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A journey from reductionist to systemic cell 
biology aboard the schooner Tara
Eric Karsenti
European Molecular Biology Laboratory, D69117 Heidelberg, Germany

ABSTRACT  In this essay I describe my personal journey from reductionist to systems cell biol-
ogy and describe how this in turn led to a 3-year sea voyage to explore complex ocean com-
munities. In describing this journey, I hope to convey some important principles that I gleaned 
along the way. I realized that cellular functions emerge from multiple molecular interactions 
and that new approaches borrowed from statistical physics are required to understand the 
emergence of such complex systems. Then I wondered how such interaction networks devel-
oped during evolution. Because life first evolved in the oceans, it became a natural thing to 
start looking at the small organisms that compose the plankton in the world’s oceans, of 
which 98% are … individual cells—hence the Tara Oceans voyage, which finished on 31 March 
2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more 
than 30,000 samples from 153 sampling stations.

FROM REDUCTIONIST TO SYSTEMIC CELL BIOLOGY
Over the past 20 years, cell biology has moved from sheer morpho-
logical and molecular description to the analysis of causal relation-
ships between components, using genetics, molecular biology, and 
imaging. Recent technological and conceptual advances have be-
gun to move the field toward the understanding of the dynamic or-
ganization and complex functions of cells (Hartwell et  al., 1999; 
Karsenti, 2008). This involves computer modeling and analytical 
mathematic analysis using dynamical parameters gathered using 
biochemistry and live imaging. A nice article published in this jour-
nal actually discussed when modeling can be applied to a cell biol-
ogy problem (Fletcher, 2011).

I cite just two examples. First, genetics and biochemistry have 
allowed the unraveling of molecular mechanisms that drive the cell 
cycle. This has led to the discovery of how positive and negative 
feedback loops, switches, and time delays (Murray, 1989; Félix et al., 
1990; Clarke et al., 1993; Hoffmann et al., 1993; Nurse, 1994) build 
the cell cycle oscillator. Quantitative models of the cycle built using 
realistic enzymatic parameters have shown how cycles could indeed 
emerge from such mechanisms (Chen et  al., 2004; Ferrell et  al., 
2011; Krasinska et al., 2011).

Another example is the mitotic spindle. Again, genetics and bio-
chemistry identified many components of the spindle (Manning and 
Compton, 2008; Tanaka and Desai, 2008; Walczak and Heald, 2008; 
Gatlin and Bloom, 2010; Wadsworth et al., 2010; Wordeman, 2010). 
The importance of microtubule dynamic instability, microtubule-
associated proteins, and motors in the organization of microtubules 
into bipolar spindles was discovered. This led to intuitive models of 
spindle assembly, such as the search-and-capture and the microtu-
bule-motor self-organization models (Kirschner and Mitchison, 1986; 
Heald et al., 1996). These models have been tested and quantita-
tively fleshed out by mathematics and computer simulations (Holy 
and Leibler, 1994; Surrey et al., 2001; Nedelec et al., 2003; Wollman 
et al., 2005; Athale et al., 2008), leading to new principles, such as 
the importance of gradients generated by reaction-diffusion mecha-
nisms (Caudron et al., 2005). A quantitative model integrating all 
these mechanisms and principles has recently been proposed, indi-
cating how a steady-state dynamic spindle could indeed emerge 
from the collective effects of local regulation of microtubule dynam-
ics and motor activities (Loughlin et al., 2010).

These examples show how “network patterns”—the way en-
zymes and substrates interact to generate reaction cascades (posi-
tive and negative feedback loops, feedforward loops, reaction diffu-
sion processes based on localized and diffusible enzymes, etc.) 
govern temporal and spatial order in the cell. Different multiple and 
collective molecular interaction patterns have various reversibility or 
irreversibility properties, as well as various timing and spatial prop-
erties, that underpin the diversity of cell dynamics, organization, and 
function. Somehow evolution played around with genetic networks 
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It is therefore important to explore biodiversity in the wild and its 
evolution in relation to environmental changes by using molecular 
methods in order to determine the diversity of cell regulatory net-
works that actually exist. Which networks appeared first? Is there an 
evolutionary pattern of molecular interaction networks? Instead of 
looking simply at the evolution of individual marker genes, should 
we also look for evolutionary patterns in network structures (combi-
nations of interacting gene products)? We know that life evolved in 
a changing environment with strong discontinuities that probably 
channeled the existence of “possible cellular and ecological net-
works” (Dekel et al., 2005; Kashtan et al., 2009). The classic neo-
Darwinian vision of gradual evolution by small changes and selec-
tion does not really explain (alone) the origin of variation. Population 
sizes, recombination, and the accumulation of neutral mutations as-
sociated with genetic drift, as well as the impact of the environment 
on unicellular genome evolution, are all important, albeit poorly un-
derstood factors (Colbourne et  al., 2011; Fernandez and Lynch, 
2011).

There is a huge source of hidden diversity in natural ecosystems 
that allows their robust survival. There, it is not so much the “indi-
viduals” that are important but rather the “diversity index” of an 
ecosystem (how many different genetic variants of a given functional 
type are present). This provides for adaptation to environmental 
changes at the level of the ecosystem as a whole, through changes 
in the relative abundance of more- or less-well-adapted individuals 
(in contrast to the black and white idea of the survival of the fittest 
individual species). When confronted with catastrophic changes in 
the environment (see, e.g., Cowen, 2000), ecosystems may change 
abruptly but not die completely because of this large diversity, which 
allows the reconstitution of different but sufficiently complex groups 
of organisms to form a new ecosystem.

In other words, it seems very important to look at evolution in 
terms of living systems embedded into … ecology. We need to 
think of evolution in terms of a long-term, complex self-organizing 
system and not just genetics and selection (see, e.g., Kauffman and 
Johnsen, 1991; Sole et al., 1999; Hanel et al., 2007).

AN OCEAN OF CELLULAR EVOLUTION
The fields of cell and developmental biology have been very focused 
around a few model systems, such as Xenopus, Drosophila, Caenorhab-
ditis elegans, zebrafish, yeasts, and tissue culture cells (Fields and 
Johnston, 2005). This has proved to be extremely useful and will con-
tinue to be so to unravel fundamental molecular cell and develop-
mental biology issues. However, this has somehow fixed the fields into 
a certain direction remote from the environmental constraints. Metag-
enomic analysis of marine samples is starting to unravel the enormous 
genome diversity present in the oceans (Bucklin et al., 2011; Kembel 
et al., 2011; Sharpton et al., 2011; Wu et al., 2011). How representa-
tive are our limited model systems of the diversity of solutions ex-
plored by evolution? How diverse are the molecular mechanisms used 
to generate oscillators, complex cell shapes, and metabolic networks? 
How are those networks affected by environmental conditions? Are 
they directly affected? What are the routes taken by oceanic life 
(bacteria, viruses, and protists) to generate the cells that first built 
primitive multicellular organisms (King and Carroll, 2001; King et al., 
2008)? We know virtually nothing about the biodiversity of this world 
and do not understand the rules that govern the structure and evolu-
tion of such ecosystems. Life evolved as unicellular marine organisms 
exposed to severe environmental changes over a little more than the 
3 billion years that preceded the emergence of metazoans 600 million 
years ago (Carroll, 2001; King et al., 2008). There is much to be learned 
from marine ecosystems about cellular evolution.

a bit like a Meccano game, and only functional combinations/pat-
terns survived, leading to the present cells (Parter et  al., 2007; 
Kashtan et al., 2009).

This brings us to what is, in my opinion, the most revolutionary 
part of these new developments in cell biology. Because shape, 
function, and temporal properties of cellular systems “emerge” 
from multiple interactions between “agents” (molecules or groups 
of molecules in this case), we are no longer dealing with a simple 
causality problem. We are instead facing a “system properties” is-
sue. This calls for an additional and very different approach from 
studies focusing on single-molecule functions/properties. Mathe-
matical models and numerical simulations have been applied in the 
cell cycle and mitotic fields and are tools that can establish general 
“emergence principles,” taking into consideration all previously 
identified causal links. This, in turn, can explain why and how a func-
tional living unit emerges out of its components. The type of predic-
tion one gets from such “self-organization models” is not the same 
as that provided by differential equations. Differential equations are 
deterministic from the outset. Emergent models, because they in-
clude a large element of stochasticity, tell us that by putting a certain 
number of interacting agents together under well-defined condi-
tions, the “system” will evolve toward a certain “dynamical state” 
(e.g., a spindle). However, it is impossible to predict this before hav-
ing tested the model with simulations and identified the combinato-
rial landscape that gives rise to the structure in which you are inter-
ested! Cells are not “machines” in the engineering sense of the 
term: They are self-organized dissipative structures. They have not 
been “designed”; they just “emerge.” This is why it is necessary to 
screen for the combination(s) of parameter values that lead to the 
emergence of order. By doing this, we characterize a “system” and 
acquire a holistic understanding of cells or subcellular functional 
parts. To sum up, the reductionist approach addresses quantitative 
causal chains of events that must be integrated into those more 
holistic models in order to grasp the full essence of living matter.

FROM SYSTEMIC CELL BIOLOGY TO EVOLUTION 
AND ECOLOGY
The studies just described show that beyond the simple causal ef-
fect that a mutation can have on the function of a structural protein 
or an enzyme, it is also the collective behavior of an ensemble of 
gene products that determines cell activities and structures. This is 
what systems biology calls “networks.” A network is built of nodes 
and links (e.g., molecules and their activities in relation to each 
other). Mutations inside a network can affect the overall behavior of 
the network in various ways. They can either kill the network output 
altogether if a mutation kills an essential enzyme or just change its 
configuration and produce a dramatic or minor effect on the output. 
Hence there is no simple correlation between the effect of muta-
tions and evolution. Indeed, a lot of mutations can be neutral in an 
unchanging environment (the network may fluctuate inside a pa-
rameter space without obvious effect on the output) while having a 
dramatic effect in a varying environment. Such ideas have led to the 
formulation of general organization principles of regulatory net-
works (Milo et al., 2002; Di Ventura and Sourjik, 2011), providing 
grounds for a new approach to evolution (Kashtan et al., 2009) that 
is deeply rooted in cell biology.

Theoretical studies on the topology of possible functional regu-
latory networks, as done by Uri Alon (Milo et al., 2002, 2004; Ronen 
et al., 2002; Itzkovitz et al., 2003; Rosenfeld and Alon, 2003), have 
led to a list of intracellular network patterns and properties that may 
exist in living systems and shown how networks can switch from one 
functional state to another.
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Recent around-the-world expeditions such as Tara Oceans 
(Figure 1; Karsenti et al., 2011) and Malaspina have collected bio-
logical samples associated with complete environmental parame-
ters in well-defined water masses at different depths. The idea is to 
use quantitative imaging, metagenomics, and physicochemical 
oceanography to study the structure of pelagic plankton ecosys-
tems composed of viruses, bacteria, protists, and small metazoans. 
This will bring back a lot of data and observations and provide food 
for cell biologists, modelers, and bioinformaticians to better de-
scribe the cellular origin of biodiversity, the origin of the complexity 
of unicellular and metazoan organisms, and the organization of eco-
systems, as well as the role of environmental selection in evolution. 
In the oceans, microscopic ecosystems are constantly transported 
by currents from hot to cold regions, from poorly oxygenated to 
well-oxygenated areas, and from acidic to less acidic domains. 
Some zones of the globe become isolated from others by strong 
currents and temperature gradients, such as the Antarctic. Yet ex-
changes occur along transition zones. The oceans today are a fan-
tastic natural laboratory of evolution, and 90% of the organisms in-
volved are … unknown unicellular organisms! The contextual 
sampling of Tara Oceans associated with imaging, metagenomics, 
and the sequencing of individual genomes from 153 stations world-
wide will provide the first set of data allowing us to explore this un-
known world.

It would be highly desirable for cell and developmental biologists 
to “lose” some precious time by enjoying the observation of the in-
credible organisms present in the oceans. Indeed cell biology can 
bring a lot to the study of evolution, just as evolution in its ecological 
context can bring a lot to the understanding of the self-organiza-
tional properties of cells. Besides expeditions such as Tara Oceans, 
Malaspina, and others, marine biology stations such as Woods Hole, 
Roscoff, and Villefranche, for example, should return to the fore. 
They should aim at promoting an interdisciplinary approach, com-
bining cell and developmental biology with systems biology and 
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