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The importance of high-incidence “hotspots” to population-level
tuberculosis (TB) incidence remains poorly understood. TB inci-
dence varieswidely across countries, butwithin smaller geographic
areas (e.g., cities), TB transmission may be more homogeneous
than other infectious diseases. We constructed a steady-state com-
partmental model of TB in Rio de Janeiro, replicating nine epidemi-
ological variables (e.g., TB incidence) within 1% of their observed
values.We estimated the proportion of TB transmission originating
from a high-incidence hotspot (6.0%of the city’s population, 16.5%
of TB incidence) and the relative impact of TB control measures
targeting the hotspot vs. the general community. If each case of
active TB in the hotspot caused 0.5 secondary transmissions in the
general community for each within-hotspot transmission, the 6.0%
of people living in the hotspot accounted for 35.3% of city-wide TB
transmission. Reducing the TB transmission rate (i.e., number of
secondary infections per infectious case) in the hotspot to that in
the general community reduced city-wide TB incidence by 9.8% in
year 5, and 29.7% in year 50—an effect similar to halving time to
diagnosis for the remaining 94% of the community. The impor-
tance of the hotspot to city-wide TB control depended strongly
on the extent of TB transmission from the hotspot to the general
community. High-incidence hotspots may play an important role in
propagating TB epidemics. Achieving TB control targets in a hotspot
containing 6%of a city’s population can have similar impact on city-
wide TB incidence as achieving the same targets throughout the
remaining community.
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Tuberculosis (TB) remains a leading infectious cause of mor-
bidity and mortality, with over 8.8 million cases and 1.4 million

deaths annually worldwide (1). TB is known to cluster in hyper-
endemic “hotspots” often characterized by crowding (2), poverty
(3), HIV infection (4), and other social determinants (5). However,
compared with other infectious diseases [e.g., sexually transmitted
diseases (6) and vector-borne diseases (7)], where 20% of the pop-
ulation may generate 80% of transmission (7), TB transmission
appears relatively more homogeneous. As a result, though spatial
targeting is often advocated as an efficient method for achieving
control of diseases such as malaria (8), the degree to which hot-
spots contribute to community-wide transmission of TB remains
uncertain. The concept of geographically defined hotspots driving
TB transmission has biological plausibility. Preventing TB cases in
high-transmission areas (e.g., crowded urban slums, poorly venti-
lated hospitals) may avert many more secondary transmissions
than similar efforts in low-transmission areas. Similarly, cases in
high-transmission areas are more likely to represent recent in-
fection (which is more amenable to intervention) than reactiva-
tion of latent disease (9). Prior explorations of heterogeneity in
TB transmission (10–12) have studied the relative importance of
TB reinfection vs. reactivation, but have not explicitly evaluated
the contribution of hotspots to broader TB epidemics and their
control. Rio de Janeiro boasts substantial geographic heteroge-
neity in TB incidence, high-quality surveillance data, and, due to
the upcoming Olympics and World Cup, active efforts to disrupt

the social underpinnings (e.g., drug trade) contributing to TB
transmission (13). Thus, we constructed a mathematical model of
TB transmission in Rio de Janeiro to explore the importance of
geographic hotspots to community-wide TB control.

Results
In this simplified model of TB transmission in Rio de Janeiro
(Fig. 1), a subpopulation (hotspot) comprising 6.0% of the city’s
population accounted for a disproportionate amount of ongoing
TB transmission. If each case of active TB in the hotspot caused
0.5 secondary transmissions in the general community for each
secondary transmission within the hotspot (i.e., a randomly se-
lected resident of the hotspot was 32× more likely to be infected
by a case of active TB in the hotspot than a randomly selected
resident of the general community), the hotspot accounted for
35.3% of all TB transmission in the city (Fig. 2). When the relative
risk of transmission within the hotspot relative to the general
community was lowered from 32 to 20, ongoing transmission in
the community became dependent on the hotspot (i.e., R0 <1 in
the community). Under these conditions, reducing rates of TB
transmission in the hotspot to those in the general community was
sufficient to eliminate TB from the population in the long term.
By contrast, when no transmission events were assumed to occur
between the hotspot and the general community, the hotspot
accounted for 19.4% of ongoing TB transmission (Fig. 2). The
common modeling assumption of geographic homogeneity in TB
transmission (i.e., relative risk of 1.0 on the x axis of Fig. 2) was
grossly untenable; if hotspot-to-community transmission is even
one-sixth as likely as hotspot-to-hotspot transmission, the hotspot
accounted for all TB transmission in the community.
Under the baseline scenario (0.5 hotspot-to-community trans-

missions for each hotspot-to-hotspot transmission), TB control
interventions carried out only in the hotspot (6% of residents)
had a similar impact on city-wide TB rates as the same interven-
tions deployed to the remaining 94% of the population in the
general community (Fig. 3). For example, we considered an in-
tervention resulting in a 50% reduction in time to treatment (e.g.,
household case-finding that detects all TB cases twice as quickly
as passive case-finding). Carried out in the hotspot alone, this
intervention reduced city-wide TB incidence by a mean 1.6% per
year over the first 5 y, and by 25.4% by the end of year 50 (Fig. 3,
light blue line). By contrast, when applied to the remaining 94%
of the population, the intervention reduced city-wide TB in-
cidence by 2.5% per year over the first 5 y, and 28.5% by year 50
(Fig. 3, red line).
Reducing TB transmission rates in the hotspot to those in the

general community (Fig. 3, green line) reduced city-wide TB
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incidence by a mean 2.0% per year over the first 5 y, or a 9.8%
reduction by year 5 (95% uncertainty range: 6.9%, 11.4%). By
year 50, TB incidence was reduced by 29.7%, reflecting a 62.8%
reduction in incidence in the hotspot and a 23.1% reduction in the
remaining community. Corresponding reductions in city-wide TB
mortality were slightly lower: 7.8% reduction by year 5, and 29.1%
by year 50. This impact was relatively robust to changes in para-
meters other than TB transmission rates (Fig. 4). Assigning all
such parameters to their least-favorable values resulted in a

projected 5-y reduction in TB incidence of 4.7%; the corre-
sponding best-case scenario achieved a 22.2% reduction. Re-
moving HIV from themodel increased the 5-y incidence reduction
to 13.2%, and splitting the single hotspot into three non-
communicating hotspots did not change the projected reduction in
incidence, to within 0.1%.
The contribution of the hotspot to city-wide TB transmission

was most sensitive to hotspot size, hotspot intensity (relative rate
of hotspot-to-hotspot vs. community-to-community transmission),
and level of cross-transmission (relative rate of hotspot-to-hotspot
vs. hotspot-to-community transmission). Fig. 5 shows the 5-y re-
duction in TB incidence projected from normalizing a hotspot
(i.e., reducing its per-case TB transmission rates to those of the
general community), according to these parameter values. Nor-
malizing a geographically isolated, low-intensity hotspot (6% of
the city’s population, per-case TB transmission rate 2.1× that in
the community, and no cross-transmission) reduced city-wide TB
incidence by only 4.3%. By contrast, normalizing a nonisolated,
high-intensity hotspot of the same size (per-case transmission rate
3.5× the community rate, generating one hotspot-to-community
transmission for every hotspot-to-hotspot transmission) reduced
city-wide incidence in year 5 by 16.3% (Fig. 5, white circles). Both
of these scenarios were consistent with the observed hotspot and
community-wide TB incidence rates in Rio de Janeiro.

Discussion
This simple model of TB transmission in Rio de Janeiro uses
plausible conditions to demonstrate that a disproportionate share
of community-wide TB transmission likely occurs in small, geo-
graphically defined hotspots. In our baseline scenario, a hotspot
containing 6% of the city’s population and 16.5% of its TB in-
cidence generated 35.3% of all ongoing TB transmission events.
Because the burden of TB transmission in such hotspots is greater
even than the burden of TB incidence, TB control efforts focusing
on these areas are likely to have greater-than-anticipated impact
on community-wide TB control. Equalizing TB transmission rates
between our modeled hotspot and the general community

Fig. 1. Compartmental model of TB epidemic in Rio de Janeiro. The pop-
ulation is divided into two geographic compartments: the general popula-
tion (94% of the total population) and a TB hotspot (6% of the total
population, accounting for 16.5% of TB incidence). TB transmission occurs
within and, to a lesser extent, across geographic compartments. In each
geographic compartment, individuals fall into one of five TB states. Not
shown here, but also included in the model, are two HIV states (HIV infected
and uninfected), with HIV prevalence also higher in the hotspot. Each geo-
graphic compartment has its own births and deaths; for simplicity, migration
between compartments is not explicitly modeled, but can be conceptualized
as one mechanism of cross-compartment infection.

Fig. 2. Proportion of TB transmission events in Rio de
Janeiro arising from cases in the hotspot. The x axis describes
the relative risk of transmission from an active TB case in the
hotspot to a randomly selected resident of the general
population, compared with a random hotspot resident. Be-
cause the general population is 0.94/0.06 = 15.7× larger than
the hotspot, a relative transmission risk of 1/15.7 = 0.064
assumes that a TB case in the hotspot generates as many
secondary transmissions in the general population as in the
hotspot. The baseline scenario in the text assumes one-half
this rate of cross-transmission (i.e., two hotspot-to-hotspot
transmissions for every hotspot-to-community transmission).
Under this assumption, the hotspot generated 35.3% of all
transmission events, compared with 19.4% if cross-trans-
mission were disallowed.
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reduced city-wide TB incidence by 2.0% per year over the first 5 y,
and nearly 30% over a 50-y time horizon—an impact similar to
halving time to treatment among the remaining 94% of the
city’s population.
This modeling exercise shows that, though TB may not follow

the “80/20 rule” typical of some other infectious diseases, epi-
demics of TB may nonetheless depend on a core group, defined
by conditions (e.g., crowding, poor access to health care) that
engender high rates of ongoing transmission (7). Prior geospatial
mapping in Brazil has demonstrated the existence of geo-
graphically defined incidence clusters that correlate with low
socioeconomic status (14). Control strategies (e.g., contact in-
vestigation, reducing socioeconomic disparities) that target such

clusters may have disproportionate impact, whereas those that
ignore these hotspots will have a ceiling to their effectiveness. The
plausibility of this argument is easily demonstrated; our model
fitting suggests that a case of active TB in the hotspot generates
2.6× as many secondary infections as a similar case in the general
community (e.g., because the hotspot case is exposed to crowded
conditions and encounters individuals with greater susceptibility to
TB). Thus, over two rounds of secondary transmission, preventing
one hotspot case could have 2.6 × 2.6 = 6.8× greater impact on
future TB incidence than preventing one community case. This
equation is an oversimplification of actual dynamics, in which
populations reach new equilibria (and is not assumed in our
model). For example, hotspot cases may “saturate” their contacts

Fig. 3. Impact on TB incidence of hotspot-focused vs. population-based interventions. The upper solid line reflects the equilibrium assumption used to fit the
model, in the absence of any intervention. The light blue and red lines correspond to 50% reductions in the mean infectious period (e.g., through active case-
finding or improved diagnosis) of cases residing in the hotspot and general community, respectively. The purple line shows a reduction of 50% in the
transmission rate of TB cases (i.e., number of secondary infections per infectious person-year) residing outside the hotspot. By comparison, the green line
shows “normalization” of the hotspot (reduction in TB transmission per infectious hotspot person-year to the mean level in the general population). This
scenario generates a mean 2.0% annual reduction in TB incidence per year over the first 5 y, or 9.8% reduction in TB incidence by the end of year 5 (29.7% by
year 50). In general, interventions targeting the 6% of people living in the hotspot have similar impact to interventions targeting the remaining 94% of the
population.

Fig. 4. One-way sensitivity analysis showing the
reduction in transmission at year 5 from eliminating
hotspots. Values on the x axis represent the relative
reduction in city-wide TB incidence achieved at the
end of year 5 after normalizing the hotspot (see text
and Fig. 3, green line). Relative transmission across
geography is varied from 0.01 to 0.063 (one hot-
spot-to-community transmission for each hotspot-
to-hotspot transmission; Fig. 2); other parameters
are varied to produce a 25% change in the corre-
sponding epidemiological parameter (Table 1).
The top three parameters were subsequently varied
in multiway sensitivity analysis that also included
hotspot size (Fig. 5), whereas the remaining
parameters were simultaneously varied in best-case
and worst-case uncertainty analysis (see text for
more information).
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after a given time (10), or transmission rates may be so high that
a prevented transmission event is quickly followed by another
transmission event (15). However, in the absence of complete
geographic isolation, hotspots should contribute a greater pro-
portion of ongoing community-wide TB transmission than would
be estimated by comparing relative incidence rates alone.
It has been well-demonstrated that reducing TB transmission in

hyperendemic hotspots is far more difficult than in the general
community (16). Preventing a case of TB in a resource-poor
hotspot is almost certainly more difficult and costly than pre-
venting a case in the general community. However, our model
predicts that in the long term [and similar to other diseases, in-
cluding malaria (8) and sexually transmitted infections (6)], the
community-wide impact of preventing hotspot cases is likely to be
disproportionately large. In our model, achieving TB control tar-
gets (e.g., 50% reduction in time to detection) in a hotspot com-
prising 6% of the population had similar community-wide impact
as achieving the same target in the remaining 94%. Thus, even if
the hotspot-based target was 10× more expensive to achieve on
a per-capita basis, its impact on TB incidence per dollar spent
would be greater than the hotspot-exclusionary target. This finding
has particular relevance as national TB control programs consider
how best to scale-up novel diagnostic interventions [e.g., Xpert
MTB/RIF, a cartridge-based, automated diagnostic test that can
identify Mycobacterium tuberculosis (MTB) and resistance to ri-
fampicin (RIF) (17, 18)]; our model suggests that targeting such
interventions—and the necessary infrastructure for reporting and
treatment (19, 20)—to hotspots of high TB transmission may be
a more cost-effective use of resources, even if fewer units can be
deployed than when targeted to the general population.
The projected impact of hotspot-targeted interventions

depends strongly on the rate of TB transmission from cases in the
hotspot to members of the general community. Such cross-trans-
mission events may be common in the setting of nosocomial
transmission, incarceration, migration/transportation, and occu-
pational exposures. Prior studies have shown that the amount of
transmission that occurs in the household may be small (21, 22),
but other transmission events (e.g., at social events) (23) may be
far more likely to occur within geographically defined boundaries
than across them. This may also be true of hotspots (e.g., town-
ships in Cape Town, South Africa) (24) that are geographically

isolated from low-incidence areas. By contrast, the areas of highest
TB incidence in Rio de Janeiro are centrally located and in close
geographic proximity to commercial districts and other residen-
tial areas, making them potentially more important to ongoing
city-wide TB transmission. Similar findings, in which the majority
of cases attributed to recent transmission are not geographically
aggregated, have been reported in Baltimore (25) and Harare,
Zimbabwe (26). Although molecular epidemiology studies are
unlikely to be undertaken on a sufficient scale to ascertain the
relative rates of transmission within vs. across hotspots on a popu-
lation level (10), further modeling and mapping studies may shed
light on this question, which is of critical importance in deter-
mining the appropriate prioritization of hotspot-centered inter-
ventions in TB control.
As with any mathematical model, our analysis has important

limitations. First, for purposes of conducting a parsimonious ex-
periment, we adopted a deterministic framework with two geo-
graphically defined compartments. Though this method allows us
to investigate geographic heterogeneity in transmission with mini-
mal reliance on extraneous parameter estimates, more complex
models (e.g., agent-based models) would be necessary to elucidate
important relationships on a finer scale, including social networks
and household structure. Furthermore, our summation of three
population clusters into a single transmission hotspot may be overly
simplistic, although a model with three separate hotspots gave
identical results. Second, as a proof-of-concept study, we did not
evaluate the absolute impact of any specific TB control inter-
vention. Thus, our numerical estimates of potential impact should
be interpreted with caution. Third, we chose to model the pop-
ulation of Rio de Janeiro as a site with known geographic het-
erogeneity in TB incidence and existing high-quality surveillance
systems. Though we believe the concepts elucidated by this model
may be broadly applicable, caution should be exercised in gener-
alizing specific estimates (e.g., the size or intensity of the trans-
mission hotspot) to other epidemiological situations. Finally, the
quality of our surveillance data may be lower in hotspots than in
other districts of the city (e.g., underdetection of cases in hot-
spots); to the extent this is true, our data may underestimate the
contribution of hotspots to ongoing city-wide TB transmission.
In conclusion, geographic heterogeneity in TB transmission

results in hotspots that may play a disproportionate role in

Fig. 5. Projected reduction in city-wide TB incidence after normalizing hotspots, according to size and intensity of hotspot. Values of contour lines show the
proportional reduction in city-wide TB incidence at the end of year 5 achieved by lowering TB transmission in hotspots to the mean value in the rest of the city
(Fig. 3, green line). Box A assumes complete geographic isolation of the hotspot (i.e., no cross-transmission from hotspot to community), box B assumes 0.5
transmission events from hotspot to community for every hotspot-to-hotspot transmission, and box C assumes one hotspot-to-community transmission for
every hotspot-to-hotspot transmission. The baseline scenario in the text corresponds to box B, with a relative transmission rate of 2.6 and hotspot size of 0.06
(9.8% reduction). Other scenarios that replicate the TB incidence seen in Rio de Janeiro hotspots are a relative transmission rate of 2.1 in box A (4.3% re-
duction) and 3.5 in box C (16.3% reduction). These scenarios are shown with open circles.
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propagating TB epidemics. Under plausible conditions, a hotspot
containing 6% of a city’s population can be responsible for 35% or
more of its ongoing TB transmission. Achieving given TB control
targets in a hotspot of this size may have similar impact on long-
term, community-wide TB incidence as achieving the same targets
in the remaining 94% of the population. To achieve maximum
community-wide impact, TB control programs should focus their
efforts disproportionately on the areas of highest transmission,
even if it is more resource-intensive on a per-capita basis to do so.

Materials and Methods
Using ordinary differential equations, we developed a compartmental model
of the TB epidemic in Rio de Janeiro. Because our aim was to explore the
implications of heterogeneity in TB transmission (i.e., not to evaluate specific

interventions), we strove for simplicity in model structure. We sought to in-
corporate sufficient complexity to reflect available epidemiological inputs with
a minimum of additional assumptions. We therefore adopted a parsimonious
model of five TB states (Fig. 1), assigning cases of active TB the weighted av-
erage of infectiousness among smear-positive pulmonary, smear-negative
pulmonary, and extrapulmonary cases. Latently infected and recovered indi-
viduals were assumed to be noninfectious. Population compartments were
also defined by HIV status (positive vs. negative), with HIV-infected individuals
having higher susceptibility to TB, greater risk of progression to active TB,
higher general and TB-specific mortality, and lower TB infectivity. Further
details of the model structure are given in SI Materials and Methods.

To fit the model to the population of Rio de Janeiro, we used data from
ongoing, high-quality passive surveillance systems for TB, HIV, and mortality.
These surveillance systems, which have been described elsewhere (27), collect
data at the level of bairros, geographically defined regions with population

Table 1. Model parameters

Epidemiological
data point

Value, Rio
de Janeiro Value, model

Corresponding
model parameter Value in model

Sensitivity
analysis range Source

TB incidence, per 100,000
per year

95.3 95.3 Number of transmissions per case of
active TB per year, community

3.71 2.36–4.59 (1)

Proportion of TB incidence
in the hotspot

16.5% 16.5% Number of transmissions per case of
active TB per year, hotspot

9.74 7.93–11.40 (1)

HIV/TB incidence, per 100,000
per year

10.7 10.7 Rate of rapid progression after
recent infection, HIV-positive,
per year

0.31 0.15–0.82 (2)

Rate of slow progression after
remote infection, HIV-positive,
per year

Held at 25% the rate
of rapid progression

(3, 4)

TB mortality, per 100,000/y 5.0 5.0 TB mortality rate, HIV-negative,
per year

0.031 0.016–0.047 (2)

HIV/TB mortality, per 100,000/y 0.7 0.7 TB mortality rate, HIV-positive,
per year

0.074 0.041–0.111 (2)

TB prevalence, per 100,000 103.1 103.1 TB detection and treatment rate,
HIV-negative, per year

0.87 0.79–0.99 (5)

TB detection and treatment rate,
HIV-positive, per year

Held at twice the
HIV-negative rate

Reflects relative
mortality rates

HIV prevalence, per 100,000 390 390 HIV incidence, per year 1.5 × 10−4 1.0–2.1 × 10−4 (2)
HIV mortality, per 100,000/y 16.0 16.0 HIV mortality rate (non-TB)

per year
0.026 0.001–0.5 (2)

Proportion of retreatment
cases

27.4% 27.4% TB relapse rate per year 0.0083 0.0063–0.0187 (2)

Additional parameters not
fit to epidemiological data

Relative infectivity of HIV/TB
cases

0.68 0–1 (6)

Partial immunity to reinfection
if latently infected

0.56 0.42–0.70 (7, 8)

Duration of recent infection phase 5 y 4.2–6.2 y (9)
Rate of rapid progression during
this phase, HIV-negative, per year

0.03 0.026–0.036 (9)

Rate of slow progression of remote
TB infection, HIV-negative, per year

0.0005 0.0002–0.0011 (4)

Life expectancy 73 y 40–100 (10)
Relative HIV incidence in hotspot
vs. community

2.13 1.0–5.0 (2)

1. Municipal Secretary of Health and Civil Defense. Rio de Janeiro Infectious Diseases: Information and Epidemiological Data on AIDS and Tuberculosis. Available at http://www.rio.rj.
gov.br/web/smsdc/exibeconteudo?article-id=126082. Accessed February 5, 2012.

2. Municipal Secretary of Health and Civil Defense (2008) Epidemiological Bulletin (Coordination of Infectious Diseases: AIDS, Tuberculosis, Leprosy) (City of Rio de Janeiro, Rio de
Janeiro).

3. Gilks CF, et al. (1997) Recent transmission of tuberculosis in a cohort of HIV-1-infected female sex workers in Nairobi, Kenya. AIDS 11:911–918.
4. Horsburgh CR, Jr., et al. (2010) Revisiting rates of reactivation tuberculosis: A population-based approach. Am J Respir Crit Care Med 182:420–425.
5. World Health Organization (2011) Global Tuberculosis Control: WHO Report 2011 (WHO, Geneva).
6. Golub JE, et al. (2007) The impact of antiretroviral therapy and isoniazid preventive therapy on tuberculosis incidence in HIV-infected patients in Rio de Janeiro, Brazil. AIDS 21:

1441–1448.
7. Sutherland I, Svandová E, Radhakrishna S (1982) The development of clinical tuberculosis following infection with tubercle bacilli. 1. A theoretical model for the development of

clinical tuberculosis following infection, linking from data on the risk of tuberculous infection and the incidence of clinical tuberculosis in the Netherlands. Tubercle 63:255–268.
8. Cohen T, Lipsitch M, Walensky RP, Murray M (2006) Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected

populations. Proc Natl Acad Sci USA 103:7042–7047.
9. Vynnycky E, Fine PEM (1997) The natural history of tuberculosis: The implications of age-dependent risks of disease and the role of reinfection. Epidemiol Infect 119:183–201.
10. Municipal Secretary of Health and Civil Defense. Rio de Janeiro Vital Statistics. Available at http://www.rio.rj.gov.br/web/smsdc/exibeconteudo?article-id=871476. Accessed February
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sizes ranging from 180 to 202,000 individuals. We identified three geographic
clusters of bairros with TB incidence that was two- to fourfold higher than
that of the general population of Rio de Janeiro. These clusters correspond to
(i) the largest slum (favela) in the city (Rocinha), (ii) the city center, and (iii) a
second favela (Manguinhos) that borders an aging and industrial area of the
city (Bonsucesso). Together, these three clusters accounted for 6.0% of the
population of Rio de Janeiro in 2009, but reported 16.5% of all incident TB
cases. To facilitate a simple description of transmission dynamics, we then
divided our model population into two subpopulations: the general com-
munity and a single, artificially defined TB transmission hotspot with a pop-
ulation size and TB incidence equal to that of the combined population of the
three high-transmission clusters of bairros. To evaluate the effect of simpli-
fying model structure into a single hotspot, we conducted a structural sen-
sitivity analysis in which the hotspot was broken into three separate hotspots
without cross-transmission.

The contribution of hotspots to community-wide TB transmission depends
on the relative rate of TB transmission from the hotspot to the general
community vs. within the hotspot. We therefore set three independent TB
transmission rates: hotspot-to-hotspot, community-to-community, and the
relative rate of cross-population (compared with within-population) trans-
mission. A focused review of the literature (SI Materials and Methods) sug-
gested that 30–50%of recent TB transmission at the city level is geographically
clustered (25, 26, 28), but a small study in a Rio de Janeiro hotspot (29) found
a higher rate of geographic aggregation (70%). Thus, for our baseline sce-
nario, we estimated that a case of active TB in the hotspot would generate 0.5
secondary transmission events outside the hotspot for every transmission
event occurring within the hotspot—a scenario that would lead to 67% geo-
graphic clustering among secondary cases if linked to the index case. Because
the general community was 16× larger than the hotspot, the relative cross-
transmission rate (i.e., rate of transmission to a randomly selected person
in the other subpopulation vs. a randomly selected member of the same
subpopulation) was 0.5/16 = 0.03. We performed sensitivity analyses for the
extremes of complete geographic isolation (i.e., relative cross-transmission
rate of zero) and one hotspot-to-community transmission event for every
hotspot-to-hotspot transmission event (relative rate of 1/16, leading to 50%
geographic clustering).

Model parameters were fit using epidemiological data from Rio de Janeiro
(Table 1). We mapped model parameters to epidemiological data points in
one-to-one fashion, using an iterative routine (30) to fit the model to the
epidemiology of TB in Rio de Janeiro in 2007–2009, the last years for which
comprehensive data were available. For simplicity in illustration and

mathematical rigor, we assumed an equilibrium (steady-state) epidemic at
baseline, defining equilibrium as <1% relative (or 1 per 100,000 absolute)
change in any epidemiological data point in Table 1 over 5 y, and adequate
model fit as matching each data point in Table 1 to within 1% of its recorded
value. In Rio de Janeiro, both HIV and TB incidence have remained within a
±10% range over the last 4 y for which data are available, supporting the
concept of near equilibrium (31).

After the equilibrium model was constructed, we introduced hypothetical
control interventions as described in Results. Our primary outcome was the
projected reduction in TB incidence at 5 y after reducing the rate of TB
transmission per active case in the hotspot to the mean rate in the general
population. Because we did not seek to evaluate specific control inter-
ventions, the mechanism of achieving this reduction in transmission (e.g.,
general improvement in living conditions vs. TB-specific control measures)
was not specified.

We performed one-way sensitivity analyses on all model parameters by
determining the parameter value that would generate a 25% change (in-
crease or decrease) in its corresponding epidemiological data point after
reaching a new equilibrium (defined as the passage of 50 y). Because model
sensitivity to parameters describing TB transmissibility was qualitatively
greater than to other parameters, we performed an a priori three-way
sensitivity analysis on the size of the hotspot, intensity of the hotspot (i.e.,
relative rate of hotspot-to-hotspot vs. community-to-community trans-
mission), and relative cross-population TB transmission rate (i.e., hotspot-to-
community vs. hotspot-to-hotspot). To estimate the remaining uncertainty
related to the values of other model parameters, we performed best- and
worst-case scenario analysis on the primary outcome, simultaneously setting
all nontransmissibility related parameters to their most- and least-favorable
values, respectively. We compared these results to those of probabilistic
uncertainty analysis, where we simultaneously (using Latin hypercube sam-
pling) varied all parameters other than the relative TB transmission rate over
a β distribution (α = 2) defined by the range in Table 1, taking the most likely
value as the mode. We report the 95% uncertainty range as the 2.5th and
97.5th percentile of results from 10,000 such simulations. We assessed
structural uncertainty by comparing results of our model to those of parallel
models incorporating three separate, noncommunicating hotspots as above,
and also by excluding compartments related to HIV coinfection.
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