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Traditional approaches to protein–protein docking sample the bind-
ing modes with no regard to similar experimentally determined
structures (templates) of protein–protein complexes. Emerging
template-based docking approaches utilize such similar complexes
to determine the docking predictions. The docking problem as-
sumes the knowledge of the participating proteins’ structures.
Thus, it provides the possibility of aligning the structures of the
proteins and the template complexes. The progress in the develop-
ment of template-based docking and the vast experience in tem-
plate-based modeling of individual proteins show that, generally,
such approaches are more reliable than the free modeling. The key
aspect of this modeling paradigm is the availability of the tem-
plates. The current commonperception is that due to the difficulties
in experimental structure determination of protein–protein com-
plexes, the pool of docking templates is insignificant, and thus a
broad application of template-based docking is possible only at
some future time. The results of our large scale, systematic study
show that, surprisingly, in spite of the limited number of protein–
protein complexes in the Protein Data Bank, docking templates can
be found for complexes representing almost all the knownprotein–
protein interactions, provided the components themselves have a
known structure or can be homology-built. About one-third of
the templates are of good quality when they are compared to
experimental structures in test sets extracted from the Protein
Data Bank and would be useful starting points in modeling the
complexes. This finding dramatically expands our ability to model
protein interactions, and has far-reaching implications for the pro-
tein docking field in general.
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Protein–protein interactions (PPI) are a key component of life
processes at the molecular level, and the number detected in

genome-wide studies is fast growing. We want to understand their
properties and be able to manipulate them for structure-based
drug design. For this purpose, we must characterize PPI structu-
rally, but their study by X-ray and NMR methods is demanding
and slow, and computational methods appear to be a necessary
complement.

The structural predictions of PPI generally rely on docking pro-
cedures that can be roughly divided into: (i) template-free dock-
ing, where many or all the possible binding modes of two proteins
are explored with no a priori knowledge of the structure of the
complex, and (ii) template-based docking, where the similarity
with previously known complexes determines the prediction. Tem-
plate-free docking methods rely on the geometric and chemical-
physical complementarity of the protein surfaces (1), now often
supplemented by statistical potentials (2, 3), and subject to a
variety of constraints (4). The template-free modeling can also
be applied to prediction of domain–domain structures (5, 6).
The Critical Assessment of Predicted Interactions (CAPRI) blind
prediction experiment (7) has shown that the template-free meth-
ods can yield good models of protein–protein complexes (8), but

their ability to sample the conformational space is limited, and the
multiple minima generate many false positives.

With single proteins, template-based modeling starts with the
target sequence being aligned on the sequences of putative tem-
plates, or threaded on their structures. This has long been known
to be more reliable and efficient than ab initio model building (9),
and can be used for genome-wide modeling. In model organisms
such as Escherichia coli or yeast, the Protein Data Bank (PDB)
offers valid templates for a significant part of their soluble pro-
teins (10), including those in known PPI (85% in E. coli and 39%
in yeast, according to our results). To model a PPI, the procedure
may be applied separately to each partner protein, but a template
must also be found for their assembly (11–17). Cocrystallized pro-
tein–protein structures are still few, and the availability of such
templates is a key issue. Nevertheless, we show here that good-
quality structural templates can be found for almost all known PPI
that involve proteins for which a structure is known or can be built
by homology. This suggests a new paradigm in PPI modeling:
When there is a template for the components, there is also a tem-
plate for the complex. Its rationale is that model building uses
sequence-based similarity in the case of a monomer, but structure
similarity for a complex. Two complexes with sequence identities
>40% adopt similar binding modes in a majority of cases (18, 19).
As protein structure is more conserved than sequence, similar
binding modes should also occur in the absence of sequence
similarity. Our results indicate that this is very frequent, which
dramatically expands our ability to model PPI.

Results and Discussion
The study is based on 126,897 PPI involving pairs of proteins with
both interacting partners from the same organism for 771 species
spanning the entire universe of life from Archaea to human. Mod-
els of individual proteins were built by NEST (20) from either
profile-to-profile or BLAST sequence alignments. The structure
alignment-based models of complexes were generated by TM-
align (21) (see Methods).

The structural similarity of two complexes was evaluated by
the TMm scores (the smallest of the receptor and the ligand TM-
scores). The similarity of the binding mode in two complexes was
assessed by two root-mean-square distances (rmsd). The inter-
face rmsd (IF), measured on the Cα atoms of interface residues,
is widely used to compare binding modes of the same monomer
[e.g., assessing the quality of CAPRI models (8)]. The interaction
rmsd (IA) was introduced by Aloy et al. (18) to compare binding
modes involving dissimilar monomers. It is measured on a stan-
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dard set of 14 points, seven attached to the ligands after super-
posing the receptors, and seven to the receptors after superposing
the ligands (18). IA correlates well with IF when it is used to com-
pare binding modes of the same monomer.

Fig. 1 shows how IA, a measure of the binding mode similarity,
correlates with TMm, a measure of the structural similarity be-
tween the complexes, in an all-to-all pairwise comparison of 989
from the DOCKGROUND (22) public resource for protein recog-
nition studies (http://dockground.bioinformatics.ku.edu) purged
at 95% sequence identity level. TMm values above 0.5 imply that
both components of the two complexes share the same fold (21).
Fig. 1 shows that nearly all such complexes have IA < 5 Å, mean-
ing that they also share the same binding mode (18). The inset
represents the phase transition that occurs near TMm ¼ 0.4.
Binding modes are mostly similar above, and mostly different
below, this threshold. Thus, TMm ¼ 0.4 threshold is a good
quantitative measure for distinguishing similar binding modes
and as such will be used in this the paper, although some results
will be presented for other threshold values as well.

In Fig. 2, we plot TMm against the lowest of the two sequence
identity values of the two components of the same complexes.
The bottom left quadrant contains pairs of complexes that differ
in both the sequences and the binding mode. They make up
96.3% of the data, reflecting the diversity of the complexes in
DOCKGROUND. The top right quadrant, with 0.9% of all data
and 24.9% of those with TMm > 0.4, contains pairs where con-
served sequences correlate with similar folds and binding modes.
The bottom right quadrant (75.1% of the data with TMm > 0.4)
contains pairs where the folds and binding mode are conserved,
but the sequences are not. Such pairs are three times as many as
those where the conservation of the binding mode correlates with
that of the sequences. Last, the top left quadrant indicates that a
similarity is detected by the sequence, but not the structural align-
ment. It is nearly empty, meaning that the structural alignments
find essentially all the templates detectable from the sequences.

The data in Fig. 1 show less diversity of interaction modes at
high degrees of structural similarity, compared to the interactions
at high sequence identity [see figure 2 in ref. (18)]. As seen from
Fig. 2 of this paper, correlation of high sequence identities and
structure similarities is spread, indicating considerable variation
in sequence/structure relationship. The observed difference be-
tween the distributions of sequence identity vs. interaction mode
and structure similarity vs. interaction mode reflects a more
direct relation of the structure to the binding.

In order to assess its predictive value, we tested the approach
on new protein–protein structures in PDB released in 2009–2011,
utilizing older template structures released before 2009. For 1296
new complexes, templates with TMm > 0.4 were identified for
all but nine complexes, and their quality was estimated by the
IF criterion as in CAPRI predictions. A majority (55%) of tem-
plates were homodimers, which are much more numerous than
heterodimers in PDB, whereas all targets were heterodimers.
Fig. 3 shows the distribution of the IF values. It is bimodal, with
36% of the modeled complexes below IF ¼ 5 Å, which should
make them good starting points for further modeling. When high
similarity templates (TM-score > 0.9) were excluded from the
search, templates were found for 1279 complexes, and 28% had
IF < 5 Å (Fig. 3), out of which only 4% account for homodimeric
templates (Fig. S1). Moreover, 1,194 complexes had a sequence
identity with at least one template monomer <40%, below the
threshold for correlation between sequence and binding mode
conservation. Out of those, 23% had structure alignment-based
models with IF < 5 Å. Higher TMm threshold values predictably
decrease the number of detected templates, while increasing the
overall quality of templates. However, this increase is relatively

Fig. 1. Correlation of the structural difference in binding modes with the
structure alignment score. The interaction rmsd (IA) is plotted against the
lowest of the two components protein TM-scores (TMm), in all-to-all pairwise
comparison of 989 complexes extracted from DOCKGROUND at 95% sequence
identity. In the inset, the cumulative fraction of the complex pairs with IA
<5 Å and TMm > threshold TMm is plotted as a function of threshold TMm
to show the transition that occurs near the threshold TMm ¼ 0.4.

Fig. 2. Correlation of structure and sequence similarity. The lowest of the
sequence identity fractions for two aligned components of a complex is
plotted against the corresponding TMm, in all-to-all pairwise comparison of
989 complexes extracted from DOCKGROUND at 95% sequence identity. The
lines separate quadrants below and above a sequence and a structure-based
threshold (see Text). In the inset, the fraction of the complex pairs with lowest
sequence identity >20% and 40% is plotted in 0.05 bins of TMm values to
show that many pairs with a similar binding mode (TMm > 0.4) have a
low sequence identity, below 20 or 40%.

Fig. 3. Benchmarking of template-based docking. The distribution of tar-
gets is shown according to the interface rmsd (IF) from the cocrystallized
structure. The benchmarking of PDB complexes released in 2009–2011 was
based on template structures from 2008 and earlier.
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small (Fig. S2). For example, the threshold increase from 0.4 to 0.5
leads to 22% fewer detected templates, while the fraction of good
templates increases by 7% only. This adds an argument for the
use of TMm ¼ 0.4 threshold as the optimal value that provides
a broad spectrum of templates, while maintaining their quality.

We also tested the 31 complexes that have been submitted as
targets to CAPRI in the years 2001–2009, and for which the X-ray
structure has been published. Template-based docking yielded at
least one model with IF < 10 Å for 11 targets, and one with IF <
5 Å for four (SI Text). Thus, the fraction of good quality tem-
plates was about the same as for the larger set of new complexes
in the PDB, but the coverage was comparatively low. A possible
reason is that CAPRI avoids “trivial” targets similar to complexes
already in PDB, whereas such similarities are of obvious interest
when modeling a complex of biological interest.

Benchmarking of the predictive approaches, based on the
X-ray structures in PDB or on those available in blind experi-
ments, like critical assessment of structure prediction (9) and
CAPRI (7), has its limitations. Such benchmarking is performed
on the pool of structures that reflects capabilities and priorities
of structural biologists and under-represents significant areas of
the structure universe, membrane proteins for instance. Thus, a
“true” predictive quality of the modeling (e.g., the percentage of
correct templates, the added value of structural alignment vs.
sequence alignment) remains unknown. However, its approxima-
tion by benchmarking a set of known structures is an accepted
practice in template-based modeling of individual proteins, as
well as in the younger field of the template-based modeling of
complexes.

We next asked to what extent template-based docking can be
used to model known PPI in whole genomes. Homology models
of individual proteins were built, and templates of their com-
plexes searched for in PDB as described in Methods. The results
shown in Fig. 4 concern the five genomes with the largest number
of known PPI. X-ray structures of the complexes represent 26%
of the known PPI in E. coli, and 6.7% in human. Very few (1% or
less) are available in yeast,Drosophila and Caenorhabditis elegans,
and sequence-based templates can be found for only 0.8–6% of
their known PPI. Structural alignments yield a dramatic increase
of the coverage: from 7% to 32% of the PPI in yeast, 1% to 18%
in Drosophila, and 2.5% to 28% in C. elegans. Fig. 5 shows an
example of a complex built by structural alignment of monomers’
homology models and a cocrystallized template, with low target/
template sequence identity.

Remarkably, structural templates were found for nearly all
(33,537 out of 33,840, or 99%) the complexes in which both
components could be built. In Fig. 4, “no template” therefore in-
dicates a failure to find a template for one or both components,
not of the complex. The coverage should therefore improve as
more individual proteins have their structure determined, but
also as more sophisticated high-throughput methods allow their

modeling at lower levels of target/template similarity. One can
think of such ability to detect templates for virtually all complexes
as a consequence of the monomers modeling by sequence simi-
larity, followed by modeling of the complex by structure similar-
ity, which is significantly broader in scope (structure is more
conserved than sequence).

Our observation correlates with the conclusions of the study
by Honig and co-workers (23) on the completeness of current
structural databases of protein–protein interactions. A significant
part of complexes with the structural templates in Fig. 4 (46%,
Fig. S3) have a higher accuracy template with TMm > 0.6, further
increasing the probability of the correct binding mode prediction.
A fraction of the PPI for which we failed to find a template may
be false positives, which are frequent in existing databases (24),
and conversely, not all structures of the complexes built by the
structure alignment will be correct. However, the significant suc-
cess rates in the benchmarking (see above) give confidence to the
results and suggest that a substantial part of the docked com-
plexes is of sufficient quality to inspire and guide experiments. In
any case, our finding that the existing pool of cocrystallized pro-
tein–protein complexes provides docking templates for nearly all
the known PPI that involve structurally characterized proteins,
has far-reaching implications for the docking field, placing tem-
plate-free docking in a narrow niche, similar to the template-free
prediction of individual proteins.

Methods
The PPI data were imported from the BIND (25) and DIP (26) databases.
Redundancy between BIND and DIP, defined as a difference in one or more
residues in at least one interacting partner, was excluded. Putative templates
for modeling individual proteins included all non-redundant protein struc-
tures in the PDB, with the same definition of redundancy. The Needleman-
Wunsch algorithm (27) with affine gap penalty (28) was used to search for
sequence homology templates in PDB. The scoring matrices were based on
sequence profiles from PSI-BLAST runs (29), as implemented in BLASTPGP, on
the non-redundant sequence database from the National Center for Biotech-
nology Information (http://www.ncbi.nlm.nih.gov), with substitution matrix

Fig. 4. Structural coverage of PPI. The data for five genomes with the largest
number of known PPI shows different categories of complexes structures:
(red) complexes with a X-ray structure, (green) complexes with a sequence
template, (blue) complexes for which the structure of the monomers is
known or can be built by homology; a structural template is found for 99%
of the latter complexes.

Fig. 5. A complex built by structural alignment of the homology models of
its components and a non-homologous structural template. The modeled
complex comprises the human Lyn A tyrosine kinase (sequence GI code
198941, blue ribbon) and the tyrosine kinase binding domain (TKB) of the
mouse Cbl (Casitas B-lineage) lymphoma protein (sequence GI code 6680858,
green ribbon). The inset shows the homo-dimeric SH2 domain of the human
Grb10 protein (PDB entry 1NRV), that was used as a template to build the
model (TM-scores 0.90 and 0.69). Sequence identities between the target and
the template monomer are 26 and 2.8%. The homology model of Lyn A was
based on the human Src tyrosine kinase (chain A of PDB entry 2H8H,
sequence identity 52%), that of the mouse Cbl TKB, on the human homolog
(chain A of PDB entry 1FBV, sequence identity 94%).
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BLOSUM62 (30), five iterations, and all other parameters set to default values
(for details of the procedure, see ref. 31).

An alignment was considered as significant if its normalized raw score was
>1. If no significant profile-to-profile alignment was found, a single iteration
was performed with BLASTPGP. Alignments were retained for modeling if
the sequence identity was >20% and it covered ≥40% of the target se-
quence. If template complexes were found in PDB, the pair of the alignments
with the highest normalized raw score (for profile alignments) or lowest
e-value (for PSI-BLAST alignments) was retained to build a model of the com-
plex. In case of more than one alignment with the same score, the one with
the highest sequence identity between the target and the template was
used. In case of more than one alignment with the same sequence identity,
we used the ones with the highest coverage of the target to the template (for
the PSI-BLAST alignments) and/or with the template of highest PDB quality
(best resolution, least amount of missing atoms, etc.). If no template complex
was found, models of the components were built using the best alignments
(with the above criteria) on single protein templates. The protein models
were built by the NEST program from the JACKAL package (20) with the
default parameters. More elaborate, multitemplate methods could not be
considered in view of the high-throughput nature of our study.

The search for template complexes employed TM-align (21) to perform
the structural alignment of the modeled components on the 11,932 X-ray

structures extracted from PDB. The structures resolution had to be <3 Å, they
had to be at least a dimeric biological unit, and the sequence identity be-
tween different structures had to be <90% for at least one component of the
dimers. Biological unit coordinates were obtained from ftp://ftpwwpdb.org/
pub/pdb/data/biounit. The pairs of the structural alignments were ranked by
the sum of the receptor and ligand TM-scores, and those with the TMm (the
smallest of the receptor and the ligand TM-scores) >0.4 were retained for
model building, performed by applying the rigid-body transformation ma-
trices to the component models. Models with very small interfaces (buried
surface area <50 Å2), or too many clashes (>5% of the intermolecular
atom–atom distances shorter than the sum of corresponding van der Waals
radii) were rejected, in which case the next alignment on the list was used.

A publicly available Web-based resource to browse and analyze possible
models of protein–protein complexes, based on the target-template structur-
al similarity, is currently being developed in our group.
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