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The relationship between performance and ability is a central
concern in the social sciences: Are the most successful much more
able than others, and are failures unskilled? Prior research has
shown that noise and self-reinforcing dynamics make performance
unpredictable and lead to a weak association between ability and
performance. Here we show that the same mechanisms that
generate unpredictability imply that extreme performances can
be relatively uninformative about ability. As a result, the highest
performers may not have the highest expected ability and
should not be imitated or praised. We show that whether higher
performance indicates higher ability depends on whether ex-
treme performance could be achieved by skill or requires luck.

regression to the mean | randomness | social learning |
performance evaluation | ecological rationality

Extreme performance attracts people’s attention. People tend
to believe the most successful are the most skillful and that

failures lack skill (1, 2). A tendency to imitate the most successful
has also been argued to be a basic universal trait that is shaped by
evolution and promotes adaptiveness (3, 4). However, is success
necessarily an indication of skill and worthy of praise and imi-
tation and failure an indication of lack of skill?
Clearly, observed performance is not always a reliable indicator

of skill. Chance events outside the control of individuals often
influence performance (5–7).Moreover, such chance events rarely
average out over time. Instead, due to “rich-get-richer” dynamics
and “Matthew effects” (8), success usually breeds success and
failure breeds failure. For example, individuals with early success
might be given more resources and instruction, or consumers may
favor products with a high market share (9, 10). Prior research has
shown how such processes can amplify chance events and produce
a weak association between performance and ability (11–13),
leading to a distribution of outcomes that is both unpredictable
and highly unequal (14). In such settings, extreme success and
failure are, at best, only weak signals of skill. The highest per-
formers may be more able than others and the lowest performers
less able than others, but one should not expect their skill level to
be very far from the mean (15).
These prior contributions show that performance and skill may

be weakly associated due to noise and rich-get-richer dynamics,
but they do not challenge the idea that higher performers are
likely more skilled and worthy of imitation. Even if the highest
performers are only marginally more skilled than others, it makes
sense to imitate them. In this paper, we show that noise and rich-
get-richer dynamics can have more counterintuitive implications
that go beyond the conventional understanding of regression to
the mean. Noise and rich-get-richer dynamics not only introduce
unpredictability but also change how much one can learn from
extreme performances and whether higher performance indicates
higher skill. In particular, we show that when noise and rich-get-
richer dynamics can strongly influence performance, extreme per-
formances can be relatively uninformative about skill. As a result,
higher performance may not indicate higher skill. The highest
performers may not be the most skilled and the lowest performers
may not be the least skilled. The implication is that one should not

imitate the highest performers nor dismiss the worst performers.
More generally, we show that whether higher performance indi-
cates higher skill depends on whether extreme performance could
be achieved by skill or requires luck.
The intuition behind our results is that an extreme performance

may be more informative about the level of noise and the strength
of rich-get-richer dynamics than about skill. People often have to
infer the degree of skill from performance without knowing the
extent to which performance is subject to noise or the extent to
which past performance influences future performance. Extreme
performance indicates that the level of noise is high and that past
performance strongly influences future performance, because
extreme performances are more likely then. In settings with high
levels of noise and when past performance strongly influences
future performance, however, observed performance is a less
reliable indicator of skill because chance events and early success
strongly influence performance. Because extreme performances
are less informative about skill levels than moderate levels of
performance, a rational person should regress more to the mean
when observing extreme performances, implying that the associ-
ation between performance and ability can be nonmonotonic.
We develop two models to formalize this intuition. The first

model assumes that current performance depends on skill but
also on past performance and evaluators are uncertain about how
much past performance matters. The second model assumes that
performance depends on skill and noise and evaluators are un-
certain about the extent to which noise matters. For both models,
we show that higher performance does not indicate higher skill if
luck is essential to achieving extreme performance. On the other
hand, when luck is unlikely to result in extreme performance, we
show that extreme performances, high or low, can be especially
informative about skill.
The implication of our models contradicts descriptive studies

about how people evaluate performances: People tend to believe
that higher performance indicates higher skill. We show, however,
that even when this assumption is faulty, people may have little
opportunity or incentive to correct this assumption, as predictions
based on such an assumption can be very accurate and may even
outperform a correct model when information is scarce. Although
it leads to accurate predictions on average, widespread use of this
heuristic to identify whom to learn from can lead to diffusion of
very risky behavior, and “nudges” (16) may be necessary to help
people resist the temptation to praise, blame, or learn from ex-
treme performers. In the following, we show how our conclusion
follows from two simple models and discuss the descriptive and
normative implications of our findings.
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Model 1: Extreme Performance Indicates Strong Rich-Get-
Richer Dynamics
One reason why extreme performance may not be a reliable
indicator of skill is that an extreme performance indicates es-
pecially strong rich-get-richer dynamics. To formalize this, we de-
velop a model in which success depends on skill but also on past
success and where evaluators are uncertain about how much past
performance matters.
Consider a game with 50 rounds, with each round being a

success or a failure. The goal is to obtain as many “successes” as
possible. Individuals differ in their skill levels: Some individuals
have a higher probability of obtaining success in any given round.
In addition to skill, we also assume that outcomes in consecutive
rounds are dependent. The probability of succeeding increases if
the previous outcome was a success. Specifically, after a success,
the probability of success in the next period is ci (1 − wi) + wi,
whereas it is only cið1−wiÞ after a failure. In the first period, the
probability of success is ci. Here, ci ∈ (0,1) is the skill of individual
i, and wi ∈ (0,1) represents the extent to which success proba-
bilities depend on the previous outcome. wi would be high in in-
dustries where consumers want to buy the currently most popular
product (due to network externalities, for example) and in careers
where early success brings resources, training, and visibility that
increase future success (9, 10). The level of dependency, wi, is not
the same for every player—some players are in contexts where
dependency is relatively strong. We also assume that the level of
dependence is not fully known to outside observers. It is often
difficult to estimate the extent to which success depends on past
success rather than on superior skill, especially when few data are
available and when past success operates through difficult-to-
observe processes such as consumer loyalty. Thus, it may not be
clear to an observer whether a streak of successes is due to ex-
ceptional skills or to strong dependencies combined with the good
fortune of being successful initially. Witness, for example, the
debate about whetherMicrosoft’s success is due to their early lead
or to superior quality (17).
We simulated this game with 5 million players. Each player

has a different value of ci (drawn from a beta distribution with
parameters 10,10; the beta distribution is a flexible distribution
and also a common choice for modeling heterogeneity in success
probabilities) and wi (drawn from a uniform distribution; i.e., a
beta distribution with parameters 1,1). These assumptions about
the distributions of skill and dependencies imply that the distri-
bution of dependency (wi) is less concentrated around 0.5 than
the distribution of skills (ci). Thus, extreme values are more likely
for wi than for ci.
Based on the simulated data, we can examine how average

skill levels (ci) vary with the number of successes obtained. In-
tuitively, one might expect that players who achieved the most
successes are the most impressive and have the highest value of
ci. However, as Fig. 1 shows, the association between success and
skill level is nonmonotonic. The average value of skill reaches a
maximum at about 40 successes out of 50 and then starts to
decline. Players who achieved exceptional performance, that is,
successes in 50 rounds, have an average value of skill lower than
those with 40 successes. Stated differently, the most successful
players are not the most impressive. Rather, moderately suc-
cessful players are the most impressive ones. A similar pattern is
observed for very low levels of success: The players with the
lowest levels of success are not the least impressive.
The explanation for this result is that an extreme performance

indicates that the level of dependency was strong (wi high): Ex-
treme outcomes are more likely then. When wi is high, however,
performance is less informative about skill, because outcomes
are substantially influenced by chance events. Chance events can
substantially influence outcomes when wi is high, because initial
outcomes then strongly influence subsequent outcomes and players

with low levels of skill who get lucky initially may have many
successes. Similarly, players with high levels of skill could get un-
lucky initially and may have many failures. As a result, the asso-
ciation between skill levels and eventual outcomes will be weak
when wi is high. For example, the correlation between skill and
success is only 0.37 when wi = 0.9 (Fig. 2A). Thus, when depen-
dency is strong, achieving extreme performance is a less infor-
mative indicator of skill. Nevertheless, strong dependency implies
that extreme outcomes are more likely compared with when de-
pendency is weak.
In settings when dependency is weak, skill matters more and

chance events less in determining the outcome. For example, the
correlation between skill and success is 0.82 when wi = 0.1 (Fig.
2B). Because skills matter more in determining outcomes, out-
comes are also more informative about skill levels. In particular,
obtaining 50 consecutive successes (or failures), when dependency
is weak, is a reliable indicator of high (or low) skill, because it is
very unlikely that a player without very high (or low) skill would
obtain such an extreme result. However, as Fig. 2B illustrates,
exceptional performance is less likely when dependency is weak
compared with when it is strong.
Overall, our basic result emerges, because an extreme per-

formance indicates that it was achieved in a context in which
chance events can substantially influence outcomes, and per-
formance is then an unreliable indicator of skill. For example,
achieving 50 successes out of 50 rounds indicates that the degree
of dependency must have been very high, and in such settings
achieving exceptional performance is not so impressive.
This nonmonotonic association between success and skill

emerges only when wi is less concentrated around 0.5 than ci is,
namely when extreme values are more likely for wi than for ci.
The intuition is that when very high values of dependency are
more likely than very high values of skill, extreme results are
likely due to a high value of wi rather than a high value of ci.
When wi is more concentrated around 0.5 than ci (for example,
when wi is a known constant), expected skill is increasing in the
number of successes.

Model 2: Extreme Performance Indicates Extreme Noise
Another reason why extreme performance may not be a reliable
indicator of skill is that an extreme performance indicates that
performance is subject to an especially high level of noise. To
illustrate this, we now consider a static model in which perfor-
mance depends on skill and “luck” and evaluators are uncertain
about the impact of luck. Consistent with standard models in

Fig. 1. The average value of ci for players who obtained different numbers
of successes in 50 rounds. Based on 5 million simulations.
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social science that examine how noise influences performance
(12, 18), we assume that performance is a linear combination of
skill (ui) and “noise” (ei) (or luck): Pi ¼ ui þ ei. The task for the
evaluator is to infer the expected level of skill from the observed
performance: E½ui jPi�.
Our model is similar to standard models, with the exception

that we introduce heterogeneity in both skill and noise. Het-
erogeneity in noise is consistent with the idea introduced in
model 1: Some individuals are in contexts where noise matters a
lot (when wi is high in model 1), and others are in contexts where
noise matters relatively less. A simple way to model such hetero-
geneity in noise is to assume that the noise distribution is normal
with mean zero but that the standard deviation (SD) is not equal
for all agents but may differ. Note that such heterogeneity can be
interpreted as uncertainty about the noise distribution: Evaluators
are not sure about the levels of noise in the system (e.g., the level
of risk taken). We introduce uncertainty about the skill distribu-
tion in a similar way: We assume that the skill distribution is
normal with mean zero but that the SD is not equal for all agents
but may differ.
We assume the SDs of both skill and noise distributions are

independently drawn from gamma distributions, a flexible and
commonly used distribution. The gamma distribution is specified
using two parameters, a and b. We assume that the SD of the
noise distribution is drawn from a gamma distribution with a = n
and b = 1/n. Similarly, the SD of the skill distribution is drawn
from a gamma distribution with a= s and b= 1/s. The values of n
and s regulate the relative heterogeneity in (or uncertainty about)
the skill and noise distributions. The expected SD for both the
skill and the noise term is 1, whereas the variances in the SD are 1/
n and 1/s. When n or s goes to infinity, the SD becomes clustered
around 1, approximating the case when the SD is known.
Heterogeneity implies that the aggregate distributions of both

skill and noise will have fatter tails than a normal distribution.
Whether the skill or the noise distribution is fatter, and thus
more likely to generate extreme values but less likely to generate
intermediary values, is regulated by the parameters s and n.
Whenever s < n there is more heterogeneity in the skill distri-
bution, which implies that extreme values of ui are more likely but

intermediary values less likely than for ei. Conversely, whenever
n < s there is more heterogeneity in the noise distribution, and
extreme values of ei are more likely but intermediary values less
likely than for ui.
Our model implies a general condition on when a nonmono-

tonic pattern between performance and skill emerges: Whenever
n < s, and there is more heterogeneity in the noise distribution,
then expected skill, E½ui jPi�, is not an increasing but a nonmo-
notonic function of the observed performance, Pi. Fig. 3 provides
an illustration for the case when n = 1 and s = 5 (see SI Text for
how this is derived). As shown, the highest performers do not
have the highest expected skill, nor do the lowest performers have
the lowest expected skill.
To explain why, note that when n < s, there is more variability

in and uncertainty about the SD of the noise term. In this case,
an extreme performance indicates that the SD of the noise term
was high, because extreme performances are more likely then. If
the SD of the noise term is high, however, then an observer
should not update his or her estimate of the skill level much,
because observations are unreliable and less informative about
skill. For example, if the SD of the noise term was equal to 3,
extreme levels of performance would be relatively likely but the
association between skill and performance would be weak (the
correlation between skill and performance is only 0.34; Fig. 4A).
Less extreme levels of performance indicate that the SD of the
noise term was smaller and that performance is a more reliable
signal of skill. For example, if the SD of the noise term was equal
to 0.5, extreme levels of performance would be relatively less
likely and the association between skill and performance would
be strong (the correlation is 0.91; Fig. 4B). The reason for the
decline in E½ui jPi� for high values of Pi is thus that very high
levels of performance are less informative about skill than lower
levels of performance.
Although Fig. 3 only shows one illustration, for two particular

values of n and s, we have found the same basic result whenever
n < s for all combinations of the values of n and s that we have
tried. Moreover, we conjecture that this result holds whenever
Pi ¼ ui þ ei and the noise distribution has fatter tails, that is,
when extreme values of ei are more likely but intermediary values
less likely than for ui. [Formally, let G and F be the cumulative
distribution functions of ui and ei. Suppose G and F are in-
dependent, symmetric, and have mean zero. F is more fat-tailed
than G if there exists a value b> 0 such that for 0< x< b,
FðxÞ>GðxÞ, but GðxÞ>FðxÞ for x> b.] If this condition holds,
intermediary values of Pi are compatible with a high value of ui
and a low value of ei, but an extreme value of Pi indicates that
ui þ ei is dominated by ei.
Whenever n ≥ s, higher performance indicates higher skill.

When n = s, expected skill increases linearly with observed
performance (in fact, E½ui jPi� = 0.5 Pi; see SI Text for a proof).
When n > s, E½ui jPi� increases at a higher rate for extreme (high
or low) levels of performance. The reason is that extreme levels
of performance are especially informative about skill, because an
extreme performance is most likely due to a high value of ui. It
follows that when n > s, the highest performers are especially
good models of imitation and the lowest performers are espe-
cially worthy of blame. The model thus shows that whether one
should imitate the highest performers depends on the setting
and, in particular, the tail properties of the distributions of skill
and noise.

Summary
Our two models show that it is not obvious that higher perfor-
mance indicates higher skill. Higher performance can indicate
lower skill. We showed how this conclusion holds even in simple
modifications of well-known models: Model 1 added heteroge-
neity to a model of self-reinforcing performance, and model 2
added heterogeneity to the standard model of performance as a

Fig. 2. Illustration of the association between skill and the number of
successes obtained in 50 rounds for strong and weak dependence. (A) wi =
0.9. (B) wi = 0.1. Each figure is based on 1,000 simulations.
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linear combination of skill and noise. Both our models show that
higher performance may not indicate higher skill when extreme
values of skill are relatively unlikely (extreme values of ci or ui
are less likely than extreme values of wi or ei), and even high
levels of skill are unlikely to lead to extreme performance.
When is this scope condition satisfied? We believe it can be

satisfied in competitive domains in which performance can be
substantially influenced by chance events and even relatively un-
skilled agents can achieve high performance. Imitation and
selection in competitive domains can substantially reduce the
heterogeneity of agents (6). Chance events can substantially in-
fluence performance when performance depends on forecasts of
future events (as in trading) and subjective judgments [by supe-
riors (5)], especially when judgments are influenced by the judg-
ments of others (14). In addition, when performance depends on
past performance, errors and chance events may not average out
(19) but may be amplified through rich-get-richer dynamics and
multiplicative random processes that often generate fat-tailed
distributions (11, 20). In these settings, individual performances
can differ by several orders of magnitude, whereas the skill dis-
tribution is likely less widely dispersed (9) and variations in the
upper and lower tails of performance depend more on luck (due
to substantial noise or chance events amplified by rich-get-richer
dynamics) than on skill.
In other settings, extreme performance is unlikely to be due to

luck. Skills may vary substantially whereas chance events can only
have a limited impact, such as in a marathon race where both
amateurs and professionals compete (amateurs of low skill are
very unlikely to beat professionals). In such settings, performance
is a good indicator of skill and, as our second model shows, ex-
treme performance may be especially informative.
Our framework assumes that evaluators are uncertain about

the noise level or the level of dependency. This is realistic in many
settings where actors can choose the level of risk or dependency
and evaluators cannot observe the choice. Our results would not
hold for evaluators who have detailed information about the
setting. Nor would they hold when the individual being evaluated
can inform evaluators about the setting, perhaps by taking a costly
action to signal that the setting was one with little noise and weak
dependency.

Implications
Our model shows how a rational agent, whose inferences follow
Bayes’ rule, should infer skill from performance. Given the dif-
ficulties that people have in using Bayes’ rule (21), one can ask
whether people are able to follow the prescriptions of our model.
Do people understand that an extreme performance may signal
unreliability and luck? If not, what are the consequences?
To examine how people infer skill from performance, we ran

experiments in which participants predicted skill levels based on

Fig. 3. How expected degree of skill, E[ui j Pi], varies with performance when there is heterogeneity in both the skill and noise distribution but the noise
distribution is more fat-tailed (based on numerical integration, for the case when n = 1 and s = 5).

Fig. 4. Illustration of the association between skill and performance
when the SD of the noise term is high and low. (A) The SD of the noise
term is 3. (B) The SD of the noise term is 0.5. Each figure is based on 1,000
simulations.
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data on observed performance levels (see SI Text for how the
experiments were conducted). Participants in these experiments
had ample time to learn the nonmonotonic relationship between
ability and performance. The results show that despite clear
feedback and incentives to be accurate, 69 out of 119 participants
never predicted higher performers to be less skilled than those
with moderately high performance. In other words, a majority of
participants assumed the most successful were the most skilled
and thus mistook luck for skill.
Why do people misinterpret extreme performance, and what

are the consequences? We suggest that people misinterpret ex-
treme performance partly because they rely on the assumption
that higher performers are more skilled. Relying on such an as-
sumption is not irrational. Rather, it is often true. Perhaps more
interesting, even when this assumption is false, a model built on
this assumption may outperform a correct model that allows for
nonmonotonicity. We use a simulation model to illustrate this
point (see SI Text for more information). In the simulation, we
examined whether a third-degree polynomial model or a linear
model predicted skill levels more accurately based on a sample of
performance–skill pairs. The simulation assumed that the asso-
ciation between performance and skill was nonmonotonic (as in
Fig. 3). In every period of the simulation, the performance of an
individual with unknown skill was observed and the task was to
predict her skill. After the prediction, the skill was revealed. Al-
though a third-degree polynomial model can better fit the per-
formance–skill association, the linear model made more accurate
predictions for small sample sizes. For example, suppose only four
observations were available, that is, four performance–skill pairs.
In this case, the linear model made predictions closer to the actual
value of skill than the third-degree polynomial model 76% of the
time (based on 1 million simulations). Only if 20 or more obser-
vations were available was the third-degree polynomial model
more likely than the linear model to make accurate predictions.
The intuition for this result is related to the bias–variance di-

lemma (22): Fitting a third-degree polynomial introduces vari-
ance that degrades predictive accuracy. Because people often
have to evaluate performances relying on small samples (23),
using a linear model as a frugal heuristic may be ecologically ra-
tional (24, 25). Even in settings when the extreme performance is
not a reliable indicator of skill, decision makers may be served
well by initially assuming that performance indicates skill.
Moreover, unless large samples are available, people will also
have little opportunity to detect that their assumption is incorrect.
Although the assumption that higher performers are more

skilled leads to accurate predictions on average, assuming that ex-
treme performances indicate extreme skill can lead to undesirable
consequences if people rely on this assumption for identifying
outliers especially worthy of praise and blame.
Consider blame for failures. People often attribute cata-

strophes to the leader in charge, but a catastrophe might be more
informative about the character of the system that experienced
failure than about the leader’s ability. Complex systems in which
components are tightly coupled are sensitive to chance events
and external shocks. As a result, extreme failures are more likely
for such systems than for systems in which components are
loosely coupled. A catastrophe indicates that the underlying
system is complex and failure-prone, and in such cases firing the

leader might be misguided. Moderate failures could provide
more reliable evidence of low ability.
Consider, next, learning from successes. Imitating the practi-

ces of successful others has been argued to be an universal trait
and beneficial for society (3). Our model also implies that imi-
tating others with high, but not exceptional, performance is likely
to be beneficial, whereas imitating exceptional performance
could be detrimental. As our models show, the highest per-
formers may both be less skilled and use methods with higher
levels of risk. When exceptional performance is due to self-
reinforcing processes and initial success, the exceptional per-
formers may continue to perform well but imitators will likely be
disappointed (26), because they can at best only replicate the
practices, and thus the skill levels, of the high performers, but not
their initial good fortune.
More generally, our results suggest a different perspective on

when imitating top performers is beneficial for society. On the
one hand, when an extreme performance is unlikely unless an
agent is lucky, the highest performers might not be the most
skilled. Nevertheless, imitation may be largely beneficial if people
recognize that the highest performer is not the best or when they
are only aware of a few others so the best observed performance is
not exceptional. In a society where exceptional performers are
highly visible, however, and their practices are covered in business
magazines, imitation of the best may not increase skill levels as
much but will lead to the diffusion of more risky practices that
generate a variable outcome at the societal level (14). On the
other hand, when extreme performance requires extreme levels of
skill, imitation of and knowledge of the best performers can be
especially beneficial, because extreme performances are especially
informative.
Finally, consider rewards. The highest performers often re-

ceive the highest rewards in organizations. Our results suggest
that one should suspect that extremely high performance could
be due to excessive risk taking rather than prudent strategy and
exceptional skill. Imitation of such highly rewarded performers
may further diffuse such risky practices. Moreover, high rewards
for exceptional performance may tempt other people to delib-
erately take risks or to cheat because they are unlikely to achieve
extreme performance otherwise [as happened in Barings Bank
(27)]. This observation may be relevant for the recurrent financial
crises: Rewards for exceptional performance might have led to
diffusion of risky practices that eventually resulted in very poor
returns. To avoid this, reward systems would need to be redesigned
to reflect not just actual performance but also the level of risk (due
to leverage but also to focus on products ormarkets with strong self-
reinforcing dynamics). More important, because a nonmonotonic
relationship between performance and skill is counterintuitive
and a reward system that reflects this relationship may not be
perceived as fair, nudges may need to be developed to help people
resist the temptation to praise or blame extreme performers.

ACKNOWLEDGMENTS. We thank Pamela Sammons, Stefan Scholtes, Daniel
Ralph, Daniel Levinthal, Anne Miner, Daniel Read, and Thomas Powell for
discussions; Lance Bai and Cheeven Tsai for technical assistance; three anon-
ymous reviewers and the editor for their constructive comments; and Jesus
College, Saïd Business School at the University of Oxford, and The Saïd Foun-
dation for financial support.

1. Baron J, Hershey JC (1988) Outcome bias in decision evaluation. J Pers Soc Psychol

54(4):569–579.
2. Gilbert DT, Malone PS (1995) The correspondence bias. Psychol Bull 117(1):21–38.
3. Richerson PJ, Boyd R (2005) Not by Genes Alone: How Culture Transformed Human

Evolution (Univ of Chicago Press, Chicago).
4. Rogers AR (1988) Does biology constrain culture? Am Anthropol 90(4):819–831.
5. ThorngateW, Dawes R, FoddyM (2008) JudgingMerit (Psychology Press, New York, NY).
6. March JC, March JG (1977) Almost random careers: The Wisconsin school superin-

tendency, 1940–1972. Adm Sci Q 22(3):377–409.

7. Musch J, Grondin S (2001) Unequal competition as an impediment to personal de-

velopment: A review of the relative age effect in sport. Dev Rev 21(2):147–167.
8. Merton RK (1968) The Matthew effect in science: The reward and communication

systems of science are considered. Science 159(3810):56–63.
9. Frank R, Cook P (1995) The Winner-Take-All Society (Free Press, New York).
10. DiPrete TA, Eirich GM (2006) Cumulative advantage as a mechanism for inequality: A

review of theoretical and empirical developments. Annu Rev Sociol 32:271–297.
11. Barabasi AL, Albert R (1999) Emergence of scaling in random networks. Science 286:

509–512.

Denrell and Liu PNAS | June 12, 2012 | vol. 109 | no. 24 | 9335

SO
CI
A
L
SC

IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1116048109/-/DCSupplemental/pnas.201116048SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1116048109/-/DCSupplemental/pnas.201116048SI.pdf?targetid=nameddest=STXT


12. Lynn FB, Podolny JM, Tao L (2009) A sociological (de)construction of the relationship
between status and quality. Am J Sociol 115(3):755–804.

13. Arthur WB (1989) Competing technologies, increasing returns, and lock-in by his-
torical events. Econ J 99(394):116–131.

14. Salganik MJ, Dodds PS, Watts DJ (2006) Experimental study of inequality and un-
predictability in an artificial cultural market. Science 311:854–856.

15. Galton F (1886) Hereditary stature. Nature 33:296–298.
16. Thaler RH, Sunstein CR (2008) Nudge: Improving Decisions About Health, Wealth, and

Happiness (Yale Univ Press, New Haven, CT).
17. Tellis G, Yin E, Niraj R (2009) Does quality win? Network effects versus quality in high-

tech markets. J Mark Res 46(2):135–149.
18. Harrison JR, March JG (1984) Decision making and postdecision surprises. Adm Sci Q

29(1):26–42.
19. Denrell J (2004) Random walks and sustained competitive advantage. Manage Sci

50(7):922–934.

20. Simon HA (1955) On a class of skew distribution functions. Biometrika 42(3/4):
425–440.

21. Gigerenzer G (2008) Rationality for Mortals: How People Cope with Uncertainty
(Oxford Univ Press, New York).

22. Geman S, Bienenstock E, Doursat R (1992) Neural networks and the bias/variance
dilemma. Neural Comput 4(1):1–58.

23. March JG, Sproull LS, Tamuz M (1991) Learning from samples of one or fewer. Organ
Sci 2(1):1–13.

24. Dawes RM (1979) The robust beauty of improper linear models in decision making.
Am Psychol 34(7):571–582.

25. Gigerenzer G, Brighton H (2009) Homo heuristicus: Why biased minds make better
inferences. Top Cogn Sci 1(1):107–143.

26. Strang D, Macy MW (2001) In search of excellence: Fads, success stories, and adaptive
emulation. Am J Sociol 107(1):147–182.

27. Fay S (1997) The Collapse of Barings (W. W. Norton, New York).

9336 | www.pnas.org/cgi/doi/10.1073/pnas.1116048109 Denrell and Liu

www.pnas.org/cgi/doi/10.1073/pnas.1116048109

