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Abstract Cyanobacterial populations introduced into

crop fields as biofertilizer become non-target organisms for

the pesticides and fungicides applied in the field. Effect of

four commonly used pesticides viz. Bagalol, Mancozeb

(fungicides), Thiodan and Phorate (insecticides) was stud-

ied on growth and different enzymes of four cyanobacterial

species viz. Nostoc ellipsosporum, Scytonema simplex,

Tolypothrix tenuis, and Westiellopsis prolifica. EC 50

concentration of each pesticide was determined for all

cyanobacteria. Bagalol and Thiodan were found to be the

most toxic. Both the fungicides and insecticides inhibited

the activity of nitrogenase and glutamine synthetase (GS)

at EC 50 concentration in all the four species studied.

Bagalol incurred maximum inhibition of nitrogenase and

GS activity on N. ellipsosporum and S. simplex while

Thiodan and Phorate had maximum effect on T. tenuis, and

W. prolifica. Mancozeb had lesser effect on all the above

enzymes. One catabolic enzyme of carbohydrate metabo-

lism, isocitrate dehydrogenase (ICDH) and one anabolic

enzyme isocitrate lyase (ICL), which is related to glyoxy-

late pathway as well as gluconeogenesis, were also

assayed. Cell free extracts of cyanobacteria treated with

pesticides for 7 days show a drastic reduction of ICDH

activity. ICL activity was induced in the organisms when

treated with pesticides.
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Introduction

Cyanobacteria play an important role in soil fertility and

crop productivity. Application of cyanobacteria in rice

fields as biofertilizer for better yield of paddy is an age-old

practice [1–4]. Thus, an investigation into the effect of

pesticides on nitrogen fixing cyanobacteria is an important

issue. The effects of insecticides and fungicides on

cyanobacterial growth and nitrogen fixation in paddy field

ecosystems have received attention in India and it has been

shown that the nature of pesticides is related to the effect

on cyanobacteria [5–10].

Nitrogen fixation and its incorporation in cyanobacterial

cell (ammonium assimilation) greatly depend on cellular

energy and is a complex interrelated metabolic cycle.

Nitrogen is reduced by nitrogenase complex and assimila-

tion of ammonium in photosynthetic organisms occurs via

the glutamine synthetase (GS)-glutamate synthase pathway,

which requires energy, reducing power and 2-oxoglutarate

to synthesize glutamate [11]. NADP dependent isocitrate

dehydrogenase (ICDH) catalyzes the synthesis of 2-oxo-

glutarate from isocitrate, thus, involvement of this enzyme

in the supply of 2-oxoglutarate for ammonium assimilation

has been proposed [12–15]. Induction of isocitrate lyase

(ICL), an important enzyme in glyoxylate pathway was

found under in vitro nutrient stress or environmental stress

in some eukaryotic algae [16] and bacteria [17–19]. In

cyanobacterium Spirulina platensis the activity level and
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some physico-chemical properties of enzymes of the tri-

carboxylic acid cycle (TCA cycle) and the associated

enzyme ICL have also been studied under in vitro condi-

tions [20]. In each study ICL activity was induced to combat

stress by generating anaplerotic metabolites via glyoxylate

cycle. In the present investigation effects of Bagalol,

Mancozeb (fungicide), Phorate and Thiodan (insecticide)

on growth and activities of nitrogenase, GS, ICDH and ICL

of four nitrogen fixing cyanobacteria viz. Nostoc ellipso-

sporum (VBCCC006), Scytonema simplex (VBCCC036)

Tolypothrix tenuis (VBCCC018), and Westiellopsis proli-

fica (VBCCC022) have been studied.

Materials and Methods

Organisms and Culture Conditions

Four cyanobacterial isolates viz., Nostoc ellipsosporum,

Scytonema simplex, Tolypothrix tenuis, and Westiellopsis

prolifica isolated from rice field soil sample of Bolpur

(lateritic–alluvial soil) were used for present investigation.

Pure cultures were maintained in liquid BG11 medium

(–N) under 28 ± 1�C temperature and 25–30 lmol

photons m-2 s-1 illumination in 12 h light/dark cycles.

Pesticides Used

The fungicides chosen and concentration used for the present

study were Bagalol-6 (methoxy ethyl mercuric chloride,

0.001–1.0 ppm) and mancozeb-35 (sulphar-dithiocarba-

mate, 1–100 ppm). The insecticides used were Thiodan

(endosulphan-hexachlorohexahydromethano-2,4,3-benzo-

dioxathiepin 3-oxide, 0.001–5.0 ppm), and phortax-10G or

phorate (organophosphate-O,O-diethyl S-(ethylthio) methyl

phosphorodithioate, 0.001–5.0 ppm).

Determination of Effective Concentration 50 (EC 50)

EC 50 of each pesticide was determined as expressed in

terms of concentration of pesticides, which reduces growth

by 50% as compared to the control (Table 1). This was

done following Regression line equation, based on sur-

vivality response in terms of chlorophyll a (Chl a) content.

Inoculation

The absorbance of inoculum (homogenized biomass) dur-

ing inoculation in the liquid medium containing pesticides

at 750 nm was 0.2. Inoculation was done aseptically in a

laminar-airflow.

Growth and Heterocyst Frequency (H%)

Growth was determined in terms of Chl a content follow-

ing Mackinney [21]. Heterocyst frequency was calculated

by counting the number of heterocysts present per hundred

vegetative cells under light microscope.

Acetylene Reduction Assay

The nitrogenase activity was estimated by acetylene

reduction assay (ARA) following Turner and Gibson [22].

The cyanobacterial biomass was incubated with freshly

prepared acetylene for 24 h. Ethylene formation from

acetylene and its detection was done by a gas chromato-

graph (Hewlett-Packard) fitted with Porapack N

(80–100 mesh) column and ionizing detector. Column

temperature, detector temperature and port temperature

ware 100, 170 and 140�C respectively. The amount of

ethylene produced was calculated by integration of the

peak and converted to nmol of ethylene formed per lg Chl

a by comparison to a standard curve developed from

injected standard amount of ethylene.

Preparation of Cyanobacterial Cell Free Extracts

Cyanobacterial populations in culture were harvested in a

centrifuge at 10,0009g for 10 min at 4�C. The cells were

washed thrice by 0.05 M phosphate buffer at pH 7.0. The

washed cells were finally suspended at 20% in 0.05 M

phosphate buffer, pH 7.0, containing 5 mM b-mercap-

toethanol. Washed cell suspension thus obtained was sub-

jected to sonication at 4�C with an ultrasonic needle probe

at 100 W for 5 min. After centrifugation at 15,0009g for

10 min, supernatant which is the crude cell free extract

(CFE), was kept in an ice bath and used as source of

enzymes. Enzyme assays were carried out at room tem-

perature (25–27�C) and optical densities (O.D.) of the

Table 1 Effective

concentrations (EC 50) of four

studied pesticides determined

on the basis of survivability

response of cyanobacterial

strains

Pesticides Effective concentration in ppm (EC 50)

N. ellipsosporum W. prolifica S. simplex T. tenuis

Bagalol 0.025 ± 0.001 0.03 ± 0.001 0.04 ± 0.002 0.042 ± 0.002

Mancozeb 40.0 ± 1 25.5 ± 0.5 50.5 ± 0.5 72.2 ± 2.2

Thiodan 0.025 ± 0.001 0.029 ± 0.001 0.048 ± 0.002 0.05 ± 0.002

Phorate 0.40 ± 0.016 0.50 ± 0.025 0.52 ± 0.02 0.80 ± 0.03
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assay mixtures were recorded in Simadzu 1700 UV–visible

spectrophotometer.

Assay of GS (EC 6.3.1.2)

Activity of GS was assayed following Shapiro and Stadt-

man [23]. The reaction mixture contained, in a final volume

of 1 ml, 50 lmol 4-(2-hydroxyethyl)-l-piperazineethane

sulfonic acid (HEPES)–KOH buffer (pH 7.5), 30 lmol

L-glutamine, 3 lmol MnCl2, 60 lmol NH2OH, 0.4 lmol

ADP, 20 lmol Na2HAsO4, and cell free extract. Reaction

was started by the addition of sodium arsenate and the

amount of 7-glutamylhydroxamate (7-GH) formed after

15 min of incubation at 30�C was measured spectropho-

tometrically at 540 nm.

The protein content of the crude cell free extract was

estimated by the method of Lowry et al. [24] using bovine

serum albumin as the standard.

Assay of ICDH (EC. 1.1.1.42)

This enzyme was assayed by measuring the rate of con-

version of NADP? to NADPH at 340 nm and taking the

molar extinction coefficient value of reduced NADP? into

consideration following Khouw and Mc Curdy [25]. The

change in O.D./min was calculated from the linear portion

of enzyme activity curve and was expressed as DO.D./min.

The reaction mixture contained 30 lmol Tris HCl-buffer

(pH 7.6), 10 lmol MgCl2, 0.2 lmol NADP?, 10 lmol

DL-isocitrate and CFE containing approximately 300–500 ll

protein to a total volume of 1 ml.

Assay of ICL (EC. 4.1.3.1)

ICL was assayed by determining the amount of gly-

oxylate formed from isocitrate following Mc Fadden

[26]. A reaction mixture of 1.5 ml Tris–Mg2? buffer;

0.125 M reduced glutathione, 0.2 ml; and CFE, 0.1 ml,

was pre incubated at 30�C. The reaction was initiated

with the addition of 0.2 ml of 40 mM trisodium DL-iso-

citrate solution and thorough mixing. After 10 min

incubation the reaction was stopped with the addition of

1 ml 10% TCA. Then to 1 ml of reaction mixture 6 ml

of oxalic acid–phenyl hydrazine hydrochloride mixture

was added and heated until just boiling. The mixture was

chilled on ice. 4 ml of concentrated HCl was added to it,

followed by 1 ml 5% potassium ferricyanide and the

preparation was mixed thoroughly. Optical density of the

mixture was read at 520 nm against a water blank, 7 min

after the addition of ferricyanide. Specific activity is

defined as nmol of glyoxylate formed min-1 mg-1 of

protein.

Results and Discussion

Inhibitory effect of the pesticides on the growth of cya-

nobacteria was observed as Chl a content was reduced after

treatment. Bagalol and Thiodan appeared to be the most

toxic pesticides as they reduced growth by 50% at con-

centration ranging from 0.025 to 0.05 ppm in all the four

organisms. The concentration of Phorate in effecting 50%

inhibition ranged from 0.40 to 0.80 ppm. Mancozeb

was the least toxic as compared to other pesticides for

the tested cyanobacteria and the range of concentration

was 40.0–72.2 ppm. T. tenuis has maximum tolerance to

the pesticides followed by S. simplex, W. prolifica and

N. ellipsosporum (Table 1). Earlier reports [27, 28] of

effects of mercury fungicide and endosulfan supports the

present findings. However, in each organism an increase of

Chl a synthesis was observed up to 20 ppm concentrations

for Mancozeb (\EC 50), but beyond this concentration

(30–100 ppm) Chl a content declined. There are earlier

reports of such effect of pesticides on growth of cyano-

bacteria [29–33]. The increased pigmentation could be due

to mutagenesis to detoxification or even metabolizing the

pesticide [34, 35]. Inhibition of chlorophyll synthesis by

pesticides in Anabaena flos-aquae, T. scytonemoides and

T. ceylonica has been reported earlier [36, 37].

The results recorded from the present study indicate no

alteration in heterocyst frequency per filament in N. elli-

psosporum (6–7%), S. simplex (5%), T. tenuis (10–12%)

and W. prolifica (20–22%) compared to their untreated

culture sets. Bagalol inhibited nitrogenase activity by 60%

and GS activity by 70% in N. ellipsosporum (Fig. 1).

Phorate inhibited nitrogenase activity by 52.2% in W. pro-

lifica and GS activity by 62% in T. tenuis. Thiodan

inhibited nitrogenase activity by 51.2% in W. prolifica and

GS activity by 50% in both N. ellipsosporum and W. pro-

lifica. Mancozeb inhibited nitrogenase activity by 32% and

GS activity by 46% in W. prolifica. Many investigators

have reported the inhibition of nitrogenase by pesticides

[38–42]. The present finding supports the earlier observa-

tions [43, 44] that cyanobacteria with out sheath like

N. ellipsosporum are much susceptible to pesticide stress

comparison to sheathed members S. simplex, W. prolifica

and T. tenuis (Figs. 1, 2, 3, 4). Variability in an organism’s

response to the pesticides is reflected in earlier reports. In

N. calcicola, nitrogenase activity was reduced to 70 and

35% by Phosphomidon and Dithane respectively [31] but

Quinolphos and Monocrotophos totally inhibited nitroge-

nase activity [45]. In T. scytonemoides, Monocrotophos

decreased the expression of nitrogenase to a greater extent

[37].

Enhancement or reduction of heterocyst frequency is of

interest as it has direct relevance to nitrogen fixation.

Though heterocysts number was not affected by exposure
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to the EC 50 concentrations of Bagalol, Thiodan, Phorate

and Mancozeb but the level of nitrogenase activity was

reduced. Nitrogenase activity of A. doliolum was reduced

by 38% by carbofuran treatment with no observed change

in heterocyst frequency [33]. On the other hand, hetero-

cysts were not found in N. muscorum in the presence of the

pesticide [46]. This could be attributed to the interference

of these four pesticides with heterocyst’s envelope and

maturation rather than their differentiation process and

affects their efficiency in N2-fixation. Orus and Marco [47],

reported that the destabilization of the heterocyst envelope

is the first target of insecticidal action causing inhibition of

dinitrogen fixation. The reduced nitrogenase activity under

the increasing concentration of pesticides in cyanobacteria

(Figs. 1, 2, 3, 4) may possibly be related to the reduction in

photosynthetic activity related to the lack of reducing agent

pool [48] under pesticide stress. Thus, ARA activity might

be hampered in two ways, either by heterocyst non-func-

tionality or deficiency in energy supply by inhibition of

photosynthesis or by inhibition of energy metabolism and

reduction of supply of reducing molecule such as NADH or

NADPH.

GS activity was found to decline in response to all the

pesticide treatments in the present study (Figs. 1, 2, 3, 4).

Bagalol inhibited GS activity by 70% at EC 50 concentration

in N. ellipsosporum. In earlier studies [37, 40], GS activity

was suppressed by Propanil in N. muscorum and by Mon-

ochrotophos, Bavistin and Nimbicidin in T. scytonemoides.

ICDH is considered to be an important enzyme in the

TCA cycle. Results indicated a drastic reduction of activity

of this enzyme at EC 50 concentration of the pesticides

(Fig. 5). Maximum inhibition of ICDH activity was

observed in W. prolifica (98%) by Thiodan followed by

S. simplex (96.1%) and T. tenuis (96.3%), respectively

(Fig. 5). Marked decrease of ICDH activity (Fig. 5) was

exhibited by Phorate in N. ellipsosporum (97%).

Fig. 1 ARA (nmol C2H2 lgChl-a-1h-1) and GS (nmol substrate

mg-1 protein min-1) activity of N. ellipsosporum at EC 50 dose of

pesticides

Fig. 2 ARA (nmol C2H2 lgChl-a-1h-1) and GS (nmol substrate

mg-1 protein min-1) activity of S. simplex at EC 50 dose of pesticides

Fig. 3 ARA (nmol C2H2 lgChl-a-1h-1) and GS (nmol substrate

mg-1 protein min-1) activity of W prolifica at EC 50 dose of

pesticides

Fig. 4 ARA (nmol C2H2 lgChl-a-1h-1) and GS (nmol substrate

mg-1 protein min-1) activity T tenuis at EC 50 dose of pesticides
Fig. 5 Specific activity of ICDH (nmol NADP min-1 mg protein-1)

in four pesticides treated cyanobacteria
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In the cyanobacterial isolates, treated with pesticides,

glyoxylate pathway is induced as indicated by the induction

of ICL in all four isolates (Fig. 6). However, in S. simplex

ICL activity was not induced by Phorate treatment. Under

control condition, ICL activity of cyanobacteria was found

to be absent or very low (2–5 nmol substrate min-1 mg-1

protein). Greatest induction of ICL was by Mancozeb

(36 mol substrate min-1mg-1 protein) in N. ellipsosporum

(Fig. 6). In T. tenuis 10.5, 8, 3.5 and 2 fold increase of ICL

activity were observed under Mancozeb, Bagalol, Thiodan

and Phorate treatment respectively (Fig. 6). About 6, 4.5

and 4 fold increase were observed in S. simplex under

Bagalol, Mancozeb and Thiodan respectively (Fig. 6).

Comparatively less ICL activity was observed in W. proli-

fica (3.25, 0.25, 4.5 and 1.7 fold) for all four pesticides

(Bagalol, Mancozeb, Thiodan and Phorate respectively)

treatment. As ICDH and ICL compete for the same sub-

strate isocitrate, thus, with the increase of activity of ICL,

ICDH activity is decreased. Induction of ICL activity in

pesticide treated culture at EC 50 concentration might be an

adaptive strategy for survival under stressed environment

which might be analogical to an earlier observation of

induction of ICL activity in carbon starved cells of Rhizo-

biaum as an adaptive strategy [19].

It is fact that with the lowering of ICDH activity energy

required for nitrogen fixation is declined [16, 17]. Thus, to

maintain cellular energy budget for survival, cyanobacteria

slowed down the highly energy consuming nitrogen fixa-

tion process and as a consequence of this GS activity was

also reduced. On the other hand, marked enhance of ICL

activity under similar pesticides treatment cultures

observed. As a result TCA cycle is modified or by passed to

the glyoxylate cycle to combat pesticides stress.

Among the pesticides, Bagalol incurred maximum tox-

icity at EC 50 on investigated cyanobacteria in the present

study. Its high toxicity to all four isolates possibly due to

the presence of mercury in it. Presently use of this fungi-

cide has been stopped to avoid long term (half life

30–45 days) mercury toxicity in agricultural field.
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