Table 2.
model A | model B | model C | model D | ||||
---|---|---|---|---|---|---|---|
θ | θ0 | β | θ1 (λ1) | θ2 (λ2) | θ1 (λ1) | θ2 (λ2) | |
B. anthracis | 0.10 | 6.9 | 490 | 0.30 (0.41) | 0 (0.59) | ∞ (0.03) | 0.06 (0.97) |
E. coli | 0.44 | 2.1 | 17 | 1.77 (0.46) | 0 (0.54) | 12 (0.15) | 0.15 (0.85) |
Staph. aureus | 0.24 | 0.87 | 10 | 0.92 (0.42) | 0 (0.58) | 14 (0.07) | 0.12 (0.93) |
Strep. pneumonia | 0.48 | 1.94 | 17 | 1.47 (0.53) | 0 (0.47) | 41 (0.08) | 0.20 (0.92) |
Strep. pyogenes | 0.33 | 1.93 | 23 | 0.57 (0.68) | 0 (0.32) | 40 (0.06) | 0.20 (0.94) |
N. meningitidis | 0.50 | 3.5 | 30 | 1.72 (0.52) | 0 (0.48) | 15 (0.16) | 0.19 (0.84) |
We determined for each of the four models A, B, C and D the parameters that minimize the distance Δ, see Eq. (6), between the empirical and the theoretical gene frequency distribution. Here we report the gene transfer parameter θ of the model A fit, the gene transfer parameter θ0 and the population growth parameter β of the model B fit, the genome fractions λ1 and λ2, and the gene transfer parameter θ1 of the model C fit, and the genome fractions λ1 and λ2, and the gene transfer parameters θ1 and θ2 of the model D fit.