic mechanisms for
increasing variety of MHC class I and class II proteins.
Polygeny acts on the individual level, whereas polymorphism
is (primarily) a population-relevant criterion. Thus, a max-
imum number of class I and II genes would ensure the
greatest conceivable protection of a single individual against
pathogens. However, polygeny is limited by a mechanism
called “MHC restriction”: T cells recognize fragmented
antigens (self and foreign) only in conjunction with MHC
proteins [42, 67]. To avoid autoimmune reactions, T cells
that strongly react with MHC molecules presenting self-
peptides are deleted. In consequence of these opposed
requirements, the immune surveillance is a delicate balance
between self and foreign as well as between (self-)tolerance
and immune response. Furthermore, these two opposing
demands create a dilemma: On the one hand, many MHC
genes would present a maximum of different peptides but on
the other hand, the presentation of many different self-anti-
gens would strongly reduce the T cell diversity. Thus, MHC
restriction limits T cell antigen recognition and response.
As a consequence of this, the diversity of MHC class I and
II proteins of a single individual is limited (and optimiz-
ed) to six different molecules (3 genes × 2 alleles). The
optimal number is called “immunogenetic optimum” [68].
Due to the limited number of MHC genes, some agents may
evolve polypeptides that evade the immune system of single
individuals, but the enormous polymorphism within a pop-
ulation diminishes the possibility that a pathogen can exter-
minate a whole species (individual C). However, there is a
major drawback of this kind of defense strategy: if the size of
a population decreases strongly, some MHC haplotypes will
disappear, leading to a reduction of MHC diversity, which in

turn will negatively affect survival of the population [69]. In
summary, the number of different MHC genes is a delicate
balance between the key requirement of an entire popula-
tion/species and the core requests of its individuals.

3. How Is Lupus Erythematosus Influenced by
the MHC?

Variations within the MHC locus seem to be associated with
a great variety of autoimmune diseases. Consequently, the
contribution of HLA genes to lupus pathology has recently
been extensively studied [21, 70–72]. However, due to the
extensive linkage disequilibrium among alleles throughout
this locus, the causal relationship between these MHC vari-
ations and autoimmune pathogenesis have remained elusive
for the great majority of these diseases, including lupus [73].

Although the pathogenesis of the disease is still poorly
understood and a number of environmental factors have
been postulated, genetic predisposition is clearly a major risk
parameter for SLE [74, 75]. There is strong evidence for a
genetic component based upon a high concordance rate of
SLE in monozygotic twins as well as the occurrence of SLE
in 5–12% of the relatives of affected patients [76–79]. The
complex nature of SLE reflects a polygenic inheritance of
the disease rather than a monogenic mode. Several genes are
known to contribute to SLE susceptibility [80, 81], because
they affect key pathways, implicating immune complexes,
host immune signal transduction, and interferon pathways
(reviewed in [82]). Only in a small proportion of patients
(<5%), a single gene seems to be responsible for the disease
onset. Many of these genes relate to the early complement
components from which the C2 and C4 genes are linked to
the MHC (Figure 1 and [83–85]).

The mechanisms underlying antigen recognition are of
great importance to human autoimmune diseases. A number
of genes have been claimed to be associated with suscep-
tibility to anti-self responses. Because of their considerable
heterogeneity, the immunoglobulin genes, the T cell receptor
genes, and the major histocompatibility complex (MHC)
genes have soon been suspected of playing a distinct role
in the pathology of lupus and other autoimmune diseases.
Particularly, the MHC class II allotypes HLA-DR2 and -DR3
seem to be related to (and/or positively correlated with)
lupus disease [86–88]. Genes, like angiotensin-converting
enzyme (ACE) or angiotensinogen (AGT), that specifically
increase kidney susceptibility to lupus pathogenesis have also
been described [89].

Advances in high throughput technology have enabled
the genotyping of hundreds of thousands of single nucleotide
polymorphisms (SNPs) in a single individual and genome-
wide association studies (GWAS) in lupus patients [90].
GWAS in European- or East Asian-ancestry populations [91–
94] and high-density screenings [20, 95] have identified
several independent SNPs in the MHC region associated with
SLE. Some of these SNPs could be confirmed in a recent
targeted association study [96]. GWAS may also been used to
decipher complex ethnic disparities in SLE prevalence rates.
For unknown reasons, the prevalence of lupus in African and
Hispanic Americans is two to fivefold higher compared to
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Figure 1: HLA gene cluster and lupus susceptibility genes on
human chromosome 6. Ideogram of chromosome 6 (left) and
schematic diagram of the MHC-complex-associated genes ranging
from 6p21.1 to 6p21.3 (middle). The class I gene complex contains
three major loci (A, C, and B), as well as additional (unmentioned)
loci. The resulting class I polypeptides associate with the invariable
beta-2 microglobulin, encoded by a gene on chromosome 15.
The HLA-B locus is known as the most polymorphic gene within
the human genome. Class II MHC molecules are composed of
two glycosylated polypeptide subunits (called α and β chain)
of approximately equal length. Whereas HLA-DP and -DQ code
for one alpha- and one beta-chain polypeptide, respectively, the
genetics of HLA-DR is more complex: It consists of one locus
coding for the alpha subunit and 4 loci coding for beta subunits.
Unlike the other DR loci, DRA is not polymorphic. Even though
the DR β-chain is encoded by 4 loci, no more than two are present
on a single chromosome. DRB1 is the most polymorphic gene
of the class II locus. Class I and class II antigens are membrane
proteins whereas almost all class III polypeptides are serum proteins
(including the complement components C2, C4A, C4B, and factor
B) or can be detected in other body fluids. Therefore, the term “class
III” is misleading, as this locus does not contain a distinct class
of genes. The coding regions of the genes are shown as small blue
(class I), green (class II), and red (class II) rectangles, respectively.
Abbreviations: LTA: lymphotoxin A, LTB: lymphotoxin B, TNF:
tumor necrosis factor alpha, HSPA1L: heat shock 70 kDa protein 1-
like, HSPA1A: heat shock 70 kDa protein 1A, HSPA1B: heat shock
70 kDa protein 1B, BF: complement factor B, CYP21B: cytochrome
P450 21-hydroxylase and Mb: mega base pairs.

Americans of European ancestry [97]. A recent SNP screen-
ing of the MHC region revealed for independent SNP signals
for African American women [98]. The strongest signal of
this study (the SNP rs9271366), was also associated with SLE
in a previous Chinese GWA study of Han and coworkers [91].
It has also been shown by GWAS that several established
non-MHC lupus loci are not related to other autoimmune
diseases, which suggests a limited genetic overlap between
these diseases and SLE [99]. In summary, it can be stated

that genome-wide and -targeted association studies, despite
of their methodological and application-related limitations,
are useful tools to localize lupus-associated genes.

In the past few years, progress has been made in identify-
ing lupus susceptibility genes in mice [100, 101]. Meanwhile,
a large number of lupus susceptibility loci have been detected
in mouse models, and some of the corresponding suscepti-
bility genes have been identified by now (reviewed in [10,
102–106]) including those linked to MHC [14, 107, 108].
An important milestone in murine lupus genetics was the
identification of the SLE loci 1–3 by Mohan et al. and Morel
et al. in NZM2410 mice [109–111], a lupus-prone strain
derived from a cross between NZB and NZW mice [112].
The identification of these loci provided the starting basis for
a rapidly growing number of publications that dissected the
role of single loci or genes in lupus development [113–119].
Several B6-based lupus congenic strains has been charac-
terized, that carry the NZM2410-derived SLE-susceptibility
loci Sle1, Sle2, and Sle3 (reviewed in [17]). It has been
shown that these three loci act in an additive way and that
the coexpression of them is necessary to develop the full
severity of the disease [107, 120]. Subsequently, it has been
demonstrated by congenic dissection and polygenic analyses
that both protective suppressor and harmful susceptibility
loci form the genetic basis for murine lupus and that they
act in a highly complex manner that involves several genes
[121, 122]. Meanwhile, for a subset of these murine genes,
involvement in human SLE has been established [17].

Based upon these models, there is considerable evidence
that single MHC genes contribute to the development of sys-
temic lupus erythematosus [26, 123–125]. However, in both
mice and humans, lupus susceptibility results from accumu-
lating effects of a large number of individual gene variants
[126] of which the MHC-linked loci are reviewed below.

3.1. MHC Class I Genes. The association between MHC
loci and susceptibility to lupus has been known since 1971,
when HLA-B8 was shown to be associated with this disease
[21]. In particular, the ancestral haplotype A1-B8-DR3 has
been linked to lupus susceptibility [127–130]. Nevertheless,
early studies have focused upon MHC class II genes in
lupus pathogenesis, since class II-restricted CD4+ T cells have
been associated with the generation of autoantibodies [131].
Although the dysregulation of class I levels is predicted to
result in autoimmunity [132], the relevance of MHC class
I proteins to lupus, however, is less clear. Recent studies have
implicated a distinct role for MHC (H-2) class I molecules in
mouse lupus pathogenesis: McPhee et al. could demonstrate
that β2-microglobulin-deficient (β2m) BXSB-Yaa and -SJL
mice (i.e., mice deficient in class I antigen presentation)
developed much more aggressive and lethal forms of a lupus-
like disease that characterizes these strains [133]. These
results are in line with previous findings in the (NZB ×
NZW) F1 mouse model of lupus disease [125]. A more
sophisticated role for class I proteins could be demonstrated
for β2m-deficient MRL/lpr mice: While inhibiting nephritis,
β2m deficiency accelerates spontaneous lupus skin disease
[134]. In another report, Mozes et al. could show that
MHC class I-deficient mice are resistant to experimental SLE,
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although these mice were not generally poor responders to
antigen [135]. Furthermore, MHC class I-deficient MRL/lpr
mice demonstrate a substantial reduction in CD4/CD8
double-negative (DN) T cells and symptoms of the lupus-like
disease [136]. In summary, these results indicate that class I-
dependent T cells are key players for the murine lupus-like
syndrome.

3.2. MHC Class II Genes. SLE is associated with class II genes
of the MHC, but it is not yet clear which haplotypes, genes,
or alleles are primarily responsible for disease association.
Initial reports looking at the involvement of HLA in SLE
assumed a direct involvement of haplotypes containing DR2
and/or DR3 to disease pathogenesis [22, 137–140], but
later reports indicated for both humans and mouse models
that HLA DR molecules may have an increased association
with the production and specificity of autoantibodies rather
than with the disease itself [75, 141–143]. Meanwhile, an
immense number of studies based on different ethnicities
have identified HLA class II associations with SLE.

The presence of antinuclear antibodies (ANA) is a
serological hallmark of lupus erythematosus (found in the
serum of most patients) [144], and the role of HLA genes
in autoantibody expression has been intensely researched,
because it indicates the activation of autoaggressive B cells
and the breakdown of tolerance to self-antigens. A subspecies
of antinuclear autoantibodies, called Ro/SSA (a ribonuclear
protein) is present in 25–50% of SLE cases [145, 146] and the
level and occurrence of theses autoantibodies correlate with
the presence of HLA-DR2/DR3 and HLA-DQw1/DQw2
heterozygotes [147]. In mouse models, heterozygosity at the
MHC (H-2) locus has also been associated with lupus sus-
ceptibility and enhanced autoantibody production [148,
149]. For (NZB×NZW) F1 hybrid mice, it has been hypoth-
esized that H-2A or H-2E MHC class II genes are two like-
ly candidates [81]. DQA1∗0102 and DQA1∗0301 alleles
were observed to be strongly associated with the presence
anti-Ro/La and anti-dsDNA antibodies in Chinese but not
in a Malaysian control group [150]. However, a German
lupus study showed that all HLA-DR and -DQ (homozygous
and heterozygous) combinations appear with frequencies
expected from the observed gene frequencies, suggesting
that gene complementation at MHC class II loci seems not
to contribute to lupus susceptibility [151].

Other autoantibodies are detected in patients with SLE
but the HLA associations with these are less clear. Antiphos-
pholipid antibodies are frequently observed in patients with
SLE [152–154] and a significant association of DR7-positive
patients (in linkage disequilibrium with the HLA-DR gene
B4) that carry anticardiolipin antibodies could be observed
by Savi et al. [155]. Azizah et al. found a significant
association of the DQB1∗0601 allele with anti-Sm/RNP, DR2
with anti-Ro/La, and DR2, DRB1∗0501, and DRB1∗0601
with anti-dsDNA antibody expression [156].

It has been shown that the HLA haplotype DR3-DQ2-
C4AQ0 is strongly associated with SLE in Caucasians [157,
158]. A strong association with lupus was also determined by
DNA typing for DQA1∗ 0501 in Scandinavian patients [159].
However, this allele was in linkage disequilibrium with DR3

and DR5. A strong association to SLE is found with DRB1∗03
and DOB1∗0201 alleles of central European patients [160].
A genetic predisposition of HLA DR2- and/or HLA DR3-
containing haplotypes for SLE has also been described for
German, Kuwaiti, and Chinese lupus patients [161–163].

Strong associations of class II genes with lupus suscep-
tibility have also been shown by GWA studies. Studies based
on sequence length polymorphisms in European populations
identified a potential association of the class II HLA-DRB1
alleles HLA-DRB1∗08:01, -∗03:01, and -∗15:01 with SLE [73,
164]. Two of these alleles (HLA-DRB1∗03:01 and -∗15:01)
have also been identified in a recent study of the IMAGEN
consortium using high-density SNP typing across the MHC
[20]. In a study of Ruiz-Narvaez et al. the strongest SLE-
associated SNP was the rs9271366 near the HLA-DRB1 gene
[98]. This SNP was also associated with higher risk of SLE in
a previous GWAS [91]. Although there are hardly any GWAS
results concerning class III genes, the SNP rs419788 in intron
6 of the class III gene SKIV2L was found to be independently
associated with SLE [165]. However, in a recent report this
SNP was not found to be independent from the rs3135391
(HLA-DRB1∗15:01) signal [96].

In summary, these results indicate that both DR2 and
DR3 and their associated DQ alleles seem to play a role in
SLE [146, 166]. However, most of the results concerning the
contribution of individual MHC class II polymorphisms to
SLE have been obtained from population-based case-control
studies and need to be confirmed in family-based studies
[146].

MRL/lpr mice spontaneously develop aggressive autoim-
mune kidney disease characterized by an immune complex
glomerulonephritis, which is associated with increased (or de
novo) renal expression of major histocompatibility complex
(MHC) class II molecules and a massive systemic expansion
of CD4-CD-double negative (DN) T cells [167–169]. How-
ever, these mice are homozygous for the H-2k haplotype,
which is shared by several other strains, that do not develop
lupus-like symptoms. In addition, it has been shown that
genes encoded within or closely linked to the MHC region
regulate autoantigen selection and isotype switching to IgG3
but have minimal effect on end-organ damage or survival in
MRL/lpr mice [170]. On the other hand, MHC (H-2) class
II expression appears to be required for the development
of autoaggressive CD4+ T cells involved in autoimmune
nephritis, because MHC class II-deficient MRL/lpr mice do
neither produce serum anti-DNA antibodies nor develop
proliferative renal disease in contrast to their wild-type
counterparts [168].

In contrast to New Zealand black (NZB) and New
Zealand white (NZW) mice, F1 hybrids of these strains (with
a H-2d/z haplotype) spontaneously develop a severe lupus-
like immune complex glomerulonephritis associated with
the production of antinuclear autoantibodies [171]. Morel
et al. have focused on the genetic dissection of lupus-prone
NZM2410 mice, which are derived from this cross [110, 112]
and identified four epistatic modifiers (Sles1–4) by linkage
analysis. The cumulative effect of these suppressive loci
accounts for the benign autoimmunity in NZW mice [122].
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The strongest one, Sles1, being encoded by an MHC (H-2z)
class II locus, was sufficient to completely prevent autoim-
munity initiated by Sle1 in (NZW × B6.NZMc1)F1 mice.

MHC H-2d/z heterozygosity (H-2d of NZB and H-2z of
NZW mice) promotes lupus disease, as congenic H-2d/dand
H-2z/z homozygous crosses do not develop severe disease
[172, 173]. On the other hand, Zhang and coworkers found
that H-2Ad/d homozygous (NZB × NZW)F1 mice lacking
H-2E molecules developed severe SLE similar to that seen
in wild-type F1 mice, whereby the effect of H-2E is greatly
influenced by the haplotype of H-2A molecules [174]. The
authors propose two different mechanisms to explain their

results: First, compared with H-2d/d F1 mice, the self-antigen
presenting capacity of DCs in H-2d/z F1 is much higher, so
that effects of E molecules may be insufficient for disease sup-
pression and, alternatively, generation of H-2d/z F1 unique
self-reactive T cells restricted to haplotype mismatched
H-2Aα/β heterodimers in the thymus may play a role in an
H-2E molecule-independent manner. However, one should
keep in mind that H-2d/z heterozygosity is a necessary but not
sufficient condition for the development of autoimmunity
in NZB/W F1 mice [175]. Kotzin and coworkers wanted to
dissect the role of Eaz, Ebz, Aaz, and Abz MHC class II mole-
cules to lupus susceptibility, but they could not observe an
increased contribution of these polypeptides to the serious-
ness of the disease in transgenic approaches [26, 123].

BXSB mice spontaneously develop a male-biased lupus-
like syndrome that is accelerated by the Yaa (Y-linked auto-
immune accelerator) gene [9, 176]. The BXSB MHC locus
(H-2b haplotype) plays a crucial role in disease expression
since congenic BSXB.H-2d mice have a less severe syndrome
[2]. As B6·Yaa (H-2b/b) mice do not develop lupus symp-
toms, there are also non-MHC-linked genes in the BSXB
genome that contribute to disease development [104]. It has
been shown that lupus was initiated by a translocation of 17
genes, including TLR7, from the X to the Y chromosome [3,
4]. TLR7 overexpressing transgenic mice have demonstrated
that duplication of the TLR7 gene is the sole requirement for
this accelerated autoimmunity, as reduction of TLR7 gene
dosage abolishes the Yaa phenotype [177]. Furthermore,
TLR7 and additional nucleic acid-binding TLRs, consisting
of the toll-like receptors 3 and 9, exacerbate lupus-like
disease in other autoimmune-prone strains [178]. Although
a TLR7 gene copy-number variation could be detected in the
human genome, it was not significantly increased among SLE
patients as compared with the healthy control group, and no
significant concordance between the number of gene copies
and the SLE phenotype was found [179]. However, other
reports describe SNPs in the human TLR7 gene that associate
with lupus [180, 181]. Garcı́a-Ortiz and coworkers reported
an association between increased TLR7 gene copy numbers
and childhood-onset SLE in the Mexican children [182].

However, even after more than 30 years of research, the
precise contribution of HLA class II genes to lupus pathogen-
esis remains ambiguous and is still a matter of discussion.

3.3. MHC Class III Genes. Class III genes of the MHC
encode proteins that are not involved in antigen presentation
(Figures 1 and 2). C2, C4A, C4B, and factor B are comple-
ment components that constitute both the C3 convertases
of the classical and alternative pathway [183, 184]. Tumor
necrosis factor alpha (TNF-α) and its related proteins lym-
photoxin-α and -β are immune modulating cytokines of the
TNF superfamily [185, 186], and the heat shock protein 70
(Hsp70) orthologues are a triplet of genes, which are im-
portant components of the chaperone machinery [187, 188].

3.3.1. Complement Components. The complement system
plays an important role in innate and adaptive immunity
[189]. Its main biological function is to recognize for-
eign particles, macromolecules, and apoptotic cells, and to

http://www.imgt.org/IMGTrepertoireMHC/LocusGenes/
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Figure 3: Protective effect of MHC polymorphism on populations
(simplified scheme). Evolution of MHC genes and alleles is driven
by the need to maximize peptide binding diversity in order to
recognize a maximum of potential pathogens. Thus, the extreme
polymorphism of MHC molecules of vertebrates is thought to
reflect a pathogen-driven selection. This insures that no germ
can exterminate the whole population by developing peptides that
cannot be bound by any MHC molecule. However, compared to
the enormous diversity of MHC molecules within a population
(outer circle), their heterogeneity within a single individual is
restricted to a few different MHC polypeptides (individuals A–D).
This can be attributed to a mechanism called “MHC restriction”
(see MHC chapter) that limits polygeny of the MHC genes (in
general to 3 genes per MHC class I and class II). As a consequence
some agents may evolve polypeptides that evade the immune
system of single individuals (individual C) and harm or even
kill them. In consequence of these opposed requirements, the
immune surveillance is a delicate balance between (self-)tolerance
and immune response that ensures survival of a population and/or
a species at the expense of single individuals.

support their elimination either by opsonisation or lysis
[190]. Although rare, inappropriate complement activation
as well as complement deficiencies are involved in the patho-
physiology of systemic lupus erythematosus [25, 191, 192].

Lupus is casually associated with the homozygous defi-
ciency of the most early components of the complement acti-
vation pathway (C1q, C1r, C1s) [189, 193]. However, MHC-
linked C2 and C4 deficiencies are also associated with SLE
[194], and approximately 40% of C2 deficient individuals
develop SLE-like symptoms [195]. In fact, homozygous C2
deficiency is thought to be the most common inherited com-
plement defect associated with lupus [196, 197]. In addition,
Fielder et al. found a high frequency of null alleles at the
C2, C4A, and C4B loci in families of SLE patients [198]. In
humans and mice, C4 is encoded by two tandemly arranged

genes (C4A and B) within the MHC ([199] and Figures 1 and
2). About 40 protein variants for C4 have been documented
[200]. It has been shown that low copy numbers of the C4
gene are a risk factor for SLE in European Americans [201]
and a large C4A-CYP21A gene deletion (particularly associ-
ated with HLA-B44, -DR2, and -DR3 alleles) in black Ameri-
cans [202]. On the other hand, C3 deficiency is only rarely
associated with lupus development, because homozygous
hereditary C3 deficiency is a seldom genetic disease [203]. It
is thought that absence of complement proteins results in a
defective immune complex clearance and, in consequence, to
a deposition of the complexes in various organs [204, 205].
An alternative hypothesis postulates that self-reactive B cells,
which are specific for lupus autoantigens, are not effectively
silenced (or eliminated) without complement [206]. In fact,
recent findings suggest, that enhanced B cell function is the
defining pathogenic event of lupus pathogenesis, leading to
autoimmunity and organ damage [207].

Aberrant splicing of the C4 mRNA (caused by an intronic
insertion of the B2 sequence in the C4 gene) is the basis
for low C4 expression in H-2k mice, such as lupus-prone
MRL mice [208, 209]. An association between complement
deficiency and SLE has also been shown for complement-
deficient mouse models [210]. C1q- and C4-deficient mice
develop a lupus-like disease and exhibit impaired clearance
of apoptotic cells [211]. Indeed, apoptotic cells are thought to
be a major source of the autoantigens of SLE [212]. This has
led to the hypothesis that the delayed clearance of apoptotic
material leads to a persistence of proinflammatory activities
which may then initiate autoimmunity.

3.3.2. Heat Shock Protein (HSP) Genes. Heat shock proteins
(hsp) are highly conserved proteins that regulate protein
folding. They are induced by a variety of stresses like heat,
growth factors, inflammation, and infection [213]. The
expression of hsp90 is found to be increased in the mononu-
clear cells of about one-fourth of SLE patients and antibodies
to this protein are detected in patients with SLE [146].
Levels of hsp90 protein in SLE patients seem to correlate
with IL-6 and hsp90 autoantibody levels, supporting the
following scenario: Elevated levels of IL6 in SLE patients
induce higher levels of hsp90 protein which in turn results
in the production of hsp90 autoantibodies [214].

Another heat shock protein that play a role in SLE
pathogenesis is HSPA1B, a member of the hsp70 gene family.
The HSPA1A, HSPA1B, and HSPA1L are MHC class III genes
in murines and humans, which code for highly homolo-
gous polypeptides [215]. HSPA1B encodes a polypeptide
that is thought to be involved in disease susceptibility
[216]. Association of a polymorphism (A to G transition)
in the coding region of the HSPA1B gene with SLE in
African Americans has been reported in a case-control study
[217].

3.3.3. Tumour Necrosis Factor (TNF) Gene. Tumour necrosis
factor alpha (TNF-α) is an inducible member of the TNF/
TNFR superfamily with a broad range of immunological
effects [218]. Macrophages are the major source of TNF-
α, although it can be produced by many other cell types
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as well [219]. It is generally known as a proinflammatory
cytokine, stimulating the acute phase response and increas-
ing MHC class I and II expression as well as antigen-
driven lymphocyte proliferation [220–222]. Dysregulation
of TNF-α production has been implicated in a variety of
human diseases, including lupus. A rare polymorphism (G
to A transition) in the promoter region has been found to
be increased in patients with SLE in a case-control study
[223, 224], which is probably due to linkage disequilibrium
with DR3 [225]. However, other reports based on Caucasian
SLE patients describe an independent contribution of TNF
polymorphisms and HLA-DR3 to SLE susceptibility [226,
227].

As in humans, the murine TNF-α gene is located within
the MHC [228]. The NZW mouse strain carries a unique
TNF allele, that expresses only limited amounts of TNF-α
[229]. It has been proposed that this polymorphism amelio-
rates murine lupus symptoms [228, 230] and, indeed, it has
been shown by Kontoyiannis and Kollias, that autoimmunity
and lupus nephritis is accelerated in NZB mice with an
engineered heterozygous deficiency in tumor necrosis factor
[231].

4. Concluding Remark

The MHC genes including TNFα, HSP70, and class II genes
have been associated with systemic lupus erythematosus.
However, in most cases, genetic susceptibility to lupus is
not caused by a single gene or allelic variation. Defects in
complement genes are well-documented exceptions, which
may predispose to lupus because of the persistence of
antibody complexes or activation of self-reactive B cells.
The role of TNFα, HSP70, or MHC class II gene loci in
lupus pathology is more difficult to evaluate. This is due,
among others, to the linkage disequilibrium of the MHC,
which makes it difficult to prove a direct contribution of
single genes or alleles to lupus susceptibility. Furthermore,
the identification of susceptibility or suppressor genes is
complicated by the plain fact that SLE is a highly het-
erogeneous disease that appears when susceptibility and
suppressor loci are unbalanced. In addition, environmental,
epigenetic, hormonal, and infectious factors may alter the
epigenetic status quo and may trigger lupus in genetically-
susceptible individuals. On the other hand, analysing the
influence of environmental factors on the epigenetic status
of well-defined MHC haplotypes or MHC gene polymor-
phisms may open promising perspectives for future stud-
ies.

For these reasons, deciphering the contribution of MHC
locus and its gene products to the pathogenesis of human
and murine lupus will add the next important piece of the
puzzle that will further clarify the etiology of this complex
autoimmune disease.
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