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The six bacteriophage T7 tail fibers, homo-trimers of gene product
17, are thought to be responsible for the first specific, albeit revers-
ible, attachment to Escherichia coli lipopolysaccharide. The protein
trimer forms kinked fibers comprised of an amino-terminal tail-at-
tachment domain, a slender shaft, and a carboxyl-terminal domain
composed of several nodules. Previously, we expressed, purified,
and crystallized a carboxyl-terminal fragment comprising residues
371–553. Here, we report the structure of this protein trimer, solved
using anomalous diffraction and refined at 2 Å resolution. Amino
acids 371–447 form a tapered pyramid with a triangular cross-sec-
tion composed of interlocked β-sheets from each of the three chains.
The triangular pyramid domain has three α-helices at its narrow
end, which are connected to a carboxyl-terminal three-blade β-pro-
peller tip domain by flexible loops. The monomers of this tip domain
each contain an eight-stranded β-sandwich. The exact topology of
the β-sandwich fold is novel, but similar to that of knob domains of
other viral fibers and the phage Sf6 needle. Several host-range
change mutants have been mapped to loops located on the top
of this tip domain, suggesting that this surface of the tip domain
interacts with receptors on the cell surface.
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Bacteriophages (bacterial viruses or phages) are important
biological model systems and, because of the high specificity

for their host bacteria, have found application in phage typing,
food security, and phage therapy (1). Escherichia coli phage T7 is
a member of the Podoviridae family of the Caudovirales (tailed
phages) order (2). T7 is composed of an icosahedral capsid with
a 20-nm short tail at one of the vertices (3, 4). The capsid is
formed by the shell protein gene product (gp) 10 and encloses
a DNA of 40 kb. A cylindrical structure composed of gp14, gp15,
and gp16 is present inside the capsid (5), attached to the special
vertex formed by the connector, a circular dodecamer of gp8 (6).
Gp11 and gp12 form the tail; gp13, gp6.7, and gp7.3 have also
been shown to be part of the virion and to be necessary for in-
fection, although their location has not been established (7, 8).
Although extensive electron microscopy studies have been per-
formed on phage T7 (3–6, 9), crystallographic studies have so far
been limited to its nonstructural proteins.
The main portion of the tail is composed of gp12, a large

protein of which six copies are present (10); the small gp11 protein
is also located in the tail (5). Attached to the tail are six fibers,
each containing three copies of the gp17 protein. T7 tail fibers are
elongated homo-trimers, which are responsible for initial, re-
versible, host cell recognition. A second, irreversible, decision-
making interaction with the bacterial membrane is presumably
mediated by one or more of the tail-tube proteins. DNA transfer
into the host is then mediated by an extension formed by gp14–16
(7, 8, 11). Previously, we have reported the production of well-
diffracting crystals of the phage-distal carboxyl-terminal domain of
gp17 containing a 45-residue purification tag (12). Here we pres-
ent its structure, solved using four-wavelength anomalous dif-
fraction analysis of a mercury derivative and refined against data
collected from crystals of two different forms.

Results
Structure Solution. Crystals of gp17(371–553) belonging to two
different space groups were obtained, P212121 and C2221, and
a multiwavelength anomalous diffraction dataset was collected
on a crystal of form P212121 derivatized with methylmercury
chloride (12). The derivative was not isomorphous to the native
crystal and the native dataset was not used in phase de-
termination. Nine heavy atom sites were identified, six of which
are located near the two cysteines present in each of the three
chains (Cys408 and Cys499). Two sites are near Asp442 (of
chains A and B) and one near His433 of chain A. After phasing
and solvent flattening at 2.7 Å resolution, a readily interpretable
map was obtained in which 527 residues could be automatically
traced. This model was used as input in a molecular replacement
with the 1.9 Å resolution dataset obtained of the P212121 crystal
form. Automatic tracing at this resolution produced a model
containing 528 residues, which was completed and corrected
manually and to which solvent atoms were added. An intermediate
protein model was used to solve theC2221 crystal form structure at
2.0 Å resolution, which was also completed. Both structures were
refined to R-factors of 15% and free R-factors of 20% and have
few residues in unlikely regions of the Ramachandran plot (Table
S1). One amino acid, Gly522, is in a very uncommon conformation
in all three chains of both structures (all have the backbone torsion
angles ϕ around 165° and ψ around −90°); however, it has con-
vincing electron density in each case and is thus likely forced into
this conformation by the rest of the structure.

Overview of the Structure. Electron micrographs revealed gp17 to
be an extended protein, with a proximal rod about 16-nm long
and 2 nm in diameter, a sharp kink, and a distal rod about 15-nm
long and with a diameter that varies between 3 and 5 nm (Fig.
1A) (3). The distal rod can be divided into four “nodules” of
unequal size, which were estimated to contain residues 268–365,
366–432, 433–456, and 466–553, respectively. The crystal struc-
ture of the gp17(371–553) fragment corresponds to the most
distal three of these nodules (Fig. 1). The structure can be di-
vided into two parts: a globular “tip” domain (residues Ala465-
Glu553), corresponding to the fourth and last nodule, and a ta-
pered interlocked mainly β-structured pyramid domain (residues
Gly371 to Trp454) which, from the electron microscopy analysis,
was interpreted as forming the second and third nodules. The
pyramid domain contains three short α-helices (one from each
monomer) at its thinner end.
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When the trimeric structures from the two crystal forms are
superimposed, a rms difference of 1.2 Å between their C-α posi-
tions is observed (residues 373–553 of all chains were included in
the calculation). Amino acids N-terminal to residue 373 show
different conformations, probably as a result of the different
crystal packing in the two structures. When individual chains are
compared, another local difference becomes apparent in the re-
gion around β-turn Asp390-Arg393 in one of the chains, which
forms a crystal contact in the C2221 crystal form. The tip domains
alone (amino acids 465–553) superpose with an rmsd of only 0.2 Å
and the pyramid domain (amino acids 373–464) superposes with
an rmsd of only 0.5 Å, suggesting the short loop (Val464-Lys466)
between the tip and pyramid domains is somewhat flexible. This

flexibility may be of importance in the infection process. Adeno-
virus fiber contains a hinge region between the shaft and head
domains (13); mammalian reovirus fiber (σ1 protein) has a hinge
region between the last and second-to-last triple β-spiral repeats
of the shaft (14). In the case of adenovirus fiber, flexibility has
been shown to be important for the infection process, presumably
to allow secondary receptor interaction (15). Flexibility of the T7
tail fiber may also be necessary to allow for tail conformational
changes during the infection process.

Pyramid Domain. The pyramid domain is composed of three
concave nine-stranded mixed β-sheets stacked against each other,
forming a tapered pyramid with a triangular cross-section. The

Fig. 1. Crystal structure of bacteriophage T7 gp17(371–553). (A) Composite negatively stained electron microscopy image of the tail-complex of bacterio-
phage T7. The region of one of the six symmetry-equivalent positions where our structure fits into this complex is boxed (reprinted from ref. 3, with per-
mission from Elsevier, http://www.sciencedirect.com/science/journal/00222836). (B) Ribbon diagram (Left) and space-filled representation (Right) of gp17(371–
553). The three monomers are colored red, green, and blue. The termini of the red monomer are indicated. (C) Topology diagram. β-Strands are shown as
arrows, α-helices as rectangles. Secondary structure elements are labeled and their start and end residues are indicated for the green monomer, as are the
termini. Only one of the three tip domain monomers is shown. Asterisks and hash signs indicate connections in the other monomers that were removed for
clarity. (D) Top view of the tip domain with the side chains of residues Ala518, Asp520, and Val544 shown in space-filled representation (labeled in the green
monomer only).
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taper is the result of the β-strands at the bottom of the pyramid
being longer (up to 6 amino acids) than those near the top (down
to three residues). Each β-sheet involves strands contributed by
all three chains; interactions between β-strands are antiparallel
between strands from the same monomer, but interaction be-
tween β-strands from neighboring monomers are parallel. Each
β-sheet consists of one strand, R, from the first monomer, fol-
lowed by five strands, STUVW, from the next monomer, and
capped by three strands, XYZ, from the third. The loops con-
necting the β-strands vary from short β-turns to longer loops; all
loops are well ordered in both crystal forms and interact exten-
sively with other loops from the same or from neighboring
monomers. The center of the domain contains exclusively hy-
drophobic and aromatic side-chains; each β-strand contributes
one or two central side-chains to this core. In the loops and at the
beginning and end of the β-strands, interactions are mixed and,
apart from hydrophobic interactions, many polar interactions are
formed. At the top of the pyramid domain three α-helices are
located, one from each protein chain. Leu455 and Leu459 resi-
dues from the α-helices project into the center, forming a small
hydrophobic core, capped at the top by Phe463.

Carboxyl-Terminal Globular Tip Domain. The α-helices are con-
nected to the tip domain by a loop (Val464-Lys466) containing
both polar and apolar residues. This loop surrounds a solvent-
filled central cavity between the tip and pyramid domains. The
presence of this solvent-filled cavity is further indication of
possible flexibility between the tip and pyramid domains.
The tip domain of each monomer (amino acids 464–553) forms

a β-sandwich with the topology shown in Fig. 1C. The β-sandwich
contains two sheets of four β-strands each, BIDE and CHGF.
β-Strands B and C are on the outside of the trimer, E and F on
the inside. A search using the program DALI (16) did not turn up
β-sandwich domains with the same topology (see below). As in
the β-structured pyramid domain, all loops between β-strands are
well ordered in both crystal forms and interact extensively with
neighboring loops. Interactions between the tip monomers are of
mixed nature, involving salt-bridges, hydrogen bonds, solvent
molecules, and van der Waals interactions. The end of the pro-
tein chain is locked firmly into place by two salt-bridges between
Glu551 and Arg508 of a neighboring chain and between Glu553
(the very C-terminal residue) and Lys468 of the other neigh-
boring chain. This position likely prevents attack of the C ter-
minus by proteases and contributes to trimer stability.

Discussion
Phages belonging to the Caudovirales order attach to host bac-
teria with the end of their tails. Primary, generally reversible,
recognition is via tail-spike proteins or tail fibers on the side of
the tail; at this point the phage is not yet committed to DNA
injection. Positive recognition leads to central tail proteins pro-
ductively attaching to the host membrane and DNA injection.
The tail-spike of the podovirus P22 has been studied extensively
in terms of carbohydrate binding, hydrolysis, folding, and as-
sembly (17, 18). Much is also known about assembly and function
of the complex fibers of the myovirus T4 (19–21). Siphoviruses
like T5 and λ contain less-studied side tail fibers (22, 23) which,
like the T4 fibers, do not exhibit receptor-hydrolysis activity. Here
we have presented unique high-resolution structural information
on a podoviral tail fiber that also does not hydrolyze its receptor.

Stability and Folding of gp17(371–553). The surface area of a mono-
mer is around 12 × 103 Å2, of which more than 40% is buried upon
trimer formation (5.2 × 103 Å2). The calculated dissociation en-
ergy of the trimer is 125 kcal/mol (24) and contains more than 120
intermonomer hydrogen bonds and nearly 40 potential intermo-
nomer salt-bridges. When the pyramid domain trimer (Gly371-
Phe463) is considered, the surface area of amonomer is 7.4× 103Å2,

of which nearly half (3.6 × 103 Å2) is buried. The calculated dis-
sociation energy of the pyramid domain trimer is 90 kcal/mol and
contains more than 90 intermonomer hydrogen bonds and 8 po-
tential intermonomer salt-bridges. The surface area of a tip do-
mainmonomer (Val464-Glu553) is 4.7× 103Å2, of which 1.4× 103

Å2 is buried (around 30%). The calculated dissociation energy of
the tip domain trimer is 17 kcal/mol and contains 27 intermonomer
hydrogen bonds and 30 potential intermonomer salt-bridges. The
large buried surface area explains the stability of trimeric gp17
(371–553), as revealed by its high melting temperature (around
74 °C) (Fig. 2) and the fact that it does not dissociate into mono-
mers in SDS/PAGE, unless previously boiled in SDS-containing
buffer (12). Our structure shows there are no disulphide bonds in
theC-terminal construct, and the crystallized fragment contains the
only two cysteines of the gp17 sequence.
The C-terminal tip domain is the only domain of the current

structures where the monomer has a potentially independent
fold and where the three chains do not intertwine. The surface
buried between monomers and calculated dissociation energy is
also smaller. This finding suggests gp17 folding may begin with
the spontaneous formation of a monomeric carboxyl-terminal
β-barrel. Interaction of three β-barrels could then lead to trimer
formation. The remaining region of the fiber would then “zip up”
to form the intact trimer. This folding pathway would be the
same as that proposed for adenovirus fiber (25) and consistent
with the observation that amber mutants in the C-terminal do-
main do not incorporate truncated gp17 in the virions (10). Gp17
does not appear to require specific chaperones for folding like
phage T4 fibers do (26).

Comparison with Other Proteins. When the sequence of phage T7
gp17 is compared with protein sequences in databases, a strong
similarity (> 85% sequence identity) is observed with gp17 of E.
coli phage T3, Yersinia pestis phage PhiA1122, and enterobacteria
phage 13a. Sequence similarity is also observed with fibers of
phages from other bacterial species (Kluyvera, Salmonella, Pseu-
domonas, Vibrio, Klebsiella, and others). The phage attachment
domain (amino acids 1–150) belongs to domain family PHA00430
and, of the gp17 domains, has the most sequence homologs in the
database, consistent with the fact that many T7-like phages have
the same mechanism of attaching the fiber to the phage. The tip
domain has fewer sequence homologs, only T3, PhiA1122, enter-
obacteria phages 13a, BA14, 285P, and Yersinia phages Yep-Phi,
Berlin, and Yepe, consistent with the well-known fact that many
phages have evolved their C-terminal receptor attachment domain
to adapt to different hosts by exchange with other phages (27). An

Fig. 2. Thermal stability assay. The relative fluorescence emission intensity
(R) is plotted as a function of the temperature (x axis, °C). A melting tem-
perature of around 74 °C was estimated (midpoint between the baseline and
the point with maximum fluorescence intensity).
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illustrative example is E. coli phage K1F, which has a homologous
phage-attachment domain but a different C-terminal domain
containing endo-N-acetylneuramidase activity to digest the E. coli
K1 capsular polysaccharide (28, 29). Only a few phages appear to
have evolved by mutation maintaining the same structural
framework. Residues 359–524 of T7 gp17 (encompassing all but
the final 29 residues of our structure) have been classified in Pfam
domain gp37_C, which includes a subset of the highly diverged C-
terminal regions of the gp37-type tail-fiber proteins of T4-like
phages, the subset found in phages AR1 and Ac3 (30). Thus,
amino acid sequence comparisons suggest that the tapered tri-
angular pyramid and part of the tip structure of T7 tail fibers may
be structural building blocks used in fibers of phages of the Myo-
viridae as well as the Podoviridae family.
When searches are conducted either with the whole structure

presented here or with separate domains, no structural homologs
with the same topology are found in the PDB database. Ade-
novirus fiber (13), reovirus fibers (14, 31), bacteriophage PRD1
P5 (32), and phage Sf6 cell-penetrating needle (33) all have a β-
structured C-terminal domain of similar size and organization as
gp17 has, but with a different topology. The Sf6 cell-penetrating
needle knob domain (Fig. 3A) has the most similar topology,
with two small extra β-strands (C1 and C2) and a straight swap of
the E and G strands compared with our structure. However, their
stalk domains contain only triple β-spiral folds or a triple coiled
coil (34, 35), without an intervening β-helical domain, such as the
pyramid domain in the present structure. The receptor-binding
proteins of lactococcus phages p2 and TP901-1 also have a sim-
ilar C-terminal domain attached to a short β-helical stalk (36,
37). The bacteriophage T4 short tail-fiber (gp12) and long tail-
fiber (gp37) C-terminal domains have different folds, consisting
of three intertwined monomers rather than composed of in-
dividually folded monomeric domains (21, 38), and T4 fibritin
(gpwac) and the phage P22 cell-penetrating needle (gp26) have
a much smaller trimerisation domain (39, 40).

The pyramid domain, with its interlocked trimeric β-helix, also
does not have any exact topological equivalent in the structure
database. Comparable structures include the triple β-helix regions
of phage T4 gp12 (41) and gp5 (42), the K1F endosialidase (43)
and endo-N-acetylneuramidase (29), streptococcal (pro)phage
HylP1 and Hylp2 (44, 45), the phage P22 cell penetrating needle
gp26 (40), and phage Phi29 tail-spike (46). However, the most
similar structures are those of phage P2 gpV (Fig. 3B) and phage
Phi92 gp138 (Fig. 3C) (47, 48), which form the tip of inner tail
tube and are the first proteins to pierce the membrane in these
myoviruses. Both proteins contain a tapered β-helix, strongly
intertwined in the case of gpV and interlocked like gp17 in the
case of gp138. Eight β-strands (from sheets STUVW and XYZ)
have structural equivalents in gp138. However, both gpV and
gp138 contain a small apex domain with a central iron ion instead
of the α-helical region, and lack a globular tip domain.

Receptor Binding. Initial, reversible, binding of phage T7 to bac-
teria is mediated by the interaction of its six gp17 tail fibers with
LPS (7). This interaction is presumably followed by a secondary,
irreversible attachment of the tail to an unknown receptor. The
relative importance of the two interactions in host-range de-
termination is not known; gp17 may just keep the phage near the
bacterial surface to make productive tail interactions with its re-
ceptor more likely (i.e., 2D diffusion vs. 3D diffusion). However,
Heineman et al. (49) identified two mutants of bacteriophage T7
gp17 involved in host avoidance: a Asp520 to Glu change adapted
the phage to avoid E. coli B and a Val544 to Ala change adapted
the phage to avoid E. coli K12. Furthermore, Garcia et al. (50)
identified a spontaneous host-range change mutant in the highly
homologous phage PhiA1122 fiber in this region (Leu523 to Ser,
which aligns to Ala518 of bacteriophage T7 gp17). Ala518 and
Asp520 are located in the EF-loop and Val544 in the GH-loop of
the gp17 tip domain; both are located on the top of the tip trimer
in our structure (Fig. 1D). When the sequence of bacteriophage
T7 gp17 is aligned with that of tail fibers of E. coli phage T3,
Salmonella enteridis phage 13a and Y. pestis phage PhiA1122 (Fig.
4), the main differences are also observed in residues that are
located in the four loops at the top of the tip domain (BC-, DE-,
FG-, and HI-loops). Taken together, this information strongly
suggests that the tip domain of gp17 has an important role for
host-range determination, presumably by binding to a specific LPS
region that differs between bacterial strains or that may be oc-
cluded in some strains and available for interactions in others.
Another possible site for receptor interaction is the concave

eight-stranded β-sheet of the pyramid domain. Although there is
no biochemical or mutation evidence, the concave shape and the
presence of several aromatic residues is suggestive. In this re-
gion, in the P212121 crystal form, Tyr385, Tyr397, and Tyr413
interact with a trimethylamine-N-oxide molecule from the crys-
tallization solution in each of the three monomers, but in the
C2221 crystal form Tyr425 interacts with a carbonate ion in two
of three monomers. Site-directed mutagenesis experiments
combined with competition experiments, identification of the
LPS region to which T7 binds, and cocrystallization studies with
the relevant LPS fragments will be needed to identify the specific
gp17-residues from the tip or pyramid domain responsible for
receptor binding. If and how this initial interaction is commu-
nicated to the phage to trigger irreversible binding and DNA
injection is also an interesting future subject of study.

Conclusion
We have solved the structure of the C-terminal domain of the
phage T7 tail fiber, gp17(371–553). The structure contains two
domains with hitherto unseen topologies, provides insight into
the reason for the stability of the protein, and suggests regions
that may be involved in receptor binding. The structural data may
also contribute to applications of bacteriophages in, for example,

Fig. 3. Structures of the cell-penetrating tail needle knob domain of phage
Sf6, PDB-code 3RWN (A), gpV of phage P2, PDB entries 3QR7 and 3QR8 (B),
and gp138 of phage phi92, PDB codes 3PQH and 3PQI (C). Iron, calcium, and
chloride ions are shown as yellow, gray, and green balls, respectively. The
region of gp138 that is topologically the same as amino acids 384–446 of
phage T7 gp17 is indicated.
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bacteria typing or phage therapy, through the rational design of
mutants binding different receptors or the engineering of artifi-
cial, chimeric phage fibers.

Materials and Methods
Thermal Stability Assay. Thermal stability of the protein was measured by
following the fluorescence of the dye Sypro orange in the presence of 0.01
mM gp17(371–553) as a function of temperature as described in Dupeux et al.
(51). The melting temperature was estimated as the temperature corre-
sponding to the midpoint between the baseline and the point with maxi-
mum fluorescence intensity (Fig. 2).

Crystallographic Structure Solution and Refinement. Crystallogenesis and
crystallographic data collection have beendescribedpreviously (12). Datasets of
the P212121 mercury derivative collected at four different wavelengths (peak,
inflection point, high energy remove, low energy remote) were input into
AUTOSHARP (52). Three mercury sites were identified by the SHELXC/D pro-
grams (53) and phases were refined using data between 20.0 and 2.7 Å with
AUTOSHARP, which found additional sites and rejected sites, settling on a final
list of nine heavy atom sites. Further solventflattening and histogrammatching
was done with SOLOMON (54) and automated building proceeded using
BUCCANEER (55) at 2.7 Å resolution. This model was used for molecular re-
placement into the higher resolution, native data using the program MOLREP
(56). The model was then input into the ARP-WARP (57) auto-trace mode using
the data to 1.9 Å resolution for the P212121 crystal form. Adjustment of the
model, addition of extra amino acids and solvent molecules was done with
COOT (58). Refinement was done using the REFMAC5 program (59). The final

model contains 548 amino acids, 1 poly-ethyleneglycol fragment, 1 Tris mole-
cule, 3 trimethylamine-N-oxide molecules, and 754 water molecules. A partially
complete model refined against the high-resolution P212121 data were used to
solve the C2221 structure by molecular replacement, which was extended and
refined as above. This final model contains 552 amino acids (including one
amino acid from the purification tag; the rest of the purification tag is appar-
ently disordered), 2 CO3 molecules, and 910 water molecules. Data statistics
were published previously (12); phasing, refinement, andmodel statistics can be
found in Table S1. Validation was performed with MOLPROBITY (60) and pro-
tein structure figures were prepared using PYMOL (Schroedinger) and Univer-
sity of California at San Francisco CHIMERA (61).
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Fig. 4. Sequence conservation of gp17. (A) Alignment of the sequence of bacteriophage T7 gp17 with its homologs from E. coli phage T3, S. enteridis phage
13a, and Y. pestis phage PhiA1122. Amino acids present in our structures are shown in bold. Residues that are identical in all four proteins are marked with
asterisks. Secondary structure elements identified in our structure are also indicated, beta-strands with arrows and α-helices with plus-signs. (B and C) Se-
quence conservation mapped on the structure. The color scale is from white (absolutely conserved) to black (no conservation). A top view (B) and a side view
(C) are shown. Residues that are not conserved, and thus may be important for host range discrimination, are indicated.
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