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ABSTRACT The knowledge of the frequency and relative weight of mutation and recombination events in
evolution is essential for understanding how microorganisms reach fitted phenotypes. Traditionally, these
evolutionary parameters have been inferred by using data from multilocus sequence typing (MLST), which is
known to have yielded conflicting results. In the near future, these estimations will certainly be performed by
computational analyses of full-genome sequences. However, it is not known whether this approach will yield
accurate results as bacterial genomes exhibit heterogeneous representation of loci categories, and it is not
clear how loci nature impacts such estimations. Therefore, we assessed how mutation and recombination
inferences are shaped by loci with different genetic features, using the bacterium Chlamydia trachomatis as
the study model. We found that loci assigning a high number of alleles and positively selected genes
yielded nonconvergent estimates and incongruent phylogenies and thus are more prone to confound
algorithms. Unexpectedly, for the model under evaluation, housekeeping genes and noncoding regions
shaped estimations in a similar manner, which points to a nonrandom role of the latter in C. trachomatis
evolution. Although the present results relate to a specific bacterium, we speculate that microbe-specific
genomic architectures (such as coding capacity, polymorphism dispersion, and fraction of positively se-
lected loci) may differentially buffer the effect of the confounding factors when estimating recombination
and mutation rates and, thus, influence the accuracy of using full-genome sequences for such purpose. This
putative bias associated with in silico inferences should be taken into account when discussing the results
obtained by the analyses of full-genome sequences, in which the “one size fits all” approach may not be
applicable.
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The ecological success of bacteria relies on their constant ability to
diversify their genetic background to reach better-fitted phenotypes

through selection. In this regard, point mutations and recombination
events are especially relevant as they may be the basis for antigenic
polymorphism, virulence dissimilarities, and differential tissue tropism
(Ochman et al. 2000; Spratt et al. 2001; Nunes et al. 2010). As
for mutation events, in which bacteria range from monomorphic
(e.g. Yersinia pestis) to highly polymorphic (e.g. Helicobacter pylori)
(Achtman 2008), recombination is not equally important for all mi-
croorganisms. Indeed, they range from strictly clonal (lack or ex-
tremely low rates of recombination), such as Mycobacterium species
or Staphylococcus aureus (Smith et al. 2003; Supply et al. 2003; Vos
and Didelot 2009), to typical recombinants, such as Helicobacter pylori
or Neisseria gonorrheae (Falush et al. 2001; Feil and Spratt 2001). In
the middle, there are microorganisms with a moderate recombination
background that generate new genomic mosaic structures more fitted
to deal with the environment, yielding new successful clones through
a never-ending evolutionary process.
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The influence of allelic exchange in the evolution of bacterial
pathogens has been measured by calculating the relative weight of
recombination and mutation rates. Traditionally, these calculations
have been performed on multilocus sequence typing (MLST) data
resulting from the analysis of housekeeping genes (HK). However, the
use of MLST data has yielded strikingly different results within the
same species when estimations are performed with dissimilar MLST
loci, strain samples, or analytical methodologies (Didelot and Maiden
2010). The rational for using this strategy relies on several arguments.
On the one hand, large data sets are available for molecular typing
purposes, and HKs are commonly dispersed around the chromosome,
which prevents more than one gene from being affected by a single
recombination event. Moreover, the use of HKs intends to avoid bi-
ased results because the accumulation of mutations may be con-
founded with the exchange of alleles by recombination when we
employ loci that are either “highly polymorphic” or “too conserved”,
multicopy or under positive selection (Maiden 2006). Nevertheless,
this may not be a straightforward assumption as, except for the fixa-
tion of beneficial mutations through positive selection, the occurrence
of point mutations exactly in the same genomic position simulta-
neously for several strains (homoplasy) likely results from recombi-
nation within the population (Awadalla 2003). Another question
when employing MLST data to infer recombination is the use of
a low number of HKs (usually seven), which may not accurately
represent the genomic variability. Indeed, a previous study on bacteria
found no justifiable reason for applying HKs when inferring intraspe-
cies phylogenetic relationships, and it pointed out that the major
concern when choosing candidate loci should rely on their genetic
variability (Cooper and Feil 2006). Thus, a wider approach based on
using full-genome sequences has been recently applied, as it is
expected that biasing effects from “inconvenient” loci are diluted.
However, there is a multiplicity of bacterial species in which genomes
have a highly heterogeneous representation of loci with different traits,
such as polymorphism degree, size of intergenic regions, and selective
pressures. Thus, it should be assessed how loci nature shapes the
estimation parameters for understanding microbial evolution.

One microorganism that may constitute a good model for
evaluating the bias associated with the calculation of recombination
and mutation rates through the analysis of different types of loci is the
obligate intracellular human pathogen Chlamydia trachomatis due to
its singular genomic features. Indeed, the core and the pan genomes of
the 15 serological variants (serovars) of this pathogen are nearly iden-
tical, indicating that horizontal gene transfer is not relevant in
C. trachomatis evolution. Moreover, the genome similarity among
serovars is about 99%, in which major polymorphism is provided
by few highly variable loci dispersed throughout the chromosome
(Thomson et al. 2008), with evidence of positive selection for some
of them (V. Borges, A. Nunes, R. Ferreira, M. J. Borrego, and J. P.
Gomes, unpublished data; Joseph et al. 2011). Also, C. trachomatis is
under the final stages of the evolutionary process of genome reduction
(Zomorodipour and Andersson 1999), containing few nonessential
genes and pseudogenes. Therefore, intergenic regions (IGR) likely
contain regulatory domains of essential genes, which make IGRs pu-
tative targets of selection. In fact, it has been shown that several IGRs
exhibit the same phylogenetic signal as neighboring genes (Nunes
et al. 2008). Finally, although mutation events likely constitute the
C. trachomatis major evolutionary driving force (Nunes et al. 2008),
phenomena of genome-dispersed recombination have been recently
described, seemingly related to tissue tropism and antigenic variability
(Millman et al. 2001; Gomes et al. 2007; Jeffrey et al. 2010). Accord-
ingly, we applied the widely used robust bioinformatic platform Clo-

nalFrame (Didelot and Falush 2007) to several data sets encompassing
loci that may differently impact the estimation of recombination and
mutation rates, namely, (i) HKs from a recently developed MLST
scheme (Dean et al. 2009); (ii) positively selected genes (PSG); (iii)
five groups of loci strictly ranked by their number of alleles; and (iv)
intergenic regions. The results from these data sets were compared
with data generated through a wide genomic approach. The present
study gets insights on the bias introduced when loci with different
genetic features are used to estimate recombination and mutation
rates. Our approach differs from previous evaluations (Cooper and
Feil 2006; Kennemann et al. 2011; Pérez-Losada et al. 2006) as we
have assessed the individual weight of each group of loci. We believe
our results may help to elucidate how the evolutionary parameters are
shaped, which will certainly be essential for the comprehension and
validation of the data generated through the computational analyses of
full-genome sequences.

MATERIALS AND METHODS

Chlamydial culture
By the time this work was performed, only four (A/Har13, B/Jali20,
D/UW3, and L2/434) out of the 15 C. trachomatis prototype strains
(representing the 15 existing serovars) had been fully sequenced
(Stephens et al. 1998; Carlson et al. 2005; Thomson et al. 2008; Seth-
Smith et al. 2009). To obtain sequences for in silico analysis, we prop-
agated prototype strains from the remaining serovars (Ba/Apache-2,
C/TW3, E/Bour, F/IC-Cal3, G/UW57, H/UW43, I/UW12, J/UW36,
K/UW31, L1/440, and L3/404). Our strategy relied on using the 15
prototype strains representing all serovars because tropism differences
are well defined at the serovar level, and recent phylogenetic analysis
showed that the chosen strains are likely representative of the major
genetic variability within the species (Harris et al. 2012). Indeed, it is
known that differences between same-serovar strains may be as low as
20 single nucleotide polymorphisms (SNP) (Clarke 2011). Cell culture
was performed through standard techniques as previously described
(Borges et al. 2010). Briefly, T25 cm2 flasks of confluent HeLa 229 cell
monolayers were independently inoculated with each strain, and cul-
tures were allowed to grow at 37�, 5% CO2 for about 48 hours. After
bacterial growth, infected cells were harvested by scraping, sonicating,
and centrifuging, and the obtained bacterial pellet was subjected to
DNA extraction by using the QIAamp DNAMini Kit (Qiagen) accord-
ing to manufacturer’s instructions, and then stored at 280� until use.
We then amplified and sequenced the selected genomic regions (see
below) for the propagated serovars. PCR primers are listed in support-
ing information, Table S1. Sequencing was performed as previously
described (Gomes et al. 2006).

Loci selection and grouping strategies
Considering the high genomic similarity among the C. trachomatis
serovars (about 99%) (Thomson et al. 2008), we used comparative
genomics over the four fully sequenced serovars to select informative
genomic regions for inferring evolutionary parameters. We were able
to select a set of 136 chromosome-scattered and functionally diverse
genomic regions (see Table S2), which include 56 IGRs and 80 genes.
The selected genomic regions are highly representative of the C. tra-
chomatis serovar variability as they comprise about 55% of the total
SNPs in just one tenth of the chromosomal length (P , 1027) (see
Table S3). These regions were then differently grouped according to
specific characteristics. First, for each serovar, we created a group
encompassing all 136 regions by compiling their sequences while
maintaining the relative order of loci in the C. trachomatis
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chromosome. Throughout the text, the strategy using this first data set
will be referred to as the wide genomic approach. The second data set,
termed HK-MLST, is constituted by the seven HKs that compose
a MLST system (Dean et al. 2009). Subsequently, we created five
additional data sets by dividing the 80 selected genes according to
the number of alleles that each gene defines among the 15 C. tracho-
matis serovars: 1 to 5 (17 genes), 6 and 7 (17 genes), 8 and 9 (18 genes),
10 and 11 (15 genes), and 12 to 15 alleles (13 genes) (see Table S2).
Finally, we intended to evaluate the impact of using PSGs and IGRs,
which are loci categories commonly not recommended when perform-
ing this type of analysis, although their potential confounding effects
lack experimental support. Thus, we created two data sets composed of
11 PSGs and 56 IGRs, respectively. The use of the IGR data set also
relies on recent evidence indicating that noncoding regions may also be
affected by selection (Andolfatto 2005; Bush and Lahn 2005) and re-
combination (Gomes et al. 2007), which suggests that there is no
apparent reason to completely rule out their use for evolutionary infer-
ences. All studied loci are represented in Figure 1.

progressiveMauve alignments
Mauve software (http://asap.ahabs.wisc.edu/mauve/) allows the con-
struction of multiple genome alignments for the identification of
conserved regions, SNPs, indel events, inversions, and other rear-
rangements (and their breakpoints location) across the aligned
genomes (Darling et al. 2004). We aligned the sequences of the 15
prototype strains of each data set through the progressiveMauve al-
gorithm (Darling et al. 2010) of the Mauve software v2.3.1. As the
sequences length of different data sets were below 1 Mbp, we used
a conservative seed weight value (match seed weight ¼ 11) to improve
the alignment by reducing noisy matching. The resulting alignments
were manually confirmed, and the output files were subsequently used

in ClonalFrame software. Although Mauve is particularly useful for
aligning full-genome sequences, we used this application as it gener-
ates reliable alignments in a compatible format for ClonalFrame.

ClonalFrame analysis
ClonalFrame (http://www.xavierdidelot.xtreemhost.com/clonalframe.
htm) is a widely applied software for inferring the bacterial evolution-
ary parameters and events underlying DNA sequence variation either
from full genomes or from independent regions (such as MLST data
sets). The computational cost of the analysis is greatly reduced when
the inference is applied to unlinked regions rather than to full
genomes, by reconstructing the clonal genealogy and further analyzing
each region separately. This is a viable strategy as unlinked regions of
the genome are assumed approximately independent given the clonal
genealogy of a sample. The ClonalFrame inference is performed in
a Bayesian framework, assuming a standard neutral coalescent model
(Didelot and Falush 2007).

In this study, the ClonalFrame software v1.2 was used for
estimating mutation and recombination rates of dissimilar data sets
to evaluate the impact of loci nature on these estimations. Considering
the aim of the present study, the ClonalFrame options were selected to
(i) estimate the mutation rate (u), the rate of new polymorphism
introduced by recombination (n), the average tract length of a recom-
bination event (d), and the recombination rate (R) during each run;
(ii) construct a uniformly chosen coalescent tree; (iii) assume a con-
stant population size model; (iv) generate a random seed value for
each independent run; and (v) perform the branch swapping attempts
in at least half of the time of each iteration. For each data set, two
independent ClonalFrame runs were performed. When alignment
artifacts hampered the correct function of the software, we manually
removed the gap regions while maintaining the genetic variability
among C. trachomatis serovars, and both new Mauve alignments
and ClonalFrame runs were performed. All simulations were carried
out using a Linux server.

As different numbers of iterations may yield deviating results, we
conducted an analysis of the ClonalFrame reproducibility by perform-
ing two independent runs of the wide genomic data set, using a wide
range of iterations (30,000, 100,000, 300,000, 500,000, and 1,000,000).
For all runs, the first half of the iterations was discarded as burn-ins,
and parameters were sampled every 100 iterations during the second
half. The optimal number of iterations determined was applied for the
subsequent analyses.

We also assessed the convergence of the estimated parameters
(u, R, d, and n) from independent runs on the same data set and with
the same options by applying the method of Gelman and Rubin
(1992) implemented in the Graphical User Interface of the Clonal-
Frame software. We assumed replicate runs to be convergent only
when the calculated test statistic was adequate (i.e. below 1.1) for all
parameters. Additionally, we performed a fine-tune analysis using the
ClonalFrame phylogenetic tree comparison tool, which allows the
visualization of the level of confidence (based on a color scale) in each
node of the consensus tree of a first run according to the output data
of a second run. Each node is given a color code according to the level
of confidence; white and black indicate no confidence or total confi-
dence, respectively. On this basis, we attributed a score to each node
[ranging from zero (white nodes) to three (black nodes)] (see Figure
S1) to achieve a numerical comparison between the runs of different
data sets. The sum of the scores of all nodes of each tree was then
divided by the respective number of nodes to calculate an average
concordance score. Finally, we evaluated the confidence on the

Figure 1 Chromosomal mapping of studied loci. The two outer lanes
represent the DNA strands of the C. trachomatis chromosome of
D/UW3 strain (GenBank accession number NC_000117), where the
80 genes (from the total 136 genomic regions evaluated) are shown in
black. Each data set is represented by inner circles: HK-MLST (light
blue), alleles 1 to 5 (green), alleles 6 and 7 (pink), alleles 8 and 9 (dark
blue), alleles 10 and 11 (red), alleles 12 to 15 (purple), PSG (orange)
and IGR (gray). The central circle shows the G/C skew plot. The precise
identification of the loci is shown in Table S2.
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estimates of r/m (measure of the weight of recombination on diver-
sification relative to mutation) and r/u (measure of the frequency of
occurrence of recombination relative to mutation events) obtained for
each data set.

Nucleotide sequence accession numbers
The sequences of all C. trachomatis loci determined in this study were
submitted to GenBank under the accession numbers JQ066324–
JQ066356 and JQ066367–JQ066722.

RESULTS AND DISCUSSION
The analysis of the evolutionary history of bacteria relies on
deciphering genetic differences that arose from several mechanisms,
of which point mutations and recombination events are among the
most relevant driving forces. The knowledge of the frequency and the
relative weight of these two mechanisms is crucial for understanding
the biology and the genealogy of microorganisms. This is generally
achieved by calculating the ratio r/u, which determines the relative
frequency of occurrence of recombination and mutation events, and
the ratio r/m, which measures the relative impact of recombination
and mutation in genetic diversification. In fact, the estimation of these
basic population parameters for microbial pathogens has proved use-
ful, for instance, in explaining the dynamics of drug resistance and
pathogenicity and may indicate which epidemiological process should
be targeted for disease control (Conway et al. 2000; Awadalla 2003).
Nevertheless, identifying and determining the exact extent of recom-
bination events is not a simple and straightforward procedure, as there
is no ideal methodology for establishing relationships for all bacteria,
from strictly clonal to highly recombining microorganisms (Stumpf
and McVean 2003). Didelot and Falush (2007) developed a robust
computational platform, ClonalFrame, which has yielded valuable
results in the inference of both the population structure and the role
of the recombination process in several microorganisms, such as Hel-
icobacter pylori (Kennemann et al. 2011), Listeria monocytogenes (Den
Bakker et al. 2008), and Salmonella enterica (Didelot et al. 2011).
Although most inferences have been generated by using MLST data,
it is expected that the analysis of full-genome sequences will be the
most applied strategy in the near future. However, loci of different
natures are heterogeneously represented in bacterial genomes, and it is
not known if they differently impact evolutionary inferences. In the
present study, we evaluated how loci nature shapes r/u and r/m
estimates, and we used the generated data to speculate about the
validity of using full-genome sequences as the approach to estimate
such parameters.

Wide genomic approach
We compiled loci sequences for all 15 existing serovars, encompassing
about 55% of all chromosome SNPs (see Table S3), which is expected
to better represent the C. trachomatis intraspecies genetic variability.
This wide genomic data set was preliminarily used for the assessment
of the accuracy of the ClonalFrame analysis by evaluating whether
different numbers of iterations (i.e. different durations of the simula-
tion period) yield variable results. In fact, the optimization of the
number of iterations is a critical step when performing ClonalFrame
analysis. The software was run with 30,000, 100,000, 300,000, 500,000,
and 1,000,000 iterations for evaluating their impact in both r/m and
r/u ratio estimations. We found that the highest dispersion of the
estimates of both parameters was obtained for the runs using 30,000
and 100,000 iterations, which noticeably affected the mean values,
revealing that for a low number of iterations, small variations may

markedly bias the estimation of the evolutionary parameters (Figure
2). By increasing the number of iterations, there was a tendency to-
ward the stability of the results, as similar values were detected when
using 500,000 and 1,000,000 iterations. These runs were also the most
reproducible and reliable; thus, all subsequent analyses were run by
using 1,000,000 iterations to decrease the putative bias strictly associ-
ated with simulation duration. We believe that a preliminary step of
optimization is critical and mandatory, despite its large computational
cost (.50% of the 972 CPU hours dispended in all performed
simulations).

Another critical stage when estimating r/m and r/u relies on en-
suring that independent runs yield convergent estimates for all param-
eters (u, R, d, and n) and thus sustain similar results. For the wide
genomic data set, we observed a convergence scenario for all estimated
parameters by using the Gelman-Rubin test implemented in the soft-
ware (Figure 3, Table S4). As a fine-tune evaluation of convergence, we
also used the phylogenetic tree comparison tool, which assesses the
degree of concordance between trees from replicate runs (Figure 4,
Table S4). It is worth noting that the inferred tree for the wide genomic
data set had total confidence in all nodes (average concordance score¼
3), which, in addition to the accuracy (Figure 2) and convergence
assessment steps, supports that the ratios r/m and r/u were correctly
inferred through the analysis of this data set. The mean estimates of
r/m and r/u ratios were 0.21 and 0.01, respectively (Figure 5, Table S4),

Figure 2 Accuracy assessment of r/m and r/u estimations by varying
the number of iterations. The figure illustrates the impact of the num-
ber of iterations on the estimations of the ratios r/m (A) and r/u (B)
inferred from the wide genomic data set. The graphs present the
values and respective 95% confidence intervals of the two indepen-
dent runs performed with the same number of iterations. The stability
(graph plateau), reproducibility (the proximity of the mean estimates
from replicate runs), and high levels of confidence (narrower error bars)
of both r/m and r/u values were reached only for runs using 500,000
and 1,000,000 iterations.
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which seem plausible concerning the unique biology of this bacte-
rium. The low r/u value was expected due to the obligate intracellular
life style of C. trachomatis. Thus, recombination requires a host-cell
coinfection by distinct strains [which is expected to occur at a fre-
quency of 1% (Clarke 2011)] followed by the fusion of the inclusion
vacuoles where this pathogen replicates. With respect to the low r/m
value, the high genomic similarity degree of different serovars (about
99%) implies that, except for well-described situations (Millman et al.
2001; Gomes et al. 2004, 2006, 2007; Jeffrey et al. 2010), a recombinant
fragment introduces little diversity in the recipient microorganism.
Our estimates using 15 prototype strains are similar to those obtained
by Joseph et al. (2011) based on four prototype and eight clinical
strains (r/m ¼ 0.71 and r/u ¼ 0.07), in which the minor differences
may be due to the dissimilar sample sets. Indeed, both results place
C. trachomatis in the same position (among organisms with low re-
combination rates) of a r/m “scale” (from 0.02 to 63.6) presented in
a previous study that focused on a broad set of bacteria and archaea
(Vos and Didelot 2009).

HK-MLST
Although the MLST data has been widely used for estimating
recombination rates of several bacteria, nonconsensual results have
been published (Whittam 1995; Feil et al. 1999, 2001, 2003; Meats
et al. 2003), and they may be strikingly conflicting, as illustrated for
Bacillus cereus in which different studies reported recombination rates
differing up to two orders of magnitude (Hanage et al. 2006; Pérez-
Losada et al. 2006). For C. trachomatis, a previous study determined
a r/m mean estimate of 0.3 based on MLST data (Vos and Didelot
2009), which is in agreement with our estimation using the wide
genomic approach, although the authors reported wide 95% CIs
(0.0–1.8). Therefore, we decided to test a more recent MLST system
(Dean et al. 2009) for comparison purposes. We obtained r/m mean
values of 1.09 and 0.91, and r/umean values of 0.12 and 0.14 (Figure 5,
Table S4) from convergent and reproducible replicate runs according
to both the Gelman-Rubin test (Figure 3, Table S4) and the phyloge-

netic tree comparison (Figure 4, Table S4), despite the wide CIs that
hamper precise estimations (Figure 5, Table S4). Three major issues
may underlie the dissimilarity between MLST-based analyses: analyt-
ical methodology, strain sampling, and loci selection. As these two
analyses using MLST schemes were performed based on ClonalFrame
and employed the same set of serovars, we speculate that the loci
nature is the major factor influencing estimations. Therefore, MLST
data should be applied with prudence when performing this type of
evolutionary inference (Achtman 2008), as only a residual proportion
of the genome is analyzed [usually 6 to 10 loci of approximately 400 to
600 bp in length (Maiden 2006)], which implies that the whole genetic
diversity may not be guaranteed (Didelot and Maiden 2010). This is
especially relevant in monomorphic organisms, in which the maxi-
mum level of variability is extremely low (Achtman 2008). Neverthe-
less, the relevance of the application of MLST systems for the
characterization of bacterial isolates at the molecular level remains
unquestionable.

Allelic profile
MLST systems usually employ genes that assign a low number of
alleles. Therefore, we evaluated the impact of increasing the number of
alleles per locus on the estimation of mutation and recombination
rates, as the level of polymorphism could shape the results differently.
Independent runs were not convergent with the three data sets
involving loci that define the highest number of alleles (8 and 9, 10
and 11, and 12 to 15) (i.e. Gelman-Rubin statistic above 1.1 for at least
one parameter) (Figure 3, Table S4), and thus the parameters are
poorly estimated by the software, resulting in inaccurate inferences
of r/m and r/u ratios (Figure 5, Table S4). For the two groups of genes
assigning a low number of alleles (1 to 5, and 6 and 7), the replicate
simulations were convergent and reproducible, but they yielded a high
dispersion of both ratios estimates. Moreover, these results contrasted
with our estimations using the wide genomic data set and pointed to
an implausible scenario of an excessive weight of recombination on
genetic diversity of C. trachomatis (r/m mean ratios higher than 4

Figure 3 Convergence assess-
ment of the parameters u, n, d,
and R. For each data set, the
graph shows the convergence
values from two independent
simulations for the estimated
parameters u, n, d, and R. The
shaded region of the graph
(amplified on the right) indi-
cates the satisfactory range of
values (below 1.1) of the test
statistic for all parameters
according to the Gelman-Rubin
test. For the data sets PSG (or-
ange), “8 and 9 alleles” (dark
blue), “10 and 11 alleles”
(red), and “12 to 15 alleles”
(purple), convergence was not
observed for at least one
parameter.
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for the two groups) (Figure 5, Table S4). Globally, we found that
the level of polymorphism definitely affects the estimations of r/m
and r/u at both heterogeneity of results and confidence level. In
particular, loci presenting high mutation rates are more prone to
confound the estimations, which makes sense considering that an
excessive polymorphism is expected to mask the haplotype struc-
tures that have evolved over time, making it difficult to analyze the
presence or absence of recombination (Awadalla 2003).

Positively selected genes
The detection of genes under positive selection has been of great
importance for clarifying the evolutionary history of bacteria, as they
encrypt adaptive signatures that may underlie phenotypic differences,
such as those related to pathogenicity (Petersen et al. 2007; V. Borges,
A. Nunes, R. Ferreira, M. J. Borrego, and J. P. Gomes, unpublished
data). However, it has been assumed that PSGs should not be used to
infer recombination rates, in spite of the fact that their unsuitability
has not been validated experimentally. The rational for their exclusion
is that PSGs likely present an unusual number of changes, and the
fixation of mutations due to selection could be confounded with their
acquisition through a transferred recombining fragment (Maiden
2006). In fact, recombining fragments may bring together beneficial
mutations that allow a faster increase in fitness in the presence of
major environmental changes instead of solely accumulating point
mutations through positive selection (Vos 2009). It is also known that
recombination is increased in the proximity of positively selected
regions (Vos 2009; Petersen et al. 2007), as demonstrated, for instance,
for the genus Streptococcus (Lefébure and Stanhope 2007). In the
present study, we tested a data set composed exclusively of genes
putatively under positive selection (Joseph et al. 2011; V. Borges,

A. Nunes, R. Ferreira, M. J. Borrego, and J. P. Gomes, unpublished
data). The evaluation of accuracy revealed lack of convergence for all
parameters (values highly above the acceptable cut-off) (Figure 3,
Table S4), and the PSG data set was the bottom-ranked group in
analysis of the concordance between trees from independent runs
(Figure 4, Table S4). Consequently, we found that this data set pre-
sented unreliable (wide 95% CIs) and the least reproducible results,
which is reflected by the discrepant mean estimate values between
runs differing up to two orders of magnitude (Figure 5, Table S4).
These results suggest that, for genomes subjected to strong selective
pressures, estimations of recombination rates may be biased by the
presence of a high fraction of PSGs. Nevertheless, because it is
known that PSGs are also targets of recombination (Vos 2009), we
believe that, for the majority of the bacterial genomic contexts, the
use of wide genome approaches will likely buffer the confounding
effects of PSGs on estimations. In fact, in the present study, the
inclusion of PSGs in the wide genomic approach did not hamper
the accurate inferences of the evolutionary parameters.

Intergenic regions
The IGRs have been excluded for inferring evolutionary histories of
organisms, although they are known to carry promoter regions,
ribosome binding sites, as well as transcription factor and regulator
binding regions, which play critical roles in regulation of gene
transcription. Recent studies demonstrated that noncoding regions

Figure 4 Concordance score between phylogenetic trees. The chart
presents the average concordance scores between trees of replicate
runs calculated for each data set. More external values correspond to
higher concordance between trees, and the outer line represents the
maximum average score (score ¼ 3). Values were obtained by using
the tree comparison tool of the ClonalFrame, which ranks each node
of the first consensus tree according to the level of confidence found
between the respective nodes of both trees from replicate runs. The
color-based qualitative representation of this tool (see Figure S1) was
converted into a quantitative approach as described in Materials and
Methods to permit the concordance evaluation at the whole-tree level.
Only the wide genomic data set reached the maximum average con-
cordance score.

Figure 5 Estimates of r/m and r/u. The graphs show the estimates of
r/m (A) and r/u (B) ratios calculated by the ClonalFrame software. For
each data set, the results (mean and respective 95% CIs) of the two
independent runs performed with 1,000,000 iterations are shown. The
data sets that yielded nonconvergent runs assessed by the Gelman-
Rubin test (see Figure 3) are shaded in gray.
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are subject to significant selective constraints (Andolfatto 2005; Bush
and Lahn 2005). For C. trachomatis, we previously detected recombi-
nation hotspots involving IGRs (Gomes et al. 2007), and we observed
phylogenies of IGRs revealing the clustering of strains with the same
disease outcomes (Nunes et al. 2008), which suggest selection or hitch-
hiking events (Kaplan et al. 1989) involving these regions. This evidence,
together with the knowledge that the small genome of C. trachomatis
likely retains only the indispensable genes (Zomorodipour and Ander-
sson 1999), points to a relevant role of IGRs in C. trachomatis evolution.
Thus, we estimated rates of recombination and mutation using 56 IGRs
because the accumulation of mutations in these regions may not be
a random process and because they are heterogeneously represented
in different genomes. We obtained.90% of concordance between trees,
and a Gelman-Rubin test statistic below 1.1 for all parameters (Fig-
ures 3 and 4, Table S4), indicating convergence. The r/m and r/u
mean estimates (Figure 5, Table S4) are about 1-log above those
obtained for the wide genomic data set, but they are similar to the
HK-MLST data set estimates, which suggests that this large set
of noncoding regions and these specific HKs shape these evo-
lutionary parameters in a similar fashion for the model under
evaluation.

CONCLUSION
We used a specific human pathogen with well-defined genomic
characteristics as a model to study bias associated with the estimation
of evolutionary parameters by computational simulations. Our results
show that the estimation of mutation and recombination rates in
C. trachomatis is influenced by the characteristics of the loci used for
such calculations. Although the use of full-genome sequences to infer
recombination and mutation rates is suitable for most microorgan-
isms, we anticipate that soon a greater proportion of highly polymor-
phic or positively selected loci can make it an inaccurate approach.
Thus, the correctness of the final output will depend on the dilution
effect of these confounding factors by the remaining portions of the
genome with dissimilar architectures. As data from population genet-
ics has contributed to a better understanding of the biology and
pathogenicity of organisms, the clarification of the putative bias asso-
ciated with in silico inferences is of great interest for deciphering
evolutionary traits.
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