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Abstract

Linear mixed models have attracted considerable recent attention as a powerful and effective tool 

for accounting for population stratification and relatedness in genetic association tests. However, 

existing methods for exact computation of standard test statistics are computationally impractical 

for even moderate-sized genome-wide association studies. To deal with this several approximate 

methods have been proposed. Here, we present an efficient exact method that makes these 

approximations unnecessary in many settings. This method is roughly n times faster than the 

widely-used exact method EMMA, where n is the sample size, making exact genome-wide 

association analysis computationally practical for large numbers of individuals.

INTRODUCTION

There is an increasing interest in using linear mixed models (LMMs, also known as mixed 

linear models, or MLMs) to test for association in genome-wide association studies 

(GWAS), because of their demonstrated effectiveness in accounting for relatedness among 

samples and in controlling for population stratification and other confounding factors1–7. 

However, these models present substantial computational challenges. For example, at the 

time this work was submitted for publication, the most efficient algorithm for computing 

(effectively) exact association test statistics (either the Wald test or the likelihood ratio test), 

implemented in the Efficient Mixed Model Association (EMMA) software3, had a per-SNP 

computational time that increases with the cube of the number of individuals (n). As a result, 

a medium size GWAS with a few thousand individuals and half a million SNPs would take 

years of CPU time to analyze1,7. (While this paper was in review, Lippert et al (2011)8 also 

published an efficient algorithm for this model, implemented in software FaST-LMM; the 

relationship between this algorithm and ours is discussed later.)
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Several approximation methods have been proposed to make genome-wide analysis using 

linear mixed models possible. Probably the simplest and fastest of these approximations, 

GRAMMAR (Genome-wide Rapid Association using Mixed Model And Regression), 

implemented in the software GenABEL9, first estimates the residuals from the LMM under 

the null model, and then treats these residuals as phenotypes for further genome-wide 

analysis by a standard linear model10. This substantially reduces per-SNP computation time, 

making it linear in the number of individuals. More recently two more-sophisticated 

approximate approaches have been suggested. Zhang et al7 use P3D (Population Parameters 

Previously Determined) which avoids repeatedly estimating variance components when 

performing each test by simply using the pre-estimated variance components from the null 

model; their method is implemented in the software TASSEL. Kang et al1 also avoid 

repeatedly estimating variance components by a slightly different strategy, which keeps the 

heritability estimated from the null model fixed when testing individual SNPs. Their 

approach is implemented in the software EMMAX (EMMA eXpedited). (This 

approximation, and related ideas, was also considered by previous authors, including10,11.) 

Both these last two approximations have per-SNP computation time that increases 

quadratically with the number of individuals, which makes them practical, on a single 

desktop computer, for GWAS involving thousands of individuals.

Although in some settings the approximate methods described above provide results almost 

identical to those of the exact method1,7, this is not guaranteed in general, and in practice it 

is hard to know how accurate the approximations will be without running an exact 

calculation. One possible consequence of inaccuracy in the approximation could be a 

reduction in power compared with exact methods. For these reasons, the ability to perform 

exact calculations remains of interest. Here, we present a new, more efficient, method for 

exact calculations that provides numerically identical results to EMMA (i.e. exact Wald or 

likelihood ratio test statistics) but is roughly n times faster (computation time per SNP, when 

using the usual genome-wide relatedness matrix, is quadratic in the number of individuals, 

with run time similar to EMMAX). This makes exact calculations feasible for large GWAS, 

obviating the need for approximate methods in most common settings.

RESULTS

The method and its computational complexity is described and derived in detail in the 

Online Methods section. Briefly, the method requires complete or imputed genotype 

data12,13 for all SNPs, and involves only one eigen-decomposition of the relatedness matrix 

at the beginning (computational complexity O(n3)). For each SNP tested, it effectively 

replaces the expensive additional eigen-decomposition step in EMMA with one matrix and 

vector multiplication (computational complexity O(n2)). After this, like EMMA, each 

iteration of the following optimization step requires cheap operations (complexity O(n)) to 

evaluate both first and second derivatives of the target functions. We refer to our method as 

Genome-wide Efficient Mixed Model Association (GEMMA) because it builds on EMMA 

and facilitates its genome-wide application.

We illustrate our method and compare the analysis results with the exact method EMMA 

and the approximation methods EMMAX and GRAMMAR, using two examples, a mouse 
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GWAS for high-density lipoprotein cholesterol (HDL-C) levels from the Hybrid Mouse 

Diversity Panel (HMDP)14 and a human GWAS for Crohn's disease from the Wellcome 

Trust Case Control Consortium (WTCCC)15. The size of this second study makes it 

computationally impractical to analyze with EMMA3. Table 1 summarizes the 

computational complexity for the four methods along with CPU time for the two data sets on 

a single desktop CPU. Table 1 also includes results for the recently-published FaST-LMM8, 

which can produce identical p values to EMMA and GEMMA in the same time complexity 

as GEMMA; see below for further discussion. As expected GEMMA is comparable in speed 

with EMMAX, completing the larger (WTCCC) example in under 4 hours.

To verify the correctness of our algorithm and implementation we first validate it by 

comparing p values calculated by GEMMA with those from EMMA on a subset of SNPs 

from both data sets. For all SNPs examined the p values from the two methods match 

exactly (Wald test results shown in Figure 1a and 1b; Likelihood ratio test not shown).

Since GEMMA provides exact computations in essentially the same time as EMMAX, the 

accuracy of the approximations in EMMAX and other methods may seem moot. However, 

in some settings, and specifically for mixed models with more than one random effect 

(variance component), the computational trick used by GEMMA does not apply, and 

approximations along the lines of EMMAX may remain necessary. For this reason the 

accuracy of different approximation methods remains of some potential interest, and so we 

present a comparison between the (Wald test) p values from GEMMA, EMMAX and 

GRAMMAR, genome-wide, on both the HMDP and WTCCC data sets above.

The HMDP GWAS represents a situation where approximation methods such as EMMAX 

or GRAMMAR may yield inaccurate test statistics. In particular, because individuals in the 

data set are closely related, and the strongly associated SNPs contribute to a significant 

proportion of phenotypic variation in HDL-C13, using estimates of variance components or 

fitted residuals from the null model for testing may be expected to yield conservative p 

values, leading to a potential loss of power. Our empirical comparison (Figure 1c) confirms 

this: in this case, approximation by EMMAX leads to systematic and appreciable 

underestimation of the most significant p values (almost two orders of magnitude), while 

approximation by GRAMMAR leads to dramatic underestimation of all p values. Indeed, in 

contrast to the exact p values, no p values generated by EMMAX are significant at the 

conventional 0.05 level after Bonferroni correction, and no p values generated by 

GRAMMAR are significant even before Bonferroni correction. The fact that the exact p 

values for the most significant results are substantially more significant than the 

approximate p values from EMMAX suggests that, in this type of setting, the exact p values 

may produce a more powerful test; simulation results confirm this (Supplementary Fig. 1).

In contrast, the WTCCC example represents a very different situation where the 

approximations may be expected to yield accurate test statistics. This is because there is 

relatively little population stratification in these data (the individuals are all from the UK, 

and the relatedness matrix is approximately diagonal), and the effect sizes of the most 

strongly associated SNPs for Crohn's disease are small compared with the effect sizes in the 

HMDP data above14. Both conditions favor the approximation assumptions in EMMAX and 
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GRAMMAR. Empirical comparisons (Figure 1d) show that, for this particular data set, the p 

values from EMMAX differ negligibly from the exact values. However, the p values from 

GRAMMAR still depart notably from the exact values.

Taken together, the above results confirm that approximation by EMMAX is appreciably 

more accurate than GRAMMAR, even in cases, such as the WTCCC data, where the sample 

structure is subtle. The comparisons also demonstrate that the accuracy of the EMMAX 

approximation can vary from case to case. Consequently, the potential gain in power from 

doing exact vs approximate tests will also vary among datasets. For the HMDP data, the 

potential gain in power from the exact calculations appears considerable, and this is 

confirmed by simulations (Supplementary Fig. 1). For the WTCCC Crohn's disease data the 

power gain is negligible, and as noted in ref1 only a small gain in power is generally 

expected at SNPs with small effect size. Of course, one nice feature of being able to do the 

exact tests is that it obviates the need to consider which approximations work best under 

what circumstances, or to consider ways in which the approximations could be improved. 

We also note that the computational tricks employed here also apply to other settings, 

including the combined “variable selection plus random effects” model that has been widely 

studied for phenotype and breeding value prediction16, but which, without the trick used 

here, is computationally challenging to fit.

DISCUSSION

In summary, we have presented an efficient method for computing exact values of standard 

test statistics in linear mixed models. This method is comparable in speed with 

approximation methods such as EMMAX while yielding exact test statistics. Using two 

examples we illustrate our method, and show that the approximation methods can yield 

inaccurate p values when the sample structure is strong and/or when the marker effect size is 

large. We also find that the approximation by EMMAX is more accurate than the 

approximation by GRAMMAR genome-wide (a comparison made possible only by the 

availability of an efficient exact method).

While this work was in review, Lippert et al8 also published an efficient method for 

computing likelihoods for LMMs that, like our method, requires only one singular value 

decomposition of the relatedness matrix. They use this method, in combination with Brent's 

optimization algorithm, to produce an algorithm for computing exact test statistics with 

effectively the same computational complexity as GEMMA: O(mn2+cn2+pn2+ptc2n), as in 

Table 1. (Lippert et al8 also suggest a further innovation, using a low-rank relatedness 

matrix in place of the usual relatedness matrix computed from all SNPs genome-wide, that 

produces an algorithm that is linear in n, and so feasible for very large GWAS samples 

containing more than 100,000 individuals; however changing the relatedness matrix in this 

way changes the resulting p values appreciably, and in this sense this linear complexity 

algorithm is not directly comparable with either GEMMA or EMMA; see below for further 

discussion.) The main additional contribution of our work here beyond that in Lippert et al is 

that we provide, and make use of, efficient methods for evaluation of not only the 

likelihood, but also both its first and second derivatives. This allows us to make use of the 

Newton--Raphson optimization method, which has better theoretical convergence properties 
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than Brent's algorithm (quadratic, vs super-linear), potentially reducing per-SNP 

computation time by reducing the number of iterations required for convergence, t. The 

practical effect of this is expected to depend on the sample size n. Examining the theoretical 

computational complexity, if p is large (and we assume the simplest case with no additional 

covariates, so c=1) then the per-SNP complexity of the algorithms is O(nw2 + tn). Thus if n 

is large then the n2 term will dominate and the number of iterations will have only a small 

effect of computation time; if n is moderate then the number of iterations may play a more 

important role. Consistent with this, we found GEMMA to be 12 times faster than the 

Lippert et al algorithm, implemented in FaST-LMM, for the smaller HMDP dataset (33 

minutes vs 6.8 hours), but only 2 times faster for the WTCCC data (3.3 hours vs 6.2 hours). 

It is possible that implementational issues, which are important but conceptually less 

fundamental, also contribute to this difference in speed. Besides this difference in speed, 

which might be considered a minor issue, by providing efficient methods to compute 

derivatives our work here lays the foundations for similar efficient analyses for LMMs with 

multivariate phenotypes17, where multidimensional optimization is required and evaluating 

the target functions alone is unlikely to suffice.

Here we have focused on computations using the usual relatedness matrix, computed from 

all SNPs genome-wide, whose rank, r, is typically equal to the number of individuals n. 

However, as noted by Lippert et al8, if a lower-rank relatedness matrix is used then this 

reduces computing time (computational complexity of the singular value decomposition can 

scale with nr2) and in some cases memory requirements (e.g. Lippert et al.8 suggest using a 

relatedness matrix based on only a few thousand SNPs; this has the nice property that 

required singular value decompositions can be done without computing the n by n 

relatedness matrix itself). Using the usual full-rank relatedness matrix, our current 

implementation of GEMMA can handle approximately 23,000 individuals on a machine 

with 64 Gb memory (in double precision); using a lower-rank relatedness matrix, much 

larger problems could be tackled. However, we note that changing the relatedness matrix 

can produce much larger changes in p values than, for example, the differences between 

EMMAX and exact calculations (e.g. Supplementary Fig. 2), and for both the HMDP and 

WTCCC data using a lower-rank relatedness matrix seems to compromise the ability of the 

LMM to control for sample structure (Supplementary Table 1). Thus choice of relatedness 

matrix could affect statistical efficiency (both power, and correct control of type I error due 

to stratification or relatedness) as well as computational efficiency. Interestingly, statistical 

and computational considerations may not necessarily conflict: for example,7 suggest that 

use of compressed MLM, which yields a lower-rank relatedness matrix by clustering 

individuals, can both reduce computation and increase power compared with the full-rank 

matrix. The general question of which low-rank relatedness matrices produce the best 

combination of computational and statistical performance seems to be an interesting avenue 

for further study.

URLs

Our method is implemented in software GEMMA, freely available at http://

stephenslab.uchicago.edu/software.html.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of -log10 p values obtained from GEMMA with those from EMMA (a, b), and 

EMMAX and GRAMMAR (c, d). In (a) and (b) the p values are shown for the top 10,000 

markers and top 100 markers respectively. In (c) and (d) the p values are shown for all 

markers (1.9 million and 442k respectively).
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Table 1

Performance of different methods for GWAS with the linear mixed model. All computing were performed on 

a single core of an Intel Xeon L5420 2.50 GHz CPU. The time for the EMMA method is projected from a 

selection of 10,000 and 100 genetic markers in the HMDP data set and WTCCC data set, respectively. Note 

that EMMA is implemented in R while others are implemented in C. A C implementation of EMMA could be 

a few times faster. p is the number of genetic markers, n is the number of individuals, m is the number of 

strains (equal to n for human studies), c is the number of covariates (fixed effects) in addition to the 

genotypes. t1 and t2 are the number of optimization iterations required, for Brent's method (super-linear rate of 

convergence) and the Newton--Raphson method (quadratic rate of convergence) respectively. Note that t2 is 

expected to be smaller than t1.

Methods Time Complexity
a

Computing Time

HDL-C
b

Crohn's Disease
c

Exact Methods

GEMMA O(mn2+cn2+pn2+pt2c2n) 33 minutes 3.3 hours

EMMA O(mn2+pmn2+pt2n) ~ 9 days ~ 27 years

FaST-LMM
d O(mn2+cn2+pn2+pt1c2n) 6.8 hours 6.2 hours

Approximate Methods
EMMAX O(mn2+t2n+pn2) 44 minutes 6.4 hours

GRAMMAR O(mn2+t2n+pn) 1.6 minutes 12 minutes

a
Complexities are given assuming the usual genome-wide relatedness matrix, which has rank n. In the current implementation of various methods 

except EMMA, the first terms are actually n3, but it would be straightforward to make them mn2 in principle.

b
m=99, n=681 and p=1,885,197 for HDL-C.

c
m=n=4686 and p=442,001 for Crohn's disease.

d
These results are for the algorithm in FaST-LMM that uses the standard full-rank relatedness matrix, which produces p values that are identical to 

GEMMA and EMMA. See main text for further discussion.
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