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Abstract
The interpretation of spinal images fixed with metallic 
hardware forms an increasing bulk of daily practice in a 
bus�� imaging department. Radio�ogists are required to 
be familiar with the instrumentation and operative op-
tions used in spinal fixation and fusion procedures, es-
pecia���� in his or her institute. This is critica� in eva�uat-
ing the position of imp�ants and potentia� comp�ications 
associated with the operative approaches and spinal 
fixation devices used. Thus, the radiologist can play an 
important role in patient care and outcome. This review 
out�ines the advantages and disadvantages of com-
mon��� used imaging methods and reports on the best 
yield for each modality and how to overcome the prob-
lematic issues associated with the presence of metallic 
hardware during imaging. Baseline radiographs are es-
sentia� as the�� are the base�ine point for eva�uation of 
future studies shou�d patients deve�op s��mptoms sug-
gesting possib�e comp�ications. The�� ma�� justif�� further 
imaging workup with computed tomography, magnetic 
resonance and/or nuc�ear medicine studies as the eva�u-
ation of a patient with a spinal implant involves a multi-

modality approach. This review describes imaging fea-
tures of potential complications associated with spinal 
fusion surgery as well as the instrumentation used. This 
basic knowledge aims to help radiologists approach ev-
er��da�� practice in c�inica� imaging. 
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INTRODUCTION
Successful spinal fusion procedures appeared in the medi-
cal literature in the early 20th century[1,2]. The develop-
ment of  an integrated osseous fusion complex is essential 
for the long-term success of  these procedures[3]. Early 
surgeries relied upon extended bracing for solid fusion 
to occur with considerably long convalescence periods[3]. 
Currently, a vast array of  implants and surgical approaches 
are available for spinal surgeries to aid graft incorporation 
with early mobility and shorten postoperative recovery 
period[3-9]. The choice of  fixation device and technique de-
pends on the clinical problem, the anatomic location, and 
the surgeon’s preference[3-9]. 

The goal of  spinal instrumentation is to maintain or 
correct anatomic alignment of  spinal segments by sharing 
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the loads acting on the spine, usually until solid biological 
fusion occurs[5-9]. Subsequent instrument failure occurs if  
solid bony fusion is not achieved[5-9].

Radiologists are required to be familiar with the spinal 
instrumentation in common use as well as those used in 
his/her region to promote communication with the refer-
ring physician and awareness of  potential complications 
of  such procedures. This review will highlight these pro-
cedures and the common techniques, surgical approaches, 
postoperative imaging features as well as common com-
plications associated with them.

SPINAL INSTABILITY: BASIC OVERVIEW
The spine is a complex structure that transmits loads 
from the upper body through the pelvis into the lower 
extremities[3,7]. A spinal motion segment is the smallest 
functional unit addressing spinal biomechanics. It consists 
of  two adjacent vertebrae, an intervertebral disc, various 
ligaments and apophyseal joints. Harmonic interaction of  
these elements as well as surrounding spinal musculature 
results in spinal motion segment stability during the ap-
plied forces of  daily activities[10]. 

Accordingly, the American Academy of  Orthopedic 
Surgeons has basically defined spinal instability as an ab-
normal response to applied loads, characterized by move-
ment in the motion segment beyond normal constraints[11].

Denis’s spinal model (Table 1) is widely employed by 
spinal surgeons to address genuine native gross spinal sta-
bility[12].

In general, two of  the three spinal columns must be 
anatomically intact for functional stability. Violation of  
more than one column by trauma, infection, tumor, de-
generative change, or surgical approach will necessitate 
spinal instrumentation[3].

SPINAL INSTRUMENTATION: DEVICES 
AND SURGICAL APPROACHES
Listing different spinal instrumentation devices and surgi-
cal procedures is beyond the scope of  this review. How-
ever, a general overview will be provided here.

Spinal instrumentation is commonly performed when 
spinal stability restoration, deformity correction, spinal-
motion segment height restoration and pain relief  are 
desired as in the management of  scoliosis and other spinal 
deformities, spinal degenerative disease, trauma, instability, 
infection, and neoplasm[13-16]. A combination of  both bio-
logic (bone graft) and prosthetic (instruments) materials 
are usually used to form a construct that aims to maintain 
spinal stability in an unstable region of  the spine[17].

Posterior/posterolateral spinal fusion and instrumentation
Posterior spinal column reconstruction has been per-
formed for decades using different combinations of  plates 
or rods with hook/wire/pedicle screw systems to form 
posterior spinal construct devices for different spinal lev-
els[3,5,7].

A posterior approach is usually used when posterior 
decompression is required in addition to fusion as in de-
generative spinal disease. It is more common in dorsal and 
lumbar regions (e.g., posterior inter-lumbar body fusion 
or PILF) as it is easier and adequately visualizes neural 
elements. It avoids the high-risk of  the anterior approach 
in these regions, while it is mostly avoided in the cervical 
region for cord manipulation risks at that level[3,4].

Posterior fusion uses autografts placed along decor-
ticated facets, laminae and/or transverse processes[7]. In 
PLIF, bilateral partial laminectomies are performed and 
are followed by diskectomy (Figure 1). Bone graft mate-
rial is packed into the anterior disk space before the inser-
tion of  one or two interbody spacers; placed side by side; 
and packed with graft material[4,7,8,18].

When there is a severe loss of  disk space height and 
when the insertion of  a posterior interbody spacer might 
cause neurologic compromise, Trans-laminar inter-body 
fusion with cortical screws is used as a simple method of  
posterior fixation. The bone graft material is placed later-
ally (between transverse processes) rather than anteriorly 
(between vertebral bodies), for posterolateral spinal fu-
sion[4,7,8,18].

Rods are commonly used for long segment spinal fix-
ations e.g., in scoliosis, as they can be individually cut and 
molded as required to facilitate maintenance of  sagittal 
alignment, while plates are favored for short segment fix-
ations e.g., in traumatic and degenerative etiologies[4,6,7,18].

Anterior instrumentation and fusion
Anterior fusion procedures are indicated for discogenic 
pain where removal of  degenerative disk material and 
replacement for disk height is performed along with ante-
rior osseous fusion for immediate stability. The presence 
of  facet joint disease contra-indicates these procedures[4,7].

Anterior instrumentation may use either rod-screw or 
plate-screw systems to form a spinal construct. The ante-
rior approach is generally preferred in the cervical spine 
(commonly known as anterior cervical diskectomy and fu-
sion or ACDF) because of  the risk of  cord manipulation 
associated with a posterior approach at this level. Also, im-
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Figure 1  Antero-posterior (A) and lateral digital radiographs (B) of the lum-
bosacral spines with posterior lumbar interbody fusion showing LV3 through 
LV5 levels laminectomies with fine posteriorly located bone chips (arrows) 
on antero-posterior view that are difficult to appreciate on lateral view. 
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Figure 2  Immediate post-operative antero-posterior (A) and lateral digital 
radiographs (B) of the lumbosacral spines with posterior lumbar inter-
body fusion showing LV4-LV5 levels laminectomies with iliac bone graft at 
LV4-5 disc level. 
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plants used posteriorly in the thoracic and lumbar regions 
are too large imparting greater traction forces that are not 
needed in the smaller cervical spine[4,7].

On the contrary, in the thoracic and lumbar levels 
(commonly known as anterior inter-lumbar body fusion 
or AILF) it is less indicated owing to significant morbid-
ity, as the procedure involves going through the chest and 
abdominal cavities, and delayed recovery is associated 
with this approach[4,7].

Inter-body grafts and implants
These are a group of  materials that have compressive 
strength and aim mainly to preserve disc space and/or 
spinal motion heights in diverse indications such as de-
generative disc disease, neoplastic disorder, etc. They can 
be biologic substances like iliac bone grafts (Figure 2) and 
fibular grafts in cervical regions. Femoral grafts can be 
used where more spinal axial loads are present as in the 
lumbar region. Synthetic materials such as stainless, tita-
nium and carbon polymers can be used in threaded and 
solid forms (Figure 3). 

In either situation, the central cavity is typically packed 
with autologous bone chips, demineralized bone matrix, 
and/or bone morphogenetic protein to establish bony fu-
sion. The most recent non-metallic synthetic spacers con-
tain two radiopaque markers to enable radiographic assess-
ment of  the spacer position (Figure 4)[7,19].

Vertebral body replacement (corpectomy)
Spinal diseases of  neoplastic, infective or traumatic pro-

cesses may necessitate resection of  one or more vertebral 
bodies under certain circumstances, known as corpec-
tomy or vertebral body replacement. Maintaining the lost 
spinal segment height is mandatory to preserve function-
ality and avoid further neural related complications[4].

For corpectomy procedures large strut grafts are used. 
Femoral strut allografts are designed for use in the lum-
bar or thoracic spine, while fibular strut allografts or 
tricortical iliac crest grafts may be used in anterior cervi-
cal corpectomy. In all cases, spinal hardware fixations are 
added to share load-bearing and aid bony fusions[7].

Total disk replacement
Total disk replacement, also known as disk arthroplasty, 
is performed in patients where their pain is believed to be 
discogenic in origin with no nerve root involvement as 
well as absent spinal stenosis or spondylolisthesis[4,7,20].

These procedures were resorted to in an attempt to 
avoid the effects on adjacent motion segments and the 
facets following spinal arthrodesis[21,22].

At least 4 mm of  residual disk height and a lack of  
significant endplate degeneration to provide satisfactory 
anchorage for the replacement device are pre-requisites. 
The presence of  spinal instability, facet joint degenera-
tion, osteoporosis and/or infection contraindicates total 
disk replacement[4,23]. 

The first human disk prosthesis, which consisted of  
a single ball bearing, was inserted in the late 1950s[24]. Bao  
et al[25] classified these devices into four categories: (1) low-
friction sliding surface; (2) spring-and-hinge systems; (3) 
contained fluid-filled chambers; and (4) discs comprised of  
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Table 1  Denis’s three spinal column theory

Spinal column Components Primary function Secondary function

Anterior ALL, anterior 2/3 of the vertebral body and annulus fibrosus Bears axial load Resist extension
Middle Posterior 2/3 of the vertebral body and annulus fibrosus, 

nucleus bulbosus and PLL
Resist flexion Shares in axial loading

Posterior Posterior vertebral arch elements Spinal stability during rotational movements Resist flexion

ALL: Anterior longitudinal ligament; PLL: Posterior longitudinal ligament; Posterior vertebral arch elements include: Pedicles, facets, ligamentum flavum, 
interspinous, and supraspinous ligaments.

Figure 3  Antero-posterior (A) and lateral radiographs (B) of the cervical 
spines showing  metallic markers of  CV4-5 intervertebral disc spacers.
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rubber or other elastomers. 
The materials used by different manufacturers vary 

considerably, with many different combinations of  metals 
and polymers.

Yang et al[26], showed good clinical outcome, restored 
cervical spine mobility and prevented accelerated adjacent 
cervical segments degeneration at 24-mo follow-up. Yajun 
et al[27], reported equivocal results for the treatment of  
lumbar degenerative disc disease compared with fusion 
after a 2-5-year follow-up period. Their long-term evalua-
tion is still ongoing in the literature.

Spinal dynamic stabilization
Spinal fusion procedures reduced pain clinically, but the 
increased stress on the adjacent segments was a new 
cause of  instability and pain[28-30]. Dynamic stabilization 
may be an alternative to fusion in some patients with low 
back pain originating from chronic degeneration of  the 
lumbar spine[31].

The concept of  dynamic stabilization relies upon alter-
ing load bearing and controlling abnormal motion. This 
limits the stress placed on the segment adjacent to the 
level of  fusion and thus helps prevent progressive degen-
eration[31-35].

A wide variety of  dynamic stabilization devices is 
available. These devices may be broadly grouped, ac-
cording to their design, into the following categories: (1) 
pedicle screws and artificial ligaments; (2) inter-spinous 
process decompression devices; and (3) posterior element 
replacement systems[4].

IMAGING MODALITIES
Radiography is the mainstay used for the postoperative 
imaging of  spinal fusion thanks to its wide availability, 
cost-effectiveness, and non-invasive nature, although com-
puted tomography (CT) is reported to be a more accurate 
modality[6,36,37].

Baseline radiographs or CR images are essential for 

evaluating spinal construct position (Figure 5) and serve 
as a starting point for evaluation of  future studies, should 
patients develop symptoms suggesting potential com-
plications. A change in position or instrument failure is 
often easily appreciated on serial radiographs or CR im-
ages[6,37]. Antero-posterior (AP), lateral, oblique, and mo-
tion studies (flexion, extension, or lateral bending) images 
are usually adequate and varies from one institution to 
another. 

In some instances, fluoroscopically positioned images 
may be needed to judge better alignment of  the hardware 
or osseous structures to identify subtle changes more op-
timally[9,38,39].

However, the projectional nature of  radiography, in-
sensitivity to detect metastasis and to explain neurologic 
symptoms are drawbacks limiting its yield[4-7].

Polytomography had been used to detect subtle mo-
tion at the fusion site[40]. Nowadays, its use is only justified 
when older stainless steel hardware is present that pre-
cludes adequate CT imaging[7,40].

Ultrasound is not commonly used for evaluating po-
tential spinal complications, although detection of  super-
ficial abscesses or fluid collections can be accomplished 
with this technique and may help to guide their aspira-
tion[4,6].

Computed tomography 
For many years, significant beam hardening and suscepti-
bility artifacts seen on CT and magnetic resonance (MR), 
respectively, made these imaging tools a poor choice for 
evaluating patients with spinal metallic implants[41-43]. Pa-
tient movement often exacerbates such artifacts, however, 
this can be overcome with currently available high-speed 
multidetector CT.

However, with recent advances in CT technology; espe-
cially in the multi-detector era; as well as hardware material 
improvements; including materials with fewer significant 
artifacts such as titanium, polyethylenes and fibrocarbons; 
many artificial implants can be imaged with fewer artifacts 
preserving relevant imaging information[6,7,41,44].

CT is the modality of  choice for imaging bony detail 
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Figure 4  Antero-posterior (A) and lateral digital radiographs (B) of the 
lumbosacral spines with posterior lumbar interbody fusion showing LV3 
through SV1 levels laminectomies with 2 metallic marks denoting insertion 
of radiolucent intervertebral disc spacers. Note the posterior mark is at least 
2 mm anterior to posterior border of adjacent vertebral body at LV3-4 level. 

A

Figure 5  Antero-posterior (A) and lateral radiographs (B) showing well 
positioned spinal lumbar construct with pedicular screws central within 
the pedicles and not violating the cortices or adjacent endplates. 

BA

Nouh MR. Spinal fusion-hardware construct imaging

B



in the spine, for accurate assessment of  component posi-
tion, particularly for positioning of  pedicle screws, evalu-
ating both spinal and construct alignment, and degree of  
osseous fusion[6,7,45,46]. It can also evaluate the spinal canal, 
and potential post-operative complications[6,7,45,46].

Metal-induced artifacts on CT are the results of  both 
hardware-related factors such as hardware composition, 
geometry (shape), as well as location and imaging techni-
cal factors including tube current (in milli-ampere-sec-
onds, mAs); X-ray kilovolt peak (KVp); pitch; and image 
reconstruction algorithm (filter)[47,48].

Hardware-related factors are beyond the control of  
the imager. Orthopedic hardware composed of  lower 
X-ray beam attenuation coefficients (density) materials re-
sults in fewer artifacts e.g., titanium alloys produce fewer 
artifacts than stainless steel alloys[47-50].

Thin body parts and thinner parts of  the metallic hard-
ware attenuate X-ray beams less than their thicker coun-
terparts producing fewer image-degrading artifacts[47-50]. 
This could be of  clinical application in imaging of  the 
reconstructed cervical spine with downward traction of  
the shoulders while raising the arms above the head for 
imaging of  the reconstructed dorsal and lumbar spinal 
regions[47-50].

On the other hand, control of  the following imaging 
factors can significantly improve the resultant hardware 
images and allows accurate answering of  relevant clinical 
questions.

X-ray kilovolt peak
Most current CT- X-ray tubes operate at 120 kilovolt peak 
(KVp) as a default setting. This may suffice for imag-
ing cervical spinal hardware in thin patients. However, 
in chubbier patients and thicker parts such as the dorsal, 
lumbar and sacral spines, a higher KVp, e.g., 140 KVp 
can increase the ability of  the X-ray beam to penetrate 
metal[47,51,52].

X-ray tube current: An appropriate increase in tube cur-
rent setting using the tube’s larger focal spot increases the 
ability of  the X-ray beam to penetrate metal[48-52].

Pitch: The term pitch equals table translation (in millime-
ters) per gantry rotation divided by beam collimation[53,54]. 
As the number of  detector rows increases the pitch de-
creases and this reduces metal artifacts[53,54]. Thanks to 
lower pitch settings of  multi-channel CT technologies, 
the collection of  enormous data sets can be achieved. 
Thus, high-resolution images in axial, sagittal and coronal 
planes can be obtained[53,54]. Furthermore, excellent post-
processing images as volume rendered (VR) and shaded-
surface display (SSD) images can be reproduced[48,53,54].

Image reconstruction parameters
The use of  a standard or smooth reconstruction filter is 
preferred, particularly in the presence of  dense metal-
lic hardware and in patients with a large body habitus. 
The use of  wide window settings (3000-4000 HU win-

dow width, 800 window levels) facilitates visualization 
of  structures adjacent to metal hardware and reduces 
the effects of  metal artifacts. Gathering the small thick-
ness slices into more thickly reformates helps to reduce 
metal-induced artifacts and improve signal-to-noise ra-
tio[47,48,50,52].

Volumetric rendering techniques such as VR and SSD 
impress semitransparent views of  bones that tend to re-
duce metal artifacts allowing proper assessment of  metal 
hardware-bone relationship[47,48,50,52].

Magnetic resonance imaging 
CT and plain films virtually provide all relevant diagnostic 
information on grafts, implants, and hardware, thus mag-
netic resonance imaging (MRI) was commonly reserved 
due to magnetic-susceptibility artifacts seen with the old 
stainless steel alloys[6,7,55]. 

However, both recent MRI advances and newer mag-
netically inert polymers used for the manufacture of  spi-
nal hardware elements allowed higher resolution images 
of  clinical diagnostic value. MRI has become an integral 
part of  evaluating the patient with painful hardware im-
plants, where clinical findings are non-focal, and labora-
tory diagnosis is negative for infection[50,55-58].

MRI is sensitive for detecting fractures, pseudo-ar-
throsis, and infections. It depicts cancellous bone marrow 
well compared to cortical bone[37].

Metallic hardware-induced MR susceptibility artifacts 
are mainly the sum of  local field inhomogeneities (due 
to spin resonance differences between metal and sur-
rounding soft-tissues) altering both phase and frequency 
of  local spins. These result in subsequent image forma-
tion misregistration in the form of  signal loss within the 
metallic object, distortion of  the shape of  the metallic 
object along the axes of  frequency encoding and section 
selection as well as high signal intensity appearing around 
the metallic object (Figure 6A)[59-62].

As mentioned with CT, the production of  metal-re-
lated artifacts in MRI is a result of  both hardware-related 
factors such as hardware composition, geometry (shape), 
as well as location (orientation to the main magnetic 
fields) and MRI technical factors including magnetic field 
strength used, type of  pulse sequences applied and the 
sequence parameters, including voxel size (determined by 
field of  view, image matrix, and section thickness), and 
echo train length[62-64].

Paying attention to patient positioning, choosing ad-
equate imaging parameters and selecting different pulse 
sequences will help to reduce MR susceptibility artifacts 
associated with the spinal hardware and optimize the 
clinical value of  MRI in such patient groups.

Again, hardware-related factors are beyond the con-
trol of  the imager. Non-ferromagnetic titanium and poly-
carbon-enforced implants produce fewer severe artifacts 
than do ferromagnetic implants made of  stainless steel. 
Also, the larger the implant size the more obtrusive the 
artifact will be[47,62,65-67].

In spite of  multiple components and directions of  
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the spinal hardware, alignment of  the longitudinal axis of  
the hardware device parallel to the direction of  the main 
magnetic field (z-axis of  the scanner), will significantly 
reduce the resultant artifact[47,62,66-68].

The quality of  MR images is dependent on the pulse 
sequence parameters used. Routine techniques used in 
the preoperative setting cannot be employed in the post-
operative setting, as the resultant metal artifact is too 
great, yielding non-diagnostic images[56].

High-field-strength magnets produce larger magnetic 
susceptibility artifacts as misregistration artifacts are pro-
portional to the magnitude of  the local inhomogeneity in 
the main magnetic field, while it is inversely proportional 
to the strength of  the applied frequency-encoding gradi-
ent[47,68,69]. 

However, the increased distortion effects of  a higher 
main magnetic field strength could be offset by higher 
gradient strengths[70]. Another advantage of  high-field 
magnets is the use of  broad-band width receivers that 
can reduce these magnetic susceptibility artifacts[47,62].

Gradient strength depends on selected field of  view 
and matrix size in a given pulse sequence. This implies 
that the smaller the voxel, the smaller the artifact[66]. 
Hence, the use of  a small field of  view, high-resolution 
matrix (e.g., 256 �� 256 or 512 �� 512), thin section, and�� 256 or 512 �� 512), thin section, and 256 or 512 �� 512), thin section, and�� 512), thin section, and 512), thin section, and 
high gradient strength can help reduce metal-related arti-
facts[47,71].

Gradient recalled echo (GRE) sequences are extremely 
sensitive to the presence of  metal due to intravoxel de-
phasing resulting in signal loss seen as a dark or black area 
around the metal on the processed images (Figure 6B). 
This could be reduced by shortening the echo time (TE) 
and decreasing voxel size to minimize intravoxel dephas-
ing seen on GRE acquisition[47,62,64,69,72].

In contrast to GRE sequences, use of  a 180° refocus-
ing pulse with SE and FSE sequences, enables recovery 
of  the transverse signal lost due to static magnetic field 
inhomogeneities and bulk susceptibility differences, to 
some extent[66,72].

The magnetic field inhomogeneities adjacent to fer-
romagnetic materials causes increased dephasing per unit 
distance of  travel in randomly diffusing spinning protons 
(T2-effect) augmenting signal loss on imaging the ortho-
pedic hardware, prominently on long TE (T2-weighted) 
acquisition sequences[69]. This could be overcome by us-
ing FSE images with decreased inter-echo spacing (�TE)�TE)TE) 
in the same echo-train duration i.e., increasing echo-train 
length, thus reducing diffusion-related signal loss during 
filling the K-space and improves the resultant image[62,73,74]. 

Variation of  the regional magnetic field surround-
ing metallic devices or debris creates an inhomogeneous 
magnetic field, augmenting metal-induced signal loss and 
making use of  frequency-selective fat saturation poor 
choice for depicting marrow lesions and optimizing con-
trast studies in patients with metallic hardware[72].

An alternative method for fat suppression is the use 
of  short inversion time inversion recovery imaging which 
is less dependent on the homogeneity of  the main mag-
netic field[47,61,69]. However, decreased signal-to-noise ratio 
with loss of  tissue signal resolution and grainy appear-
ance of  final images is a compromise[52,75].

Lee et al[76] and Potter et al[77] described a ‘view angle 
tilting’ technique to decrease metallic artifacts by the ap-
plication of  a ‘‘compensatory gradient’’ during imaging 
acquisitions, to correct for inhomogeneous perturbations 
in the local magnetic field in the vicinity of  a metallic de-
vice. This results in image blurring across the entire imag-
ing field of  view, which must be partially compensated 
for by imaging parameter alterations such as increased 
receiver bandwidth, readout gradient strength, and re-
duced voxel size to diminish the overall decrease in signal 
to noise ratio (SNR) of  the resultant image.

Another MRI method for nulling metallic artifacts 
addressed with little SNR compromise known as single-
point imaging (SPI) employs several milliseconds for 
signal preparation and acquisition. It acquires only the 
immediate free induction decay following off  excitation 
pulses to avoid diffusion-related components of  metallic 
artifact induction. Hence, SPI requires large gradient am-
plitudes and long scanning times[62,78]. 

Nuclear medicine 
Bone scintigraphy including single-photon emission CT 
(SPECT) can assess fusion sites (the fused segment should 
be “cold” after 6-12 mo) and help in infection detection 
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Figure 6  T1W SE image (A) demonstrating magnetic resonance suscepti-
bility artifact of metallic hardware are mainly the sum of signal loss within 
the metallic object and high signal intensity appearing around the metallic 
object caused by altered both phase and frequency of local spins leading 
to read-out misregistration. This is more obtrusive on T2-gradient images (B). 
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in the region of  metal implants; especially helpful in those 
cases in which MRI cannot be performed or is non-diag-
nostic[79-82]. 

Radionuclide scans may remain positive for a year or 
more in the region of  the operative bed and instrumenta-
tion due to continued normal bony remodeling at the fu-
sion site[4,6,9,81,82]. 

However, very focal intense activity may reflect the 
presence of  non-union (pseudo-arthrosis), as opposed to 
more ill-defined or diffuse activity that reflects normally 
increased bone turnover in a fused spine[7]. Combined 
technetium and labeled white blood cell studies may be 
useful for evaluating infection[7,9,81,82]. The accuracy of  this 
dual radiotracer technique exceeds 90%[81,82].

Generally, bone scans are more sensitive and less spe-
cific than plain radiographs and cross-sectional imaging[7].

Myelography
Nowadays, myelography is only justified in cases with old 
stainless hardware, non-diagnostic MR and unexplained 
neurogenic symptoms. However, after lumbar spine in-
strumentation, puncture of  the lumbar thecal sac may 
be difficult due to anatomic distortion (e.g., scarring, 
removal of  posterior elements, and addition of  bone 
graft material) or the presence of  metallic implants. Oc-
casionally, a cervical puncture is a good alternative to the 
classic lumbar approach in this situation. Oblique views 
on conventional myelography may be needed to avoid 
obscuration of  the relevant nerve roots by the implanted 
devices. It may sometimes be supplemented by MDCT 
myelographic evaluation[4].

Fluoroscopically, US or CT-guided anesthetic injec-
tions may be used to determine the source of  pain around 
a prosthesis, e.g., a hook site, facet joint, or disc or in a 
suspected pseudo-arthrosis region. Relief  of  pain after 
anesthetic injection confirms the source of  pain and al-
lows for proper selection of  treatment options. Aspiration 
of  osseous, disc, or soft tissue lesions is also useful when 
infection is suspected[6,9]. Table 2 summarizes the different 
imaging techniques used for evaluation of  spinal hardware 
as well as the main indications for their use.

IMAGING FEATURES OF NON-
COMPLICATED SPINAL HARDWARE 
AND FUSION 
Inter-body grafts and implants
Inter-body fusion may be carried out with cortical bone 
and autogenous grafting or with inter-body fusion cages. 
Radiolucent disc spacers contain two radiopaque mark-
ers enabling their recognition on postoperative radio-
graphs[3,4,6,7]. 

In the early postoperative period, metal cages ap-
peared to “float” within the intervertebral space on AP 
plain films as morselized autografts placed within and/or 
around them are not visible on plain X-rays. In intact fu-
sions, the outlines of  radiolucent cages become increas-

ingly apparent as the adjacent bone graft consolidates 
over time with no adjacent lucency or sclerosis[3,4,6,7].

A well-positioned spacer will show a posterior marker 
located at least 2 mm anterior to the adjacent posterior 
vertebral body margin (Figure 4B). This imaging appear-
ance will exclude ramp/cage protrusion into the spinal 
canal[3,4,6,7].

Total disk replacement
The design characteristics of  these devices are variable. 
However, both radiography and CT are equally used for 
evaluation of  their positioning. Ideally, the device has 
to be located midline between the two pedicles on AP 
radiographs or axial or coronal CT scans and should not 
penetrate adjacent end plates. With respect to AP posi-
tioning, the center of  rotation should be located in the 
posterior half  of  the disk space yet it should not extend 
beyond the posterior vertebral body line[83-85].

Pedicular screws 
Combinations of  plates and/or rods with pedicle screws 
are interconnected for spinal instrumentation, till bony 
fusion ensues. Optimal screw placement is typically along 
the medial aspect of  the pedicle and contained within the 
pedicle. There is no consensus on their optimal length (> 
50% of  its length within the vertebral body) yet it should 
not break through the integrity of  adjacent cortices or 
end-plates (Figure 5). However, sacral screws may be an-
chored in the anterior cortex of  the sacrum for additional 
stability[3,4,6,7].

Screw position and fracture can usually be detected 
on radiographs for optimal positioning (Figure 5) or 
inadvertent insertion (Figure 7A and B). However, CT 
and/or MRI will show this more clearly with the added 
advantage of  evaluating the status of  bone graft and ex-
cluding pseudo-arthrosis[3,4,6,7].

Posterior/postero-lateral fusion
Posterior fusion is characterized by autografts placed along 
decorticated facets and/or laminae[3,4,5,7,9].

Table 2  Summarizes imaging techniques and indications[6]

Technique Indications

Radiographs Instrument failure, infection, failed fusion
Fluoroscopic positioned 
spot views

Instrument position

Radionuclide scans/PET Infection
Ultrasonography Fluid collections, abscesses
CT Instrument position, pseudo-arthrosis, 

infection, fragments in spinal canal, 
vertebral alignment

MR imaging Infection, failed back, recurrent disc, 
recurrent tumor

Diagnostic injection/
aspiration

Confirm source of pain, aspiration of 
pseudo-bursae or organisms for infection

CT: Computed tomography; MR: Magnetic resonance; PET: Positron 
emission tomography.

Nouh MR. Spinal fusion-hardware construct imaging
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The early postoperative radiographic appearances are 
quite variable, sometimes it shows large solid fusion mass-
es, and other times, small wispy bone grafts hardly show 
up on plain X-ray and/or on CT, particularly if  small 
amounts of  graft were placed along the posterior elements 
and/or transverse processes (Figure 8)[3,6,7,9]. This gradually 
consolidates over several months into a solid bony fusion 
within 9-12 mo postoperatively, if  successful fusions have 
ensued[3,6,7,9]. 

Anterior/antero-lateral fixation devices 
These are commonly seen following ACDF procedures, 
scoliosis corrective surgery and/or following vertebral 
corpectomy at any spinal level. These devices are com-
monly located anteriorly spanning two to three segments 
in cervical regions, and are located more antero-laterally 
spanning longer segments in the dorsal and lumbar levels 
(Figure 9)[5-8,13]. 

Anterior plates are anchored to the underlying verte-
bral bodies with screws, which should enter the anterior 
cortex of  each vertebral body and be seated in the poste-
rior cortex without impinging on the cord for firm pur-
chase of  the screws to promote posterior graft material 
compression and enhance bony fusion. Ideally, the screws 
should not enter an adjacent end plate and should be at 
least 2 mm from the superior and inferior end plates[5-8,13].

Usually, the intervertebral disks are removed and re-
placed with bone graft material for anterior spinal fusion. 
Sometimes, these devices are supplemented with poste-
rior fixation devices.

IMAGING FEATURES OF COMPLICATED 

SPINAL HARDWARE AND FUSION
Given the technical difficulties of  spinal instrumentation 
procedures, it is recognized that complications may arise 
from mal-positioning of  hardware, technical difficulties 
associated with different surgical approaches, underlying 
clinical circumstances as well as improper patient and/or 
hardware selection. Imaging plays a vital role in evaluat-

ing potential complications of  spinal instrumentation 
procedures.

Every radiologist should have his/her systematic ap-
proach to assess the integrity of  the spinal hardware, neu-
ral and vascular structures throughout the spine, includ-
ing the neural foramina, thecal sac, spinal cord and cauda 
equina, as well as peri-spinal anatomic regions of  interest.

Broadly speaking, these complications are divided 
into spinal hardware-related complications, bony fusion-
related complications and operative procedure-related 
complications. 

Operative procedure related complications
Operative procedure level points to potential complica-
tions. Anterior cervical spine procedures may be associ-
ated with transient nerve palsies, arterial (vertebral and ca-
rotid arteries) dissections and esophageal tears[86-90]. Bone 
graft extrusion and instrument subsidence have also been 
described[90].

Anterior procedures in the thoraco-lumbar spine have 
a higher incidence of  local complications and at the bone 
graft donor site. Vascular injuries are also more com-
mon[91,92]. With newer techniques, such as video-arthros-
copy, thoracic duct injury and injury to the long thoracic 
or phrenic nerves may occur[13].

Figure 7  Antero-posterior (A) and lateral digital radiographs (B) of the 
lumbosacral spines showing aberrant pedicular screw violating LV3 supe-
rior endplate and protruding into LV2-3 disc, T2W (C) and T1W (D) sagittal 
magnetic resonance images showing aberrant pedicular screw violating 
LV3 superior endplate and protruding into LV2-3 disc.

Lateral view  R
AP view

Figure 9  Antero-posterior (A) and lateral radiographs (B) of the dorso-
lumbar spines showing a Harrington rod spanning the upper dorsal and 
lumbar vertebra for correction of adolescent scoliosis. 
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Figure 8  Fluoroscopic spot views of the lumbo-sacral spines depicting 
the fine bone chips used for fusion beside the short-segment hardware at 
LV4 and LV5 levels. These were barley seen on radiographic films. 
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Spinal fixation and fusion are long surgical proce-
dures; especially with increased length of  the fixed spinal 
segments as in scoliosis; requiring prolonged immobili-
zation or recumbency, making patients more vulnerable 
to certain complications such as brachial plexus injuries, 
superior mesenteric artery syndrome and thrombophlebi-
tis[9,93-95].

Medical complications are also common. Genitouri-
nary infections occur in 20% and deep venous throm-
bosis in 25% of  patients. These problems are more 
common in patients who have post-traumatic paralysis 
or prolonged hospitalization[9]. Gastrointestinal hemor-
rhage may be as high as 40% in patients receiving steroid 
therapy[91].

The acute onset of  neurologic symptoms in the im-
mediate postoperative setting should arouse clinical 
suspicion about the possible formation of  a hematoma, 
a surgical emergency that requires urgent surgical decom-
pression[3,9].

Postoperative infections may occur in the immediate 
post-operative period or present latently several months 
after surgery. Infection may involve any tissue in the post-
operative bed[96,97]. It may be the result of  implantation at 
the time of  surgery or occur later due to hematogenous 
spread and/or wound contamination[96,97]. 

Staphylococcus epidermidis and Propionibacterium acnes are 
the main organisms associated with implant infections[96].

Patients often present with pain, hotness, skin redness 
and swelling at the operative site with sinus formation 
draining deep collections in some cases.

Superficial soft-tissue infections are easy to diagnose 
clinically. MRI may depict fluid collections, abscess for-
mation and intense enhancement following the adminis-
tration of  Ⅳ gadolinium-based agents (Figure 10)[3,6,7,96,97]. 

CT-guided aspiration may be useful for isolating the 
offending organism for culturing and sensitivity tests aid-
ing proper antibiotic selection. Implant withdrawal may 
be performed first if  solid fusion was achieved in latent 
infections[3,6,7,96,97].

Spinal hardware-related complications
It should be remembered that the instrumentation used 

in fusion surgery is not designed to replace the bony ele-
ments of  the spine, but to stabilize them as the fusion 
mass consolidates and takes over as the primary source 
of  support. Any factor that retards fusion will subject 
the implant to abnormally high loads for longer periods 
and ultimately fail when it exceeds its loading capabili-
ties[3,4,6,7,9,18,37].

Improper selection of  implants may be the cause of  
failure, as the chosen construct may not withstand the 
physiologic loads imparted on it for a given patient and 
clinical scenario. Patients noncompliant with postopera-
tive spinal precautions (avoiding heavy lifting, excessive 
bending or twisting of  the trunk, or exposure to high 
impact activities) are liable to have their implants fail[37]. 
Trauma is a common cause of  immediate hardware fail-
ure[6,7,37].

Associated medical conditions may predispose to 
hardware failure e.g., patients with metabolic bone disease 
or severe osteopenia may not be appropriate candidates, 
as their poor bone quality is associated with cutout or 
loosening of  hardware (Figure 11)[3,4,6,7,96,98]. Morbid obe-
sity adds to the technical difficulty of  spine surgery and 
exerts greater stresses on instrumentation[3]. Also, smok-
ing increases the rate of  pseudo-arthrosis development 
after fusion[99].

Hardware failure occurs when an implant breaks, or 
the device becomes largely dissociated from the under-
lying bone. The findings in these cases include rod mi-
gration or dislodgement, rod breakage, hook cutout or 
disengagement, wire breakage, screw cutout and failure 
(Figure 12)[37]. 

A precedent to hardware failure is aseptic loosening 
where instability due to pseudo-arthrosis and/or infection 
is thought to be an etiologic factor[3,4,6,7,9,18]. It is believed 
that particulate debris, produced by component wear, at-
tracts and activates tissue phagocytes with repeated but 
unsuccessful attempts of  phagocytosis to non-digestible 
metal particles damaging adjacent bone and cartilage by 
this enzymatic release resulting in osteolysis[100-102].

Based on their worldwide use and the vital structures 
adjacent to their insertion sites, pedicle screw complica-
tions are widely discussed in the literature. In a large 

Figure 10  Sagittal T2W SE image (A), axial T1 pre-contrast (B) and post-contrast SE MR images (C) in a post-operative patient showing localized encysted 
collection within the operative bed  with appreciable contrast enhancement of the encysted collection following IV gadolinium administration representing 
a post-operative infection with abscess formation. 
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series, Lonstein et al[103] reported screw fractures in 0.5%, 
penetration of  the anterior cortex in 2.8%, pedicle frac-
tures in 0.6%-2.7%, dural tears in 1%, and nerve root ir-
ritation in 1% (this was related to medial or inferior screw 
placement).

Loosening of  pedicle screws appear as a rim of  lu-
cency around the screw threads (or any hardware) espe-
cially when the lucency exceeds 2 mm or increases in size 
on X-ray (Figure 13) and/or CT imaging follow-up[3,6,7,9]. 
Loose screws will often gradually retract and may even-
tually be expelled from the bone entirely with eventual 
hardware failure.

Complications may arise from medial or lateral devia-
tion of  a screw or from its penetration of  the anterior 
cortex of  the vertebral body[3,6,7,9]. When aseptic loosen-
ing is shown on imaging studies, the radiologist should 
look for associated failed fusion and/or infection[3,6,7,9].

Similar complications may arise from mal-positioning 
of  anterior cervical plates and screws, which may pen-
etrate the adjacent disk space, foramen transversarium, 
spinal cord, or nerve roots[3]. Inadvertent mal-positioning 
of  cervical screws within adjacent disc material predis-
poses for aseptic loosening of  the hardware and a high 
risk of  vertebral body fracture as the disc material can 
not hold the screws[104].

Adjacent level ossification development (ALOD) was 
described as a long-term sequel to anterior cervical plat-
ing[3,6,9,104-106]. Park et al[105] showed the likelihood of  ALOD 
with anterior cervical plate margin placement within 5 
mm of  the adjacent disk space. He concluded that any 
adjacent-level ossification within the first 12 mo post-
operatively resulted in the likelihood of  progression to 
advanced ossification by 24 mo in a later study[106].

Spinal bone graft-related complications
Serial radiographs may be used to assess fusion using the 
widely accepted Ray’s[107] criteria for solid fusion recogni-
tion (Table 3).

A cardinal rule of  hardware is that it bears a load or 
stress and will eventually fail unless the body fuses or 
heals at the site. Hence, bone grafting is used in conjunc-

tion with most spinal instrumentation procedures till solid 
bone graft fusion ensues within 6-9 mo and can be identi-
fied on imaging[3-9].

Subtle or low-grade instability at the fusion site results 
in pseudo-arthrosis or fibrous union. Pseudo-arthrosis is 
defined as failure of  attempted spinal fusion to achieve 
solid bony arthrodesis by 1 year after surgery[3-9].

Pseudo-arthrosis varies widely in its incidence and 
etiology, being higher for ALIF (4%-68%) than the PLIF 
(3%-25%) and ACDF (3%-46%)[108-114]. Smoking, long-
term use of  non-steroidal anti-inflammatory drugs and 
underlying conditions such as scoliosis and osteoporosis 
are common risk factors for its development[108-114].

Pseudo-arthrosis or fibrous union itself  may be a 
source of  pain generation and its early recognition is criti-
cal to prevent instrument failure and allow early repair[40,93]. 
Mature pseudo-arthrosis appears as a clearly linear lucency 
across the graft material with sclerosis on its margin on 
radiographic films[3,6,7,9,40,108]. The same imaging findings 
are seen on MDCT examinations with its high-resolution 
and multi-planar capabilities. In addition, CT may allow 
precise definition of  cortical margins and residual graft 
material[3,6,7,9,40]. With newer titanium and cobalt-chromi-
um implants MRI can depict focal high signal intensity in 
the region of  pseudo-articulation on T2-weighted images 
and bands of  low intensity on T1-weighted images. Reac-
tive marrow changes and enhancement with gadolinium 
due to abnormal motion may also be seen[3,6,7,9].

In the early stages of  pseudo-arthrosis with equivocal 
radiographic examination, increased radiotracer uptake 
is expected at sites of  motion 6-9 mo after operation as 
mentioned earlier[7]. SPECT of  the spine showed value in 
detecting painful pseudo-arthrosis in patients after spinal 
fusion surgeries[109].

Fluoroscopically, US or CT-guided anesthetic injec-
tions are recommended by some groups to prove or 
disprove pseudo-arthrosis as the source of  pain. A com-
bination of  buffered 1% lidocaine and 0.25% bupiva-
caine can be used for diagnostic injections. Bupivacaine is 
longer acting and allows for patient testing to determine 
the degree of  pain relief[3,9].

Figure 11  T2W SE (A) and T1W (B) sagittal magnetic resonance images 
showing multiple vertebral body collapse targeting LV1, DV11 and DV8 
levels in osteoporotic patient predisposing to hardware failure. 

Figure 12  Antero-posterior (A) and lateral digital radiographs (B) of the 
lumbosacral spines with short-segment posterior fixation spanning LV5 
and SV1 levels with fracture of left lower pedicular screw of the construct 
representing hardware failure. 
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Long-term sequelae of fusion
Successful spinal fusion permanently alters the mechan-
ics of  vertebral segments at adjacent levels resulting in 
accelerated degenerative changes in the vertebrae, liga-
ments, and intervertebral disks[3,7,9,28,29]. These degenerative 
changes are termed junctional failure or adjacent segment 
disease[3,7,9,28,29,115-117].

This was recognized in some series as early as 3 mo 
post-fusion and as late as 13 years[117,118].

Junctional failure is commonly seen in the lumbar re-
gion compared with other regions, with an increased num-
ber of  fused segments and with residual sagittal deformi-
ties on early postoperative upright radiographs[117,119,120].

Increasing disc height loss, degeneration, disc bulge 
and/or protrusions as well as progressive facet arthropa-
thies are common and predictive for evolving junctional 
failure on different imaging modalities with the emphasis 
on comparing serial examination for accurate judgment. 
Micro-trauma to the intervertebral disks at adjacent levels 
of  fusion can be a source for pain, although the disc is 
morphologically intact on MRI and/or myelographic ex-
aminations[3,117,119,120].

Adjacent vertebral body fractures and collapse have 
been reported especially in osteoporotic cases[117,121].

CONCLUSION
In conclusion, radiologists are required to be familiar 
with the instrumentation and operative options used in 
spinal fixation and fusion procedures to properly assess 
outcome, as it forms an increasing bulk of  daily practice 
in a busy imaging department. The goal of  spinal instru-
mentation is to maintain or correct anatomic alignment 
of  spinal segments by sharing the loads acting on the 
spine, usually until a solid biological fusion occurs. 

Familiarity with the different forms of  instrumenta-
tion, fusion approaches and expected results is critical in 
evaluating the position of  implants and potential com-
plications associated with the operative approaches and 
spinal fixation devices used. Thus, the radiologist can play 
an important role in patient care and outcome.

Baseline radiographs are essential as the baseline point 
for evaluation of  future studies should patients develop 
symptoms suggesting possible complications. They may 
justify further imaging workup with CT, MR and/or 

nuclear medicine studies, as evaluation of  a patient with 
a spinal implant involves a multi-modality approach. This 
review outlines basic knowledge to help radiologists to 
approach everyday practice in clinical imaging. 
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