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A new de novo protein structure prediction method for transmem-
brane proteins (FILM3) is described that is able to accurately predict
the structures of large membrane proteins domains using an en-
semble of two secondary structure prediction methods to guide
fragment selection in combination with a scoring function based
solely on correlatedmutations detected in multiple sequence align-
ments. This approach has been validated by generating models for
28 membrane proteins with a diverse range of complex topologies
and an average length of over 300 residues with results showing
that TM-scores > 0.5 can be achieved in almost every case follow-
ing refinement using MODELLER. In one of the most impressive re-
sults, a model of mitochondrial cytochrome c oxidase polypeptide I
was obtained with a TM-score > 0.75 and an rmsd of only 5.7 Å
over all 514 residues. These results suggest that FILM3 could be
applicable to a wide range of transmembrane proteins of as-yet-
unknown 3D structure given sufficient homologous sequences.

structural bioinformatics ∣ protein modeling ∣ compressed sensing ∣
amino acid contacts

Alpha-helical transmembrane proteins (TMPs) constitute
roughly 30% of a typical genome and play critical roles in

a diverse range of biological processes whereas many are also im-
portant drug targets. Despite the recent increase in the number of
solved TMP crystal structures, coverage of TMP fold space re-
mains sparse, particularly at high resolutions, with close to 300
unique structures deposited as of 2011 (1). Computational meth-
ods to predict TMP structure are therefore vital in helping to
further our knowledge of the structure and function of these
proteins.

To date, TMP structure prediction has been dominated by to-
pology prediction. Machine learning-based predictors, trained
and validated using topology data derived from structural data
combined with evolutionary information, now achieve prediction
accuracies in the range 80–90% (2, 3). Another approach, based
on an experimental scale of position-specific amino acid contri-
butions to membrane insertion free energy, achieves similar
accuracy suggesting that predicting TMP topology from first prin-
ciples is an achievable goal (4).

As with globular proteins, predicting the structure of TMPs by
homology modeling is very effective particularly when TMP-spe-
cific methods are used (5); however, the paucity of solved struc-
tures means that homology modeling can only be applied to a
minority of TMP families. With this in mind, a small number
of de novo modeling approaches, which attempt to build 3Dmod-
els for TMPs without the use of homology to known structures,
have also been developed.

FILM (6), a modification of the globular protein structure pre-
diction method FRAGFOLD (7, 8), attempts to assemble folds
from supersecondary structural fragments taken from a library of
highly resolved protein structures using simulated annealing.
FILM differs from FRAGFOLD in the addition of a membrane
environment potential, derived from the statistical analysis of 640
transmembrane helices, by measuring the relative frequencies of

each amino acid at fixed distances from the membrane center.
These values were transformed into energy-like terms by applying
the inverse Boltzmann equation. FILM was shown to be able to
predict the correct topology and conformation for four out of five
small protein domains of up to 79 residues at a reasonable level of
accuracy. The main limitation of FILM was that the potential
function was unable to reproduce the compactness of large trans-
membrane helix bundles that are often not as compact as globular
helical proteins. FILM2 improved upon the prediction of larger
bundles by incorporating prediction of lipid exposure from var-
iphobicity analysis (9) into the original FILM potential function
allowing models of seven-helix bacteriorhodopsin and rhodopsin
to be generated to within 6–7 Å rmsd of the native structures (10).

Like FRAGFOLD, Rosetta (11–13) assembles folds from frag-
ments of known structures with local sequence similarity to the
target. Again, statistical potentials and simulated annealing are
used to find low energy structures. An adaptation of Rosetta,
RosettaMembrane (14), added an energy function that described
membrane intraprotein interactions at atomic level and mem-
brane protein/lipid interactions implicitly while treating hydrogen
bonds explicitly. This allowed the prediction of 12 small TMP
domains of up to 150 residues to within 4 Å rmsd of the native
structures suggesting that the essential physical properties that
govern the solvation and stability of TMPs were being captured.
A subsequent development allowed a small number of distance
constraints to be applied to helix-helix packing arrangements,
predicted from sequence (15–17) or identified from experimental
data, allowing larger structures of between 90 and 300 residues
with a diverse range of topologies to be predicted with reasonable
accuracy (18). Results showed that only a single constraint was
sometimes enough to enrich the population of near-native mod-
els; whereas, models within 4 Å of the native structure could be
achieved in four cases.

The use of knowledge-based potentials derived from statistical
analyses of knownTMP structures has been the standard approach
for de novo prediction of these proteins. Recently, however, signif-
icant progress has been made in inferring residue-residue contacts
directly from evolutionary information, i.e., from the observation
of correlated mutations in multiple sequence alignments (MSAs).
Given a sufficiently accurate list of contacts, it has long been
realized that the native fold of a protein can easily be deduced from
this information alone (19, 20); however, accurate prediction of
residue-residue contacts has been the bottleneck.
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The main source of information exploited in contact prediction
is that of correlated mutations observed between sites in aligned
protein families. Although the causal link between residue-resi-
due contacts and correlated mutations is not fully understood, the
underlying hypothesis is that any given contact, critical for main-
taining the fold of a protein, will constrain the physicochemical
properties of the two amino acids involved. Should either or both
contacting residues mutate, this is likely to disrupt the stability of
the contact and, thus, reduce the stability of the native structure.
In such a situation, one or both residues are more likely to mutate
to a more physicochemically complementary amino acid pairing.
Thus, pairs of residues seen to coevolve in tandem, therefore pre-
serving their relative physicochemical properties, are likely to be
proximate in the native structure.

Although many different approaches have been proposed for
predicting contacts from sequence data (19–31), success has re-
mained relatively modest (32). The major obstacle in contact pre-
diction has been dealing with indirect coupling effects that arise
where direct physical coupling between sites AB and BC result in
apparent correlations between sites AC even though no direct
interaction exists between AC. Lapedes et al. (33) related the
problem of decoupling mutation correlations in MSAs to the in-
verse Ising problem in statistical physics and proposed a solution
based on entropy maximization; however, it is only recently that
practical solutions to the decoupling problem have been pro-
posed (34–36) and applied to protein structure prediction (37).

Recently, we developed a new contact prediction approach
called PSICOV (38) that makes use of sparse inverse covariance
estimation (SICE) techniques to overcome effectively the indir-
ect coupling effects that plague correlated mutation analysis of
sequence alignments. When sufficient homologous sequences
are available, results of using PSICOV to predict contacts from
sequence alignments can be quite remarkable. In some cases, the
accuracy of contact prediction can approach 80% even for long-

range contacts (i.e., contacts separated by >23 residues in the
sequence).

We have already shown that contacts predicted using PSICOV
are enough on their own to identify the native fold for medium-
sized (<200 residues) globular βα protein domains (39); however,
it was apparent from this work that an ideal application for the
approach would be in predicting the folds for alpha-helical TMP
domains. Due to the geometric constraints of the helices and the
architectural constraints provided by the lipid bilayer, the con-
tacts predicted by PSICOV should be more than sufficient to
identify correctly the native fold even for large TMPs.

With this in mind, we have modified the original FILMmethod
by replacing the statistical potentials with a single scoring func-
tion based simply on predicted contacts and estimated probabil-
ities. To show the power of PSICOV in predicting long-range
contacts, we have deliberately avoided the use of knowledge-
based potentials or other statistically derived scoring functions
in FILM3. In this way, the predictions can be considered purely
de novo, i.e., using only information derivable from the target se-
quence (and its homologues) to produce a 3D model.

Results
In this section, we describe the results of applying FILM3 to the
28 target sequences listed in Table 1. These targets have a diverse
range of complex topologies, containing between four and twelve
transmembrane helices, in addition to unusual features such as
reentrant and interfacial helices. Furthermore, they are signfi-
cantly larger than those used in any previous TMP de novo mod-
eling study having an average length close to 300 residues and a
maximum of 531. Several targets also contained irregular regions
within transmembrane helices that disrupt the backbone confor-
mation and lead to deviations in helix direction whereas most dis-
played a wide distribution of helix tilt angles with respect to the
membrane normal rather than idealized up-down helix packing.
As PSICOV requires fairly large MSAs to be most effective,

Table 1. Modeling targets. Topology indicates the number of transmembrane helices. Contact performance by PSICOV (38) is based on
L∕2 precision (i.e., top-L∕2 predictions for a protein of length L)

Top L/2 contact precision at
sequence separation

PDB Protein Length Topology MSA size Total 5–9 10–22 >23

1fftC Ubiquinol Oxidase 185 5 6805 0.215 0.125 0.056 0.237
1gzmA Rhodopsin 329 7 38101 0.576 0.205 0.333 0.515
1ldiA Glycerol uptake facilitator 254 6 3899 0.633 0.448 0.423 0.523
1pw4A Glycerol-3-Phosphate Transporter 434 12 82032 0.596 0.202 0.432 0.587
1xqfA Ammonia Channel 362 11 3177 0.670 0.469 0.667 0.571
2abmH Aquaporin Z 227 6 4035 0.632 0.368 0.577 0.518
2b2fA Ammonium transporter Amt-1 391 11 3188 0.694 0.500 0.674 0.577
2d2cN Cytochrome b6f 202 4 37253 0.373 0.125 0.286 0.265
2d57A Aquaporin-4 224 6 4082 0.602 0.400 0.359 0.487
2f2bA Aquaporin Aqpm 245 6 3893 0.683 0.410 0.462 0.634
2feeB ClC chloride transporter 441 10 3516 0.457 0.099 0.143 0.417
2nq2A ABC transporter permease HI1471 308 10 8071 0.697 0.311 0.523 0.626
2nr9A Protease GlpG 192 6 3979 0.536 0.265 0.269 0.433
2occA Mitochondrial cytochrome c oxidase 514 12 165064 0.624 0.476 0.500 0.535
2onkC Molybdate transporter ModBC 252 6 62736 0.646 0.306 0.429 0.488
2q7rA FLAP protein 140 4 479 0.239 0.000 0.036 0.268
2qfiA Zinc transporter YiiP 286 6 5418 0.194 0.192 0.175 0.111
2r6gG Maltose transporter MalFGK 284 6 42217 0.615 0.145 0.543 0.500
2witA Sodium-betaine symporter BetP 531 12 1803 0.407 0.146 0.149 0.313
2wswA Carnitine transporter 508 12 1827 0.405 0.167 0.128 0.331
2ydvA Adenosine receptor A2A 315 7 38924 0.595 0.197 0.276 0.532
2z73A Rhodopsin 350 7 37139 0.636 0.169 0.359 0.534
3b9wA RH50 protein 362 11 3211 0.489 0.229 0.606 0.407
3dhwA Methionine importer MetNI 203 5 66018 0.343 0.128 0.105 0.349
3mk7A Cytochrome c oxidase, cbb3 type 466 12 16147 0.308 0.130 0.250 0.291
3mktA MDR efflux pump 460 12 10035 0.342 0.378 0.368 0.247
3pjzA Potassium uptake protein TrkH 468 12 2598 0.472 0.341 0.448 0.366
3qnqA Saccharide transporter component ChbC 432 10 1967 0.560 0.257 0.211 0.413
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only targets with large numbers of homologous sequences were
selected. As a result, the long-range (>23 residue separation)
top-L∕2 (where L is the length of the protein) predicted contact
precision values exceeded 0.4 in 64% of targets (Table 1).

Table 2 summarizes GDT-TS, TM-score, and rmsd scores for
all models; whereas, Table 3 gives model energies and corre-
sponding TM-scores after the various stages of the FILM3 pro-
cedure. Fig. 1 illustrates some of the best predictions. Results
indicate that all targets, except for three, achieved a TM-score >
0.5 indicating a correct overall fold. Of the models with a TM-
score below 0.5, FLAP protein (PDB 2q7rA) correctly places 3
of 4 transmembrane helices while the fourth, which partially
aligns in our model, is stabilized by interchain contacts in the
native homotrimeric complex. Similarly, the zinc transporter
YiiP (2qfiA) model is let down by poor contact prediction at the
C terminus. In the native state, YiiP is a homodimer held together
in a parallel orientation by four Zn2þ ions in a tetrahedral bind-
ing site at the interface of the C-terminal cytoplasmic domains.
The transmembrane domain consisting of a bundle of six helices
is, however, reasonably well modeled resulting in a TM-score of
0.58 for nonloop residues (Table 2). Sodium-betaine symporter
BetP (2witA), a homotrimeric structure with a complex twelve
helix topology, is also stabilized by significant interactions be-
tween monomers. These include interactions between amphi-
pathic helix 7, which makes contact with helices 2, 3, 9, and 7
from the other two monomers, and a long osmosensing C-term-
inal helix that interacts with loop 2 and the C termini of the other
monomers via a salt bridge. This helix is modeled poorly though
the majority of the transmembrane helices are reasonably placed
with respect to their native positions.

Of particular note were six models with TM-scores > 0.7 in-
cluding cytochrome c oxidase (PDB 2occA) where 9 out of 12
transmembrane helices were perfectly placed (Fig. 1B) and,
again, the less accurately placed helices all forming stabilizing in-
teractions with additional chains in the native complex. The over-
all model has a global Cα rmsd of only 5.7 Å across all 514

residues, which indicates a globally correct native fold has been
clearly identified. Targets belonging to the aquaporin superfamily
fared very well with all six transmembrane helices accurately
modeled (Fig. 1D). Additionally, the two reentrant helices con-
taining the NPAmotif, whose asparagine residue plays a vital role
in water selectivity (40), are also accurately positioned adjacent to
the central channel (2d57A, Fig. 2). Reentrant regions were also
well modeled in the glycerol uptake facilitator (1ldiA, Fig. 2). In-
terfacial helices were generally positioned correctly, for example
in rhodopsin (1gzmA), where it is essential for binding the G-pro-
tein transducin suggesting that, in general, they form important
stabilizing contacts with adjacent transmembrane helices or loops
in addition to their expected role in constraining interhelix dis-
tances (41). Other than its N terminus, a series of beta strands
that may form a “lid” over the retinal binding site (42) but that
is poorly conserved across the whole family resulting in low con-
tact prediction performance for this region, rhodopsin produces
an excellent model with a TM-score of 0.65, with only minimal
deviations from the native helix axes (Fig. 1A) and a TM-score
of 0.79 over nonloop residues. We note that Marks et al. (37) have
recently used a similar combination of contact prediction and
constraint satisfaction to achieve comparable performance on
a 258 residue fragment of bovine rhodopsin (the fragment corre-
sponding to the truncated 7TM_1 alignment found in Pfam). In
their case, a TM-score of 0.5 (Cα rmsd of 4.8 Å over 171 residues)
was achieved on this region though, notably, this was accom-
plished in the absence of predicted transmembrane topology
information. The ammonia channel (1xqfA), a protein with a
complex 11 transmembrane helix topology, also produces a good
model with a TM-score of 0.72 while reproducing the significant
helix tilt angles present in the native structure, particularly helix
11 that is tilted ≈45° and lies across the membrane-exposed side
of the monomer (Fig. 1E).

In two cases, topology predictions were incorrect due to under
or over prediction of transmembrane helices. MEMSAT-SVM
under predicted the ABC transporter permease (2nq2A) topol-

Table 2. Summary of model quality. GDT-TS, TM-Score and rmsd values are calculated over all residue Cα
atoms (Left) and nonloop Cα atoms only (Right)

Over all residues Over nonloop residue subset

PDB GDT-TS TM-score RMSD GDT-TS TM-score RMSD Superposed residues Length

1fftC 42.03 0.564 5.86 52.97 0.669 4.50 101 185
1gzmA 42.71 0.654 9.63 55.78 0.790 3.79 212 329
1ldiA 44.29 0.677 5.37 52.46 0.744 3.93 173 254
1pw4A 36.81 0.660 8.90 42.77 0.723 5.35 318 434
1xqfA 44.61 0.721 5.40 52.08 0.786 4.14 253 362
2abmH 52.42 0.726 4.64 59.85 0.796 3.34 165 227
2b2fA 38.68 0.689 6.02 43.59 0.728 5.27 269 391
2d2cN 41.34 0.568 7.77 51.99 0.692 4.38 113 202
2d57A 55.13 0.745 4.20 62.34 0.817 2.78 160 224
2f2bA 50.31 0.719 5.49 57.88 0.792 3.30 165 245
2feeB 32.94 0.629 8.85 36.00 0.651 8.77 309 441
2nq2A 42.29 0.653 5.98 46.17 0.671 5.68 222 308
2nr9A 41.28 0.570 6.98 52.69 0.678 4.83 121 192
2occA 41.25 0.753 5.72 49.56 0.833 3.95 339 514
2onkC 42.96 0.626 6.92 48.33 0.678 5.88 195 252
2q7rA 27.50 0.324 8.87 34.67 0.367 7.21 106 140
2qfiA 26.31 0.467 10.94 46.25 0.582 8.30 60 286
2r6gG 32.22 0.501 9.81 38.84 0.558 7.74 177 284
2witA 14.60 0.364 21.11 17.35 0.382 19.96 392 531
2wswA 24.31 0.503 14.12 29.54 0.563 12.45 391 508
2ydvA 40.56 0.668 7.29 46.52 0.724 6.08 237 315
2z73A 41.00 0.634 12.93 51.08 0.746 8.37 231 350
3b9wA 38.26 0.624 13.64 43.67 0.666 13.81 245 362
3dhwA 42.73 0.582 8.30 45.80 0.597 7.97 143 203
3mk7A 26.88 0.534 9.91 32.45 0.582 8.49 329 466
3mktA 39.02 0.689 6.75 43.77 0.730 5.44 317 460
3pjzA 39.74 0.718 6.05 49.36 0.797 4.54 272 468
3qnqA 27.95 0.532 10.23 36.11 0.626 7.55 261 432
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ogy by two helices; whereas, the potassium uptake protein
(3pjzA) topology was over predicted by one helix. In each case,
the Z-coordinate constraints imposed by the missing or addi-
tional helices resulted in models with a number of misplaced
transmembrane helices as FILM3 was constrained from finding
the native structure; however, these models were easily detected,
having higher energies than equivalent models generated without
Z-coordinate constraints (Table 3) allowing correct models with
TM-Scores of 0.64 and 0.68 to be generated from the conforma-
tions without Z-coordinate constraints. All models were also
superposed with their native structures and carefully inspected

to evaluate the correctness of topology using transmembrane
helix locations. Aside from models with an incorrectly predicted
topology or where interactions with additional chains appear
to play a role in stabilizing the fold, only two additional chains
with a TM-scores > 0.5, the carnitine transporter (2wswA, TM-
score 0.503) and cytochrome oxidase CBB3 (3mk7A, TM-score
0.534), both twelve helix structures, contained a single transmem-
brane helix that did not clearly overlap with the corresponding
helix in the native structure.

In general, ensembles generated with Z-coordinate constraints
contained lower energy models in eight cases, six of which have a
higher TM-score than the lowest energy model generated without
Z-coordinate constraints (Table 3). In some cases, such as cyto-
chrome c oxidase (2occA) and the ammonia channel (1xqfA), the
improvement in TM-score is significant (>0.15); however, in a
further eight cases, models from ensembles generated with Z-co-
ordinate constraints have a higher energy and higher TM-score

Table 3. Summary of model quality at each step in the FILM3 process. Energy and Template Modeling (TM) scores are shown for
ensembles generated with and without Z-coordinate distance constraints, after recombination and after refinement

Ensemble without
Z-coordinate constraints

Ensemble with
Z-coordinate constraints

After
recombination

After
refinement

Target
Native structure

energy
Minimum
energy

Best
TM-score

Minimum
energy

Best
TM-score Energy TM-score Energy TM-score

1fftC −25.7 −55.3 0.56 −56.2 0.60 −57.6 0.56 −50.7 0.56
1gzmA −178.9 −214.7 0.65 −217.3 0.65 −222.9 0.66 −210.6 0.65
1ldiA −92.8 −94.6 0.65 −95.3 0.67 −102.4 0.64 −95.0 0.68
1pw4A −279.5 −315.5 0.63 −312.1 0.67 −335.7 0.65 −316.7 0.66
1xqfA −147.9 −135.4 0.50 −130.9 0.69 −154.4 0.72 −142.1 0.72
2abmH −82.9 −86.7 0.69 −86.3 0.70 −92.8 0.71 −88.7 0.73
2b2fA −199.6 −172.6 0.66 −145.5 0.64 −183.6 0.68 −169.4 0.69
2d2cN −41.6 −60.2 0.53 −60.1 0.49 −67.7 0.54 −55.3 0.57
2d57A −83.8 −86.2 0.70 −87.4 0.71 −96.6 0.74 −89.2 0.75
2f2bA −99.8 −103.0 0.72 −95.9 0.63 −108.2 0.70 −100.8 0.72
2feeB −86.2 −103.9 0.59 −84.8 0.36 −105.9 0.61 −92.3 0.63
2nq2A −161.9 −160.4 0.64 −133.0 0.61 −166.4 0.65 −160.2 0.65
2nr9A −60.8 −73.5 0.66 −68.4 0.56 −76.3 0.56 −71.1 0.57
2occA −233.7 −202.3 0.38 −215.2 0.54 −224.6 0.72 −217.2 0.75
2onkC −117.0 −128.4 0.55 −130.1 0.63 −134.9 0.64 −128.8 0.63
2q7rA −14.2 −24.3 0.25 −23.1 0.38 −24.5 0.40 −11.6 0.32
2qfiA −39.2 −111.9 0.46 −92.2 0.38 −112.4 0.46 −100.8 0.47
2r6gG −195.4 −200.8 0.50 −194.1 0.49 −203.2 0.51 −185.3 0.50
2witA −141.1 −94.5 0.35 −90.6 0.36 −94.9 0.35 −79.7 0.36
2wswA −140.0 −110.5 0.55 −105.9 0.42 −112.3 0.46 −99.9 0.50
2ydvA −176.3 −213.7 0.64 −208.8 0.60 −218.9 0.65 −209.4 0.67
2z73A −195.8 −223.7 0.59 −221.2 0.57 −224.3 0.62 −213.8 0.63
3b9wA −111.9 −137.0 0.52 −112.2 0.60 −145.5 0.61 −137.9 0.62
3dhwA −48.7 −83.6 0.58 −82.9 0.63 −85.0 0.56 −74.9 0.58
3mk7A −167.4 −167.9 0.46 −168.5 0.42 −178.0 0.48 −149.2 0.53
3mktA −160.1 −247.4 0.68 −250.6 0.70 −280.2 0.69 −269.1 0.69
3pjzA −180.7 −174.1 0.68 −139.8 0.44 −178.1 0.70 −165.4 0.72
3qnqA −132.0 −124.5 0.52 −123.2 0.39 −126.7 0.52 −117.2 0.53

Best TM-score indicates the TM-score for the minimum energy model.

Fig. 1. Prediction of TMP structures. Superposition between native (red) and
models (green) of (A) Rhodopsin (1gzmA), (B) Cytochrome c oxidase (2occA),
(C) Ammonium transporter Amt-1(2b2fA), (D) Aquaporin-4 (2d57A), (E) Am-
monia channel (1xqfA), (F) MDR efflux pump (3mktA). The two black lines
indicate the approximate position of the membrane.

Fig. 2. Re-entrant helices in Aquaporin-4 (2d57A, Left) and Glycerol uptake
facilitator (1ldiA, Right). Superposition between native (red) and models
(green).
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than models from ensembles lacking the constraints. This sug-
gests that the Z-coordinate constraints are useful for half of
the targets but that the final objective function is ineffective at
discriminating these additional cases where the energy is higher.
Targets producing ensembles with higher TM-scores without the
filter tended to have more complex topologies suggesting that the
simple linearly extrapolated Z-coordinate approximation is insuf-
ficient in such cases. The benefits of the recombination step were
more obvious, with higher TM-scores in 18 cases, whereas final
refinement using MODELLER improved the recombined mod-
els in 22 cases (Table 3).

Discussion
TMP structure prediction remains a challenging problem and is
particularly important in the context of the difficulties associated
with experimentally determining structures for this class of pro-
tein. To address this, we have developed FILM3, a de novo fold-
ing method that is able to predict accurately the structures of
large and complex TMP domains using a scoring function based
solely on the estimated probabilities of residue-residue contacts
predicted using PSICOV applied to large MSAs. We have vali-
dated this approach by generating models for 28 targets with a
diverse range of complex topologies and an average length of
over 300 residues with results demonstrating that mostly correct
folds [TM-scores > 0.5 (43)] can be achieved in almost all cases.

These results clearly indicate that contacts predicted by PSI-
COV are indeed more than sufficient to identify correctly the
native folds of even large TMP domains where large numbers
of homologous sequences are available and that near-atomic re-
solution de novo structure prediction using FILM3 could well be
an achievable goal in the future. We specifically wished to exclude
statistical potentials or physics-based force fields in the current
work to demonstrate the power of PSICOV in accurately predict-
ing residue-residue contacts and the ability of FILM3 to generate
native-like structures from this information alone; however,
an obvious next step is to consider augmenting FILM3 with
traditional knowledge-based potentials that should further in-
crease performance towards the goal of near-atomic resolution
modeling.

The fact that such high modeling accuracy can be obtained
simply from evolutionary analysis of large sequence families is,
nonetheless, remarkable. Also, as TMP families tend to be very
large, FILM3 should be applicable to many TMPs of biomedical
interest. From the results of this study, we can see that contacts
predicted by PSICOV appear to yield sufficient precision where
MSAs contain upwards of 400 sequences. Analysis of the current
Pfam database (44) suggests that, even today, more than 500 sin-
gle architecture transmembrane domain families exist with >400
aligned family members and yet have no experimentally deter-
mined 3D structure. Also, as more sequence data arrives from
next generation sequencing, this number will be expected to rise
rapidly. Considering that only 50 polytopic alpha-helical TMP
superfamilies have been structurally characterized to date (45),
applying FILM3 to these Pfam domains has the potential to ex-
pand our knowledge of TMP fold space significantly.

Although our results demonstrate an impressive advance in de
novo TMP modeling, it is clear that more sophisticated strategies
will be required to overcome a number of current limitations.
Modeling of extramembranous loops is substantially more chal-
lenging than transmembrane regions primarily due to sparsely or
poorly predicted contacts as demonstrated by the average differ-
ence in TM-scores over all residues compared to secondary struc-
ture regions only (Table 2). Inherent loop flexibility, often
essential for channel gating functionality, poses particular diffi-
culties for contact-based folding methods and may be handled
more effectively using an energy function with an appropriate sol-
vation energy term. Notably, targets that are particularly well pre-
dicted such as cytochrome c oxidase and aquaporin family mem-
bers tend to undergo relatively little conformational change upon
activation as opposed to a number of transporters that exhibit
distinct alternate conformations therefore requiring different sets
of contacts to stabilize each state. In such cases, model quality
appears to be limited by the inability to satisfy such multiple sets
of contacts simultaneously. Another issue is the stabilization of
chains via interactions between monomers in complexes that af-
fected all of our poorest models. TMP complexes are thought to
assemble in a rapid and orderly fashion allowing stabilizing inter-
actions to form between adjacent chains. Clearly, without knowl-
edge of these interactions, the FILM3 objective function will
struggle to discriminate between appropriate conformations.
Future modifications to PSICOV to allow contacts to be pre-
dicted between chains may enable membrane complexes to be
folded by allowing the objective function to evaluate all inter- and
intrachain contacts simultaneously (i.e., combined folding and
docking).

Despite these shortcomings, FILM3 is clearly a powerful tool
to allow complex TMP domains to be modeled entirely de novo to
unprecedented levels of accuracy for domains of such sizes. These
predicted models will hopefully prove valuable for directing ex-
perimental studies on TMP families where structural data is cur-
rently unavailable. Although the results here only cover TMP
structure prediction, the high level of success on this difficult pro-
blem alludes to future promise in predicting the structure of glob-
ular protein domains using similar techniques. Indeed, recent
work (37, 39) has already demonstrated that models for small
globular proteins (size range 48–223 amino acids) can be gener-
ated to a comparably high degree of accuracy using a similar com-
bination of contact prediction and constraint satisfaction, further
demonstrating the immense value of contacts predicted by meth-
ods such as PSICOV when applied to large MSAs to de novo pro-
tein structure prediction.

Methods
Contact Prediction.At the heart of FILM3 is PSICOV, a novel contact prediction
method based on SICE (38). The method begins by computing a 21m by 21m
sample covariance matrix using the observed single amino acid and amino
acid pair occurrence frequencies observed in a MSA with m columns:

Fig. 3. Observed TM-score of the final refined model plotted against mean
pairwise TM-score of all 28 target structures and an additional 4 structures
where poor quality contact predictions were used. A mean pairwise TM-
score > 0.32 is likely to yield a final model with TM-score > 0.5.
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Sab
ij ¼ f ðAiBjÞ − f ðAiÞf ðBjÞ; [1]

where fðAiBjÞ is the observed relative frequency of amino acid pair ab at
columns ij, fðAiÞ is the observed relative frequency of amino acid type
a at column i, and fðBjÞ is the observed frequency of amino acid type b at
column j.

To identify directly coupled residue pairings, we apply the graphical Lasso
approach of Banerjee et al. (46) as implemented by Friedman et al. (47) to the
above empirical covariance matrix to determine a sparse inverse covariance
matrix (Θ). To arrive at the final predictions of contacting residues for align-
ment columns i and j, the ℓ1-norm is calculated for the 20 × 20 submatrix ofΘ
corresponding to the 20 × 20 amino acid types ab observed in the two align-
ment columns (contributions from gaps are ignored):

Scontact
ij ¼ ∑

ab

jΘab
ij j: [2]

To calculate a final score that has reduced entropic and phylogenetic bias, we
correct the raw precision norms Scontact

ij as follows:

PCij ¼ Scontact
ij −

S̄contact
ði−Þ S̄contact

ð−jÞ
S̄contact ; [3]

where S̄contact
ði−Þ is the mean precision norm between alignment column i and

all other columns, S̄contact
ð−jÞ is the equivalent for alignment column j, and S̄contact

is the mean precision norm across the whole alignment.
Finally, to estimate the precision or Positive Predictive Value for each pre-

dicted contact, the raw results from the original 150 globular protein test set
for PSICOV were analyzed. For each target, PCij scores were first converted to
Z-scores by subtracting the mean and dividing by the standard deviation of
the scores obtained for that target. The Z-scores for all 150 targets were then
pooled and the PPVs calculated for binned Z-score ranges. These binned PPVs
were then fitted against a standard logistic function to give the following
empirical formula for estimating PPVs from Z-scores:

P ¼ 0.904
1þ 16.61e−0.8105Z

: [4]

Dataset Construction. We selected 28 TMP families with structures in the PDB
(http://www.pdb.org) (48) as our targets. Selection criteria were for the fa-
milies to be large, to have multiple spanning transmembrane helices, a com-
plex topology, and a fold that was independent of other chains (i.e., the
transmembrane domains selected were reasonably compact when consid-
ered in isolation from the rest of their subunits). Alignments were generated
automatically for each of the target proteins using the jackhmmer program
that is part of the HMMER 3.0 package (http://hmmer.org) (49). For each of
the 28 target sequences (derived from the Cα ATOM records in the relevant
PDB files), three iterations of jackhmmer with an E-value threshold of 10−6

(for profile inclusion and alignment output) and searching against the UNI-
REF100 data bank (50), were used to find and align a homologous sequence.
In the final alignments, duplicate rows (i.e., sequences 100% identical over
the length of the alignment) and columns with gaps in the target sequence
were removed. Numbers of distinct sequences in each alignment ranged
from 479 (FLAP protein) to 165,064 (mitochondrial cytochrome c oxidase).
Further alignment statistics can be found in Table S1 though no obvious cor-
relations could be seen between the eventual model quality and any of these
statistics. At best, we surmise that the total number of observed substitutions
is the principle factor in determining eventual prediction success.

Fragment Selection. For each residue position in the target sequence, compa-
tible supersecondary structural fragments were preselected from a fragment
library generated from 224 highly resolved (<1.5Å) globular protein struc-
tures (Table S2). Using globular proteins ensures that the possibility of using
homologous fragments can be excluded while allowing a large fragment li-
brary to be established because relatively few TMP structures have been re-
solved to high resolution. Fragments were selected by considering local
sequence similarity (using standard PSI-BLAST PSSM tables) and compatibility
of the fragment with predicted contacts using the contact-based objective
function. In addition to supersecondary fragments, fixed-length fragments
of nine residues were also considered. In both cases, fragments were not con-
sidered where there was disagreement with predicted secondary structure

using PSIPRED version 3.2 (51) and MEMSAT-SVM (3). At each position in
the target sequence, a list of the five best scoring supersecondary fragments
and the 25 best nine-residue fragments is stored. A generic fragment list was
also constructed from all dipeptide and tripeptide fragments from the library
of highly resolved structures, though these smaller fragments were not pre-
selected, i.e., they were chosen at random and uniformly throughout the
simulation. During the simulation, a random change of conformation is
effected by selecting a supersecondary fragment, a nine-residue fragment,
or from the generic list of small fragments (the three types of fragment
are sampled equally).

Secondary Structure and Topology. Rather than using PSIPRED alone for frag-
ment selection, as is the case for FRAGFOLD, in FILM3 we also made use
of MEMSAT-SVM predictions of transmembrane helices. Predictions were
combined using a simple consensus scheme (see SI Text) with scoring thresh-
olds for the two methods optimized using 99 TMPs of known structure that
had insufficient homologous sequences available to be used as prediction tar-
gets (Table S3). We further checked that these proteins had no detectable
sequence homology to the targets (E-value < 0.001) or were members of
the sameOPM (45) superfamily. Raw residue preference scores for eachmeth-
od were used to determine the ensemble with strong transmembrane helix
predictions overriding PSIPRED predictions. Where MEMSAT-SVM did not
predict helix, the ensemble was constructed using helix, coil, or helix/coil de-
pending on PSIPRED confidence, whereas sheet was only used in rare cases
where PSIPRED confidence was high. Additionally, a small amount of coil was
enforced in the center of predicted transmembrane loops if it did not already
exist in the ensemble.

Objective Function. FILM3 uses an objective function that is entirely based on
distance restraints that are inferred only from the MSA and predicted trans-
membrane topology. PSICOV is first used to generate a list of predicted con-
tacts from the targetMSA alongwith precision estimates (P) for each contact.
Where a contact is predicted, a constraint on the Cβ-Cβ distance (d) between
the two given residues is applied according to the following energy-like
objective function:

E ¼
� logð1 − PÞ; d ≤ dmax

logð1 − PÞe−ðd−dmaxÞ2 d > dmax

: [5]

A table of values for dmax can be calculated for each pair of amino acids in the
target sequence. This table is calculated by tabulating the maximum Cβ-Cβ
distance observed for each pair of sites that show significant covariation
signals (P ≥ 0.5) in the original 150-protein globular protein dataset used to
benchmark PSICOV (38). For underrepresented amino acid pairs (n < 10), a
default upper bound value of 10 Å was used for dmax. The complete table
is presented in Table S4. The use of amino acid pair specific maximum contact
distances has a small but measurable effect on overall model quality. For ex-
ample, Fig. S1 shows the results of running FILM3 with the usual fixed cut-off
distance of 8 Å compared to using Table S4. Over all 28 targets, the mean
absolute TM-score improvement is 0.07, which is a useful but not critical im-
provement to overall prediction accuracy.

Although the above objective function is formulated as a pseudoenergy
function, it is purely a mathematical transformation of the predicted contact
probabilities and the degree of satisfaction of the implied distance con-
straints. The identification of the native protein fold, therefore, depends
purely on the ability of PSICOV to predict accurately residue contacts from
directly coupled correlated mutations observed in large MSAs.

Minimum Distance Constraints. Predicted contacts provide only upper bounds
on residue-residue distances, but some lower bound distances can also be
inferred by other means. Themost obvious of these are lower bound distance
constraints of 4.5 Å between all pairs of Cα atoms (for sequence separations
>1). These constraints simply account for excluded volume effects (i.e., steric
hindrance between residues). A further source of minimum distance con-
straints arises from our knowledge of the target protein’s transmembrane
topology and the simple meandering nature of alpha-helical transmembrane
protein folds. From this information alone, we can deduce approximate
Z-coordinate values—the distance a residue lies from the center of the mem-
brane—for residues in each transmembrane spanning segment.

By assuming the midpoint of each transmembrane helix is located at Z ≈ 0,
Z-coordinates for residues along each helix can be inferred by simple linear
extrapolation assuming a lipid bilayer thickness of 30 Å (Ẑ being a unit direc-
tion vector normal to the membrane plane). The residue Z-coordinates along
each helix, no matter what its length, are assumed to vary linearly from þ15

Nugent and Jones PNAS ∣ Published online May 29, 2012 ∣ E1545

BI
O
PH

YS
IC
S
A
N
D

CO
M
PU

TA
TI
O
N
A
L
BI
O
LO

G
Y

PN
A
S
PL

U
S

http://www.pdb.org
http://www.pdb.org
http://www.pdb.org
http://hmmer.org
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=ST3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=ST4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1120036109/-/DCSupplemental/pnas.1120036109_SI.pdf?targetid=ST4


to −15 (−15 arbitrarily indicating the end of the helix close to the cytoplasmic
facing plane of the bilayer). This simple assumption was used previously in
the calculation of transmembrane potentials (6). More elaborate schemes
for predicting residue Z-coordinates have been proposed (52), but we wished
to avoid the use of knowledge-based machine learning methods as much
as possible in this work; however, it is likely that more accurate predictions
of Z-coordinates could be beneficial in further improving model quality.

We use the crudely predicted Z-coordinates for residues in transmem-
brane segments to provide additional minimum distance constraints as
follows:

di;j
min ¼ max

� jzi − zjj − ε

4.5
; [6]

where zi is the estimated Z-coordinate for residue i, zj the coordinate for re-
sidue j, and ε the estimated error in Z-coordinate prediction (assumed here to
be 6 Å). These simple constraints encourage the protein to adopt a meander-
ing topology according to the predicted transmembrane topology. Pairs of
residues that cannot be close together because they are predicted to be
at significantly different depths in the bilayer can therefore be prevented
from coming close together in the FILM3 search process.

Minimum distance constraints are not actually included in the objective
function but are, instead, applied immediately after a candidate move has
been generated in the Monte Carlo procedure, i.e., any candidate conforma-
tion that violates any of the minimum distance constraints is immediately
rejected and the previous conformation restored. This procedure is repeated
until a conformation is generated that satisfies all of the minimum distance
constraints after which the acceptance of the conformation is decided by the
objective function and the standard Metropolis–Hastings criterion.

In cases where the predicted topology is incorrect or where the native pro-
tein fold is highly irregular and deviates substantially from a simple up-down
alpha-helical bundle architecture, the Z-coordinate constraint filter will pre-
vent FILM3 from arriving at a correct structure; however, these cases are ea-
sily detected by simply considering the final objective function value reached
by the simulation. Simulations are run with and without Z-coordinate con-
straints, and the lowest energy models obtained from constrained and un-
constrained simulations are then selected for the refinement stage.

Model Generation. Generation of models is carried out in two phases: confor-
mational searching and combinatorial refinement. Initial conformational
searching is carried out using the standard FILM/FRAGFOLD approach (7),
though with the standard simplified energy function replaced by the dis-
tance constraint function (Eq. 5). In addition, FILM3 uses Replica Exchange
Monte Carlo (sometimes called parallel tempering) (53) to identify low en-
ergy conformations in place of simulated annealing. Nine replica conforma-
tions were used with a temperature ratio of 0.6 between each replica. The
highest temperature is set by calculating the mean objective function change
observed when 1,000 fragment swaps are made starting from a randomly
generated chain conformation without minimum distance violations. After
initial randomization, a total of 20 million fragment swaps are carried out
divided equally between each replica and temperatures Ti and Tj exchanged
between replica pairs with energies Ei and Ej with probability p given by an
extension of the standard Metropolis-Hastings criterion:

p ¼ min
�
e
ðEi−EjÞð 1

kTi
− 1
kTj

Þ

1
: [7]

To improve search performance further, a variable target function (54) is used
where only contacts within a specified maximum sequence separation range
were considered at each step. This range was linearly increased from six tom
(the length of the protein) during the course of each simulation so that only
local contacts with a sequence separation ≤6 are considered at the very be-
ginning of the search, but all predicted contacts are considered near the end.

For each target, 100 independent runs were carried out each beginning
with a randomly generated starting conformation with a further 100 runs per
target carried out without Z-coordinate constraints.

Model Selection and Final Refinement. Rather than simply selecting the final
model with the lowest energy or selecting a model by clustering, a combi-
natorial refinement step was carried out using the final ensemble of models.
In this step, the lowest energy model for the target was identified and the
100 lowest energy models fitted to it by rigid body superposition (selected
from the pooled set of Z-coordinate constrained and unconstrained models)
using the same objective function) (Eq. 5). Random segments were then se-
lected from each model and simply transferred (without rotation or transla-
tion) onto the equivalent chain segment in the lowest energy structure to see
if a lower energy model was produced. This greedy search procedure re-
peated until no further improvement in energy was observed. In this way,
a final model could usually be found with an energy value lower than
any of the 200 candidate structures. Very little variation in the final models
was observed when this procedure was repeated using different random
number seeds, which suggests that this greedy recombination procedure
is robust. Consequently, only a single final model needs to be generated
for each target protein. If the recombinedmodel did not have a lower energy
than any of the 200 candidate structures, then the lowest energy model of
the 200 candidates was selected as the final model.

After combinatorial selection of a final model, the model coordinates
were refined using MODELLER (55) mainly to produce reasonable loop
and side chain conformations. The FILM3model after recombination was sim-
ply used as a template forMODELLER but with additional secondary structure
restraints applied to regions predicted to be alpha helical by PSIPRED and
MEMSAT-SVM. No attempt was made to try to satisfy further contact-based
distance constraints using MODELLER, but the predicted contacts from PSI-
COV could easily be converted into upper bound distance restraints for final
refinement. The addition of distance restraints in final refinement might pre-
vent the final refined models from ending up satisfying fewer of the pre-
dicted contacts than the unrefined models (see Table 3 and Tables S5 and S6).

The FILM3 software (free of charge to noncommercial users), plus sample
data and scripts can be downloaded from http://bioinfadmin.cs.ucl.ac.uk/
downloads/FILM3.

Model Quality Assessment. In protein structure prediction, it is clearly impor-
tant to give users some guidance as to the likely quality of generated models.
Although it is impossible to determine a priori how accurate a model is
compared to the experimental structure, it is possible to provide guideline
statistics that can discriminate between plausible and implausible models.
For FILM3, the first source of model quality information comes from the
estimated precision of contacts predicted by PSICOV. The results described
here suggest that a minimum number of contacts (with precision ≥0.5)
needed to generate a model with TM-score ≥ 0.5 is 20 (1fftC, length 185
residues), though this threshold will depend on target length. Two targets
with >20 predicted contacts with precision >0.5 produced models with
TM-score < 0.5—in both cases, however, significant stabilization of the native
fold is provided by additional chains. For a second means to determine ex-
pected model quality, it is possible to look at the degree of similarity between
pairs of models in the generated ensemble. Where predicted contacts are
insufficient to determine the global fold, an ensemble of generated struc-
tures will be expected to lack homogeneity. To demonstrate this, for each
target (and an additional four targets where PSICOV contact precision
was insufficient to generate correct models), we computed mean TM-scores
across all pairs of models in the ensemble prior to recombination. The mean
pairwise TM-score for each target showed a strong correlation with the ob-
served TM-score of the final model (Pearson’s r ¼ 0.77, Kendall’s τ ¼ 0.54,
Fig. 3) allowing the expected TM-score of the final model to be predicted
using a linear regression fit. An estimate of local reliability for a model
can also be derived, similarly, where the pairwise rmsd for each residue
can be calculated from the initial ensemble of FILM3 models.
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