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Abstract
Liver toxicity (hepatotoxicity) is a critical issue in drug discovery and development. Standard
preclinical evaluation of drug hepatotoxicity is generally performed using in vivo animal systems.
However, only a small number of preselected compounds can be examined in vivo due to high
experimental costs. A more efficient yet accurate screening technique which can identify
potentially hepatotoxic compounds in the early stages of drug development would thus be
valuable. Here, we develop and apply a novel genomic prediction technique for screening
hepatotoxic compounds based on in vitro human liver cell tests. Using a training set of in vivo
rodent experiments for drug hepatotoxicity evaluation, we discovered common biomarkers of
drug-induced liver toxicity among six heterogeneous compounds. This gene set was further triaged
to a subset of 32 genes that can be used as a multi-gene expression signature to predict
hepatotoxicity. This multi-gene predictor was independently validated and showed consistently
high prediction performance on five test sets of in vitro human liver cell and in vivo animal
toxicity experiments. The predictor also demonstrated utility in evaluating different degrees of
toxicity in response to drug concentrations which may be useful not only for discerning a
compound’s general hepatotoxicity but also for determining its toxic concentration.
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Introduction
The liver is the primary organ of metabolism and detoxification in the body and a major
target of drug toxicity (Bandara and Kennedy, 2002). Liver toxicity (hepatotoxicity) is one
of the most critical issues in drug development and can lead to failure of drug candidates
during preclinical or clinical studies (Jaeschke et al., 2002). Biochemically, drug-induced
liver injury could be characterized into hepatocellular (predominantly initial Alanine
transferase (ALT) elevation) and cholestatic (initial alkaline phosphatase (ALP) rise) types.
Conventionally, hepatotoxic effects of novel compounds can be evaluated by in vivo
experiments in rodent and other animal systems. An ALT level more than three times the
upper limit of normal (ULN) is usually considered as significant liver injury even though
histopathology is also a frequent tool to detect hepatotocixity without ALT elevations in
animals. In vivo animal tests of hepatocellular toxicity can resemble physiological
microenvironments in the human body. Nevertheless, these in vivo assays are not feasible
for screening a large number of candidate compounds due to high costs and time.

Both cell culture and biochemical systems are also frequently used to evaluate the potential
of drug-induced liver toxicity. These in vitro tests are cheaper, faster, and more convenient
for screening many candidate drug compounds for their hepatotoxicity compared to in vivo
analysis (Yang et al., 2004). However, even though such tests are widely used to examine
the activity on important biomarkers such as P450 protein expression and activity, the in
vitro systems generally cannot fully reflect hepatocellular toxic effects such as ALT
induction and toxicity related to in vivo metabolites and mitochondria dysfunction.

In an attempt to circumvent the limitations of current in vitro systems, we sought to develop
an in vitro cell-based prediction technique that can be effectively used for identifying
hepatotoxic compounds. This technique is based on a multi-gene expression predictor which
can discriminate a wide range of hepatotoxic compounds both in animals and in human liver
cells by using expression-regulated biomarkers of liver toxicity that are shared between the
two systems. Also, since the specific molecular mechanisms of hepatocellular toxicity
among various compounds can often be different, we identify and use expression signatures
which are commonly associated with the elevation of serum ALT levels among multiple
heterogeneous compounds. We have used this predictor for testing a wide range of candidate
compounds for their hepatocellular toxicity across in vivo rodent and in vitro human liver
cell systems from five independent test sets with >160 structurally and mechanistically
diverse chemical compounds and drugs.

Many studies have indicated that computational approaches, such as structural
bioinformatics (Chou, 2004; Wang and Chou, 2011), molecular dynamics (Lian et al., 2011;
Wang et al., 2009), molecular docking (Chou et al., 2003), predicting drug-target interaction
(He et al., 2010), protein subcellular location prediction (Chou, 2001; Chou and Shen, 2008;
Chou and Shen, 2010), antimicrobial peptide prediction (Wang et al., 2011), HIV protease
cleavage site prediction (Chou, 1996), signal peptide prediction (Chou and Shen, 2007b),
identifying GPCRs and their types (Xiao et al., 2011), estimating the upper-limit of enzyme-
substrate reaction rate (Chou and Zhou, 1982), predicting the network of substrate-enzyme-
product triads (Chen et al., 2010), as well as a series of user-friendly web-servers (Chou and
Shen, 2009), can timely provide very useful information and insights for complex biological
and biomedical investigations such as novel drug development. The present study is also
attempted to develop a novel genomic prediction technique for screening hepatotoxic
compounds in hopes that it may become a useful tool for early drug discovery and
development.
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Material and Methods
In order to develop a useful model or predictor for biological systems, the following steps
are generally required: (i) benchmark dataset construction or selection, (ii) mathematical
formulation for the statistical samples concerned, (iii) operating algorithm (or engine), (iv)
anticipated accuracy, and (v) web-server establishment (Chou, 2011). We elaborate some of
these procedures for our study as follows.

Hepatology and Microarray Data Sets
Six previously-published microarray sets from 4 in vivo rodent and 2 in vitro human
hepatocellular toxicity experiments were used to construct and validate our prediction model
(Table 1). The first in vivo data set, Rat1 (NCBI GEO GSE5509), consists of 39 rat liver
samples after 48 hrs’ treatment with three hepatocellular toxic compounds (alpha-
naphthylisothiocyanate, dimethylnitrosamine, or n-methylformamide), three low-toxic
compounds (caerulein, dinitrophenol and rosiglitazone), and controls without treatment
(Spicker et al., 2008). These compounds are quite heterogeneous in their structural and
molecular mechanisms showing highly varying severities of cell death in the liver. Complete
evaluation of liver histopathology indices such as serum alanine aminotransferase (ALT)
and aspartate aminotransferase (AST) were also available for these 39 rat samples. Two
additional microarray data sets from in vivo animal liver cells after treatment with toxic
compounds, Rat2 and Rat3, were obtained from the National Institute of Environmental
Health Science (NIEHS, http://cebs.niehs.nih.gov) (Chou and Bushel, 2009). In these two
studies, commonly-used drug compounds, Acetaminophen (Rat2) and 1,4-dichlorobenzene
(Rat3) respectively, were administered for 6, 24, or 48 consecutive hrs at different dose
concentrations to evaluate the levels of acute toxicity of in vivo animals. These two
compounds have been shown to elevate ALT at a high dose (Bushel et al., 2007; Umemura
et al., 1992). Based on the known toxicity of these two compounds, samples were classified
into two groups---'low-toxic’ (dose<=150mg/kg, including untreated controls) and 'high-
toxic' (dose=1500mg/kg) for each drug compound. The ALT data of the Rat3 set were also
provided in the recent publication (Chou and Bushel, 2009).

The final in vivo microarray data set, Rat4, was obtained from the public domain at the
NCBI GEO site (GSE8251) (Fielden et al., 2007). This data set includes 703 rat liver
samples treated with 147 structurally and mechanistically diverse chemical compounds
including various FDA approved drugs, experimental compounds and environmental toxins,
and 287 control samples from untreated animals. For our analysis, we first removed genes
with a large proportion, e.g. >10% of missing expression values on the array data. We then
selected 700 among the 990 samples after we excluded samples with any missing values.
For the evaluation of our hepatocellular toxicity prediction, we classified the 147
compounds into two groups, “toxic” and “low-toxic”, based on reported toxicological
information in the Micromedex database (http://www.micromedex.com/). Each compound
was classified as a hepatotoxic agent if it was reported to elevate ALT level for both human
and rat. Compounds without elevated ALT record or with rare hepatocellular toxicity cases
reported in Micromedex were considered as “low-toxic” prior to our in silico toxicity
prediction. In addition to the uncertainty of the Micromedex database information for some
compounds, concentrations of the 147 compounds reported in the Micromedex database
were not exactly the same as (or compared to) those used in the above animal experiments
so their toxicity levels in the experiments were unclear. Nevertheless, since this set consisted
of a large number of compounds, we tested whether there is a good statistical separation of
our hepatotoxic prediction scores among these broadly-classified groups of low-toxic, toxic
compound treated, and untreated controls.
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The first in vitro human liver cell dataset (GSE6907), Human1, was obtained from the NCBI
GEO (Gene Expression Omnibus) site (http://www.ncbi.nlm.nih.gov/geo/). This set includes
30 human hepatoma-derived cell line HepG2 samples under the exposure of six heavy
metals (arsenic, cadmium, nickel, antimony, mercury, and chromium) and three other
compounds, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), phenol, and N-
nitrosodimethylamine (DMN) (Kawata et al., 2007). The HepG2 cell-line system is widely
used as an experimental model for toxicological studies since it retains the activities of
phase I and II enzymes and can induce activation and detoxification reactions (Kassie and
Knasmuller, 2000). Gene expression profiling was conducted on the HepG2 cells following
the treatments of these compounds. Based on the information in the Micromedex database,
we classified phenol as low-toxic and the other eight compounds as hepatocellular toxic
prior to our analysis. The second in vitro human liver cell dataset Human2 (GSE10410)
performed by the US Environmental Protection Agency was reported with a toxicity
evaluation of three triazole antifungals: myclobutanil (MYC), propiconazole (PPZ), and
triadimefon (TDF) at the NCBI GEO site. Gene expression profiling was conducted on
primary human hepatocytes (PHH), another widely-used human cell type for toxicity
studies, following the treatments of these compounds at high (100µM), medium (30µM), and
low doses (10µM). Based on the toxic information at the Pesticideinfo site
(http://www.pesticideinfo.org) and Micromedex database, PPZ and TDF were classified as
toxic compounds whereas MYC was considered a low-toxic compound for our analysis.

Of these six data sets, the Rat1 set was used for our multi-gene model development since the
most accurate measurements of ALT levels were available for multiple structurally and
molecular-mechanistically diverse compounds in this set. The microarray data of the
Human1 set were used to further identify COXEN biomarkers which showed concordant
gene expression networks between in vivo rat and in vitro human liver cells. The remaining
sets (Rat2, Rat3, Rat4, and Human2) were not used for our biomarker discovery and
modeling in any manner and used only for the independent evaluation of our multi-gene
hepatotoxicity prediction model.

Model Development of Hepatotoxicity Prediction
The COXEN (CO-eXpression ExtrapolatioN) algorithm was originally developed to identify
genes which were concordantly (expression) regulated between two independent cancer
systems, e.g. the in vitro NCI 60 cell-line panel and an in vivo breast cancer patient set, and
then to utilize the common gene set for cross-system (in vitro to in vivo) drug activity
prediction. (Lee et al., 2007) In brief, COXEN is composed of six experimental and analysis
steps—obtaining relevant drug activity data on the training set, molecular expression data
both for the training and test sets, initial drug-activity biomarker discovery on the training
set, sub-selection of COXEN biomarkers concordantly expressed between in vivo and in
vitro systems, and multivariate prediction modeling with these COXEN biomarkers on the
training set.

Adapting this algorithm to an in vitro hepatotoxicity prediction, our predictor development
was made with five sequential analysis steps (Figure 1): the first was the identification of
initial hepatotoxic biomarkers using the Rat1 set. Here, we identified the genes whose
expression changes were consistently highly correlated with varying ALT levels upon
treatments of multiple compounds using a rank-based (Spearman) correlation test with FDR
(False Discovery Rate) q-value< 0.01 in order to reduce numerous false positives in high-
throughput profiling-based discovery. The recent paper by Chou et al has also shown the
potential of this correlation approach for identifying hepatotoxicity biomarker genes (Chou
and Bushel, 2009). The second step was the homologous gene match between human and rat
based on the HUGO gene nomenclature; the homologous genes on human microarrays, if
represented, were identified for the hepatotoxicity biomarkers identified from the rat
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microarrays. Gene information of all microarray platforms of the six sets was also compared
for this annotation match.

The third step was the selection of COXEN biomarkers among the human-homologous
hepatotoxic biomarkers obtained from the second step. Among the initial hepatotoxic
biomarkers discovered from the in vivo Rat1 set, we further triaged to the COXEN
biomarkers which showed concordant expression network patterns between in vivo rat and
in vitro human liver cells. In this step, we used a second-order correlation analysis to
identify common gene networks which are similarly coexpressed due to similar coregulation
between two independent systems. More technical details of this COXEN analysis can be
found elsewhere (Lee et al., 2007). Note this step did not use any toxicity information of the
second set Human1. In the fourth step, we identified the subset of the COXEN biomarkers
whose molecular mechanisms have been known to be more directly related to liver toxicity.
This functional gene selection was performed in order to develop a parsimonious prediction
model, especially with biomarkers whose functions are directly relevant to hepatocellular
toxicity mechanisms. This was possible because many different subsets of the COXEN
biomarkers were found to be equally predictive in our preliminary analysis. Biological
function analysis on these genes was performed by the Ingenuity Pathway Analysis software
(IPA; www.ingenuity.com; Redwood City, CA), examining biological functions and
toxicological mechanisms among the above COXEN biomarkers.

The final step (Step 5) was a multivariate prediction model construction. Microarray
intensity values were first standardized within each gene for each set in order to reduce
biased expression distributions of the six independent data sets obtained under different
experimental settings. Based on the final biomarkers obtained in step 4, we then constructed
a multivariate classification model to stratify liver injuries caused by chemical compounds,
contrasting the toxic-compound treated animals and untreated control animals in the Rat1
set. We next applied principal component analysis to reduce the high dimension of the final
biomarkers into a small number of multi-gene scores for subsequent classification modeling.
Using these, we trained our prediction model based on the standard linear discriminant
analysis (LDA) technique. The output of the LDA prediction model was then the posterior
probabilities of hepatotoxicity between 0 (non-toxic) and 1 (toxic);a high predicted score, or
posterior probability close to one, of a subject implies severely-injured liver cells or high in
vivo toxicity whereas a low predicted score (close to zero) suggests uninjured liver cells or
low in vivo toxicity. Logit scores of these LDA probabilities, log (p/1-p), were then plotted
and compared between toxic and non-toxic compound groups for improved statistical
comparison of predicted probability scores close to zero.

Prediction Evaluation on Independent Sets
In statistical prediction modeling, different validation strategies are used to examine a
predictor for its effectiveness and robustness in practical application: n-fold cross-validation,
jackknife, or independent set-based tests (Chou, 2011; Chou and Zhang, 1995; Chou and
Shen, 2007a; Gu et al., 2010; Kandaswamy et al., 2010; Masso and Vaisman, 2010;
Mohabatkar, 2010; Zakeri et al., 2010; Zeng et al., 2009; Zhou et al., 2007b). When there is
only one set both for model training and test, cross-validation or jackknife strategies can be
useful; It would still be highly desirable to validate the final prediction model on a
completely independent test set to avoid the multiple comparisons pitfall among an
astronomically large number of competing models in high throughput-based prediction
modeling. Since we here have multiple independent sets for our model validation, we tested
the performance of our final prediction model simultaneously on six diverse test sets of in
vivo animal and in vitro human liver cells across >160 diverse compounds.
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The unaltered classification model established with the Rat1 set (and partially with the
Human1 set for the COXEN step without its toxicity outcome) was then simultaneously
applied to other sets---Rat2, Rat3, Rat4, Human1, and Human2. In this evaluation, we
wanted to see if the predicted (posterior probability) scores of hepatotoxicity could
statistically discriminate the animal and human liver cells treated with toxic compounds
from the untreated controls or those treated with low-toxic compounds. The statistical
significance of the difference in scores was first evaluated using the two-sample t-test
between the toxic and low-toxic (or control) groups. Sensitivity, specificity, positive
predictive value (PPV), and negative predictive value (NPV) were then calculated to
summarize its prediction performance. Sensitivity, specificity, PPV, NPV were defined as

A predefined cutoff value of prediction scores was required in order to evaluate these
indices. To define the optimal cutoff value, a Receiver Operating Characteristic (ROC)
curve analysis was performed for each set based on predicted scores of hepatotoxicity and
reported toxicity information on each set. The optimal cutoff on each ROC curve was then
determined by maximizing the so-called Youden index (= sensitivity+specificity-1)
(Youden, 1950).

Results
Universal Biomarkers and a Prediction Model for Hepatotoxicity

The initial biomarker discovery (Step 1) resulted in 4428 hepatocellular toxicity biomarkers
highly associated with ALT levels in the Rat1 set by Spearman correlation test FDR q-
value<0.01 (Figure 1). The next annotation match step resulted in 1296 common genes
between rat and human microarray data sets from the six studies (Step 2); a high proportion
(>29%) of the initial toxicity biomarkers could be matched among the four different (cross-
species genome-wide) array platforms from the six studies. Applying COXEN (Step 3), 96
of these common genes were identified with concordant gene expression network patterns
between Rat1 and Human1 datasets with a Pearson correlation association p-value<0.05.
Next, selecting genes known to play roles in liver toxicity and cell death based on the
Ingenuity Pathway Analysis (IPA) software (Step 4), we obtained biomarkers whose known
biological functions were closely related to hepatocellular toxicity. In particular, groups of
cellular death biomarkers (29 genes; Hypergeometric test p-value=1.2E-06) and liver
toxicity biomarkers (8 genes; Hypergeometric test p-value=1.3E-03) were found among the
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most significantly over-represented molecular functions and toxicity mechanisms of the 29
genes (Table 3). The selection of these hepatotoxicity functional genes led to the final 32
biomarkers (3 genes with 2 biomarkers)for our hepatotoxicity prediction modeling. In
particular, we found eight biomarkers were well-known liver toxicity genes: CYP26B1,
NR1H4, KDR, MGMT, CCL5, RAN, VTN, and MASP1 (highlighted in Table 3). Not
surprisingly, CYP26B1, a member of the cytochrome P450 (CYP) gene family encoding a
monooxygenase that catalyzes various reactions involved in drug metabolism (Estabrook,
2003), was included in the list. A majority of the 32 genes was also relevant to cellular death
processes (29 genes) which appears to reflect the biological response to toxicants in the liver
cells injured or which have undergone cell death. MMP2 and RAN are also known to be
related to mitochondrial dysfunction (Zhou et al., 2007a).

The 32 hepatotoxicity biomarkers showed consistent expression patterns within toxic and
non-toxic compound groups despite their diverse toxicity characteristics and different
biological systems in a clustering analysis (Figure 2A). That is, we performed a hierarchical
clustering analysis of the 32 biomarkers simultaneously on the two test datasets (Rat2 and
Human1) by standardizing each gene by subtracting the mean and dividing by the standard
deviation within each set and then co-clustering the two sets. This within-species, within-
gene normalization effectively enabled us to combine the two heterogeneous array datasets.
The resulting co-clustering heatmap showed that the gene expression patterns of the
clustered based on the reported compound toxicity regardless of the species and the potential
different mechanisms of toxicity. The 32 biomarkers were also found to be further clustered
into five sub-functional categories: calcium binding and catalytic activity, cell proliferation
and morphogenesis, cytokine and inflammatory response, peptidase activity and response to
drug, and DNA repair and cytotoxic T-cell differentiation.

The pathway analysis was also performed for these 32 genes in Ingenuity Pathway Analysis.
The top 5 pathways are Hepatic Fibrosis/Hepatic Stellate Cell Activation (p-
value=2.90×10−7), Amyotrophic Lateral Sclerosis Signaling (p-value=9.77×10−4), IL-8
Signaling (p-value=4.57×10−3), Glutamate Receptor Signaling (p-value=6.16×10−3) and
CCR5 Signaling in Macrophage (p-value=8.45×10−3); The IPA network of the first pathway
is shown in Figure 2B.

Evaluation of Drug Hepatotoxicity Prediction in vivo
We evaluated the performance of our 32-gene model on the three in vivo rat datasets (Rat2,
Rat3, and Rat4; Table 2). Toxicity of a compound strongly depends on its given dose. For
example, acetaminophen (APAP) is quite safe at low doses but liver toxicity is observed at
high doses. In fact, high doses of acetaminophen will cause hepatocellular toxicity and
acetaminophen intoxication has been reported as one of the leading causes of liver failure in
the US (Bushel et al., 2007). To examine our multi-gene model’s prediction ability to
distinguish between non-toxic and toxic dose levels, we first applied our multi-gene
prediction model to rat liver data sets Rat2 and Rat3. In these two studies, two compounds---
acetaminophen (Rat2) and 1,4-dichlorobenzene (Rat3) were administered for 6, 24, or 48
consecutive hrs to rats at different doses to evaluate their acute toxicity. For each set, we
compared our predicted scores between the high-dose (1500mg/kg) and low-dose groups
(<=150mg/kg including control) with the Student’s two-sample t-test. In Figures 3A (Rat2)
and 3B (Rat3), the predicted scores of these two compounds were plotted in each two sub-
panels: 6 hrs and >24hrs after drug treatments. In both cases, highly significant differences
were found between the high and low dose groups after 24 hrs of drug treatment in both sets
(p<0.001). In particular, predicted scores of the low dose group were significantly lower
than those of the high dose group and the two groups could be completely distinguished at
optimal cutoff values (with sensitivity=1 and specificity=1) maximizing the Yuden index (=
sensitivity+ specificity-1). On the contrary, no significant difference was found between the
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high and low dose group at 6 hrs after the drug administration (p = 0.91 for Rat2 and p =
0.66 for Rat3). These results appear to be consistent with pharmacokinetic observations
indicating that it generally takes about 10 hrs to observe toxicity induced changes in gene
transcription in liver cells and that significant elevation of ALT is generally observed at
12~24 hrs after administration of these compounds
(http://emedicine.medscape.com/article/1008683-overview) (Stine et al., 1991).

In the next application, we used an independent large rat liver dataset (Rat4) to test the our
multi-gene model. This set included 700 rat (liver) samples after treatment with 147 diverse
chemical compounds which we pre-classified into 62 toxic and 85 low toxic compounds
using the Micromedex database as described in Methods and Materials. We used our 32-
gene model to predict hepatotoxicity of individual animals in three groups, those treated
with toxic compounds, low-toxic compounds, or placebos (or untreated controls) at three
time points after drug treatment: <24 hrs, 3 days, and >5 days. The prediction on this large
set was complicated due to several uncertain factors such as compounds with ambiguous
toxicity information in the Micromedex database and the absence of information describing
the experimental doses of these compounds. In this validation study, we thus tested whether
our predictor showed statistically significant differences of the predicted toxic scores among
the broadly-classified groups of compounds. As expected, our toxicity prediction results on
these groups were noisier, yet were able to significantly discriminate the three groups
(Figure 3C). That is, predicted scores of the animals treated with toxic compounds were
significantly higher than control samples and non-toxic compound treated samples (two
sample t-test p-values < 0.005). Furthermore, gradually higher predicted scores were also
observed among the control, low-toxic, and toxic animal groups for the samples within 24
hrs and 3 days after drug administration (Figure 3C). However, differences between the
control and low-toxic groups were found to be gradually less distinguishable after 5 days’
drug administration. The time-dependent loss of predicted toxicity in the low toxic group
may reflect the metabolism or clearance of these compounds over time. This was consistent
with the literature that rats have been reported to adapt to these low toxins and their livers
rapidly recover from injuries (Williams and Iatropoulos, 2002).

Since our hepatotoxicity predictor was built based on the common expression signatures
highly associated with the elevation of serum ALT levels, we further quantitatively
evaluated the reliability of the model against the actual reported rat ALT levels. As shown in
Figure 4, there is a very high correlation between the predicted COXEN scores and
experimental ALT levels (P value = 0.0002 and Spearman correlation coefficient is 0.66) on
the independent Rat3 set. This result not only validates the prediction performance but also
implies this predictor can be applied as a quantitative prediction of hepatotoxicity.

Evaluation of in vitro Human Liver Cells
Since our goal is to build a prediction model which could be used in an in vitro system to
simultaneously reflect in vivo hepatotoxicity, we applied the identical predictor to the two in
vitro human liver cell datasets, Human1 and Human2. The Human1 set included 30 HepG2
cell samples treated with eight toxic compounds, one low-toxic compound and control
group. For this set, our predicted hepatotoxicity scores of samples treated with toxic
compounds were significantly higher than those treated by low-toxic compound and control
samples (t-test p-value<0.001, Table 2) with perfect stratification of specificity=1 and
sensitivity=1 (Figure 5A). In the Human2 set, primary hepatocytes were treated with two
toxic (PPZ and TDF) and one low-toxic (MYC) anti-fungal compounds at 3 doses (10, 30,
and 100 µM); untreated control cells were also included. In order to evaluate our prediction,
we divided each drug set into high (30µM and 100µM) and low dose groups (control and
10µM). As shown in Figure 5B, predicted scores were significantly different for toxic
compounds PPZ and TDF (t-test p-values=0.026 and 0.019, respectively). Furthermore, the
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predicted hepatotoxicity scores at 100µM were higher than those of 30µM for the 2 toxic
compounds (PPZ and TDF). On the contrary, there was no dose-dependent effect seen with
MYC, the non-toxic compound (p-value = 0.13). These results again indicate our multi-gene
model could distinguish between different doses of the same compounds as well as
differences between toxic and non-toxic compounds.

Discussion
In this study, we developed an in vitro cell-based molecular predictor of hepatotoxicity and
demonstrated its performance on diverse independent toxicity test sets of in vivo animal and
in vitro human liver models across >160heterogeneous compounds. Our in vitro-based
predictor also showed the ability to distinguish between toxic and non-toxic doses of single
drugs. Thus we believe this in vitro test could potentially be used in early phases of drug
discovery to examine the putative hepatotoxicity of a relatively large number of small
molecules facilitating the selection of candidates for in vivo toxicity studies. We, however,
note that our predictor is not developed to replace in vivo animal systems but to provide an
efficient in vitro test for predicting drug hepatotoxicity that complements standard in vivo
animal-based liver injury tests. Also, our predictor is not constructed to predict drug-induced
idiosyncratic liver injury which should be developed based on a study of a large patient
population and would require extremely high sensitivity.

Our prediction model utilizes consistent expression signatures across two systems (in vivo
rats and in vitro human liver cells) resulting in its high prediction performance on both
systems. Using this cross-species and inter-system predictability, the model’s prediction
performance was consistently shown with five in vitro and in vivo test sets treated with
diverse chemical and drug compounds and different array platforms. This multi-gene
predictor also showed its ability in stratifying different toxic doses and different degrees of
toxicity at elapsed time points after treatment. Our work differs from earlier studies
describing molecular signatures specific to one biological system (Fielden et al., 2007;
Zidek et al., 2007). Additionally, in some previous toxicogenomic studies, the training set
and test sets were from the same experiments. Such model training and internal validation,
however, can often be subject to selection bias due to a bias of specific microarray or assay
platforms used and a multiple comparisons pitfall in the high-throughput profiling-based
prediction modeling. These models frequently fail to perform well on independent toxicity
studies (Fielden et al., 2007). We stress our current study has avoided this pitfall by
validating five independent data sets from different experimental settings and microarray
platforms. These test sets include more than 160 structurally and molecular-mechanistically
diverse chemical compounds including various FDA approved drugs, experimental
compounds, and environmental toxins.

There still exist several critical limitations of this in vitro-based cell system. For instance,
different compounds may induce different forms of liver toxicity (e.g. cell death, metabolic
perturbations and/or mitochondria dysfunction) which could result in unique gene
expression profiles. Even though we selected the genomic biomarkers commonly associated
with multiple heterogeneous toxic and clinically-used compounds to circumvent this
difficulty, our predictor would not be able to accurately predict many different mechanisms
of liver toxicity in the same degree. Nevertheless, we believe our study provides a proof of
concept for the use of an in vitro cell test for the evaluation of hepatotoxicity, hoping to
stimulate additional work in this area. We also believe our gene signature can be further
refined as more data on liver toxicity becomes available. A second limitation is the use of
HepG2 data for the development of our predictive gene set. HepG2 cells lack metabolic
mechanisms and differ in many other biological characteristics from in vivo models. Despite
this limitation, our predictor could predict the toxicity of many compounds in human
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primary hepatocytes suggesting that this molecular expression signature derived from
common genes induced by toxic compounds in both rat liver and human cells may provide
an accurate reflection of human liver.

Several additional limitations may exist for our prediction model: First, we developed and
applied our predictor to 48-hr in vivo systems to demonstrate our model's prediction
performance on such in vivo injury models (due to the data sets available for our training
and independent evaluation). Therefore, changes in gene expression that occur at early time
points (e.g. 3 and 5 hours after dosing) were not captured and this model may only be useful
to predict toxic compounds which elevate ALT at 48 hrs after treatment. Nevertheless, since
our goal is to develop an efficient in vitro model which can be used to screen early stages of
candidate drug compounds, we believe this48-hr toxicity predictor can still be highly useful
and effective unless a compound’s toxicity is greatly diminished in 48 hrs.

Cytochrome P450 enzymes play important roles in the detoxification and clearance of toxic
compounds and the expression levels and activity of these enzymes are often used to predict
potential problems with compound metabolism or drug-drug interactions. Our study
indicates that there are additional functional classes of genes that are highly predictive of
hepatotoxicity such as inflammatory genes and genes encoding proteins involved in DNA
repair. Consequently, our multi-gene predictor is not heavily biased toward genes encoding
p450 enzymes activities. The lack of emphasis on p450 gene expression in the gene
signature raises the possibility that in the future it may be possible to predict hepatoxicity
using cultured cell lines. Interestingly, our gene signature also includes genes such as MMP2
and RAN that may be directly associated with mitochondrial dysfunction (Xia et al., 2008;
Zhou et al., 2007a).

The selection of the final 32 hepatotoxic functional biomarkers (among the 96 COXEN
biomarkers) was somewhat subjective within the limited knowledge of genes currently
known to be involved in hepatocellular toxicity and there may exist many other equally or
more highly predictive multi-gene models of hepatotoxicity. However, a search for the
optimal model with the highest prediction power is not computationally feasible due to an
astronomical number of candidate multi-gene models and the over-fitting pitfalls on a
relatively small number of training samples. When we compared performance of our
functionally-selected 32-gene model with that of 100 randomly selected 32-gene models, the
predictability of our 32-gene model was found to be within the top 10% based on the AUC
(area under the curve) comparison for overall predictability. Furthermore, we found the 32
biomarkers showed distinctive expression patterns among their different sub-functional
categories (Figure 2). For example, DNA repair and cytotoxic T-cell differentiation
biomarkers were over-expressed among toxic-treated animals and human liver cells while
the biomarkers of peptidase activity and drug response were under-expressed in the same
group of animal livers and human liver cells. Therefore, even though our 32-gene model
may not be the most highly performing prediction model, we believe it performs
consistently well for the two systems on various toxic compounds and can provide more
direct biological insight on drug liver toxicity for further investigation and understanding on
hepatocellular toxic gene mechanisms.

Since the number of biomarkers in our final model may still be relatively large, we will need
to investigate whether more parsimonious models (with fewer biomarkers) can provide
equally, or even more highly predictive for stratifying toxic compounds. Also, as often done
in similar studies (Chou and Shen, 2009), a user-friendly and publicly accessible web-server
for our bioinformatics algorithm can be quite useful for developing many more predictor
models, so we will make our continuous efforts to develop such a web-server.
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Highlights

1. The in vitro-derived models are effective in predicting drug hepatotoxicity on in
vivo animals and in vitro liver cells.

2. Our prediction model accurately stratified rat and human liver cells treated with
various compounds of liver toxicity.

3. Introducing a novel methodology that can be readily generalized to develop
assays for many other types of drug toxicity.

4. Accelerating the “personalized toxicogenomics” to tailor drug treatments based
on patients’ toxicity profiles.
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Figure 1. Schematic diagram of the computational model construction and validation processes
Our hepatocellular toxicity prediction was developed by five distinct steps - the first was the
identification of hepatocellular toxicity biomarker genes by correlation analysis with serum
ALT. The second was the homologous gene match between human and rat while the third
was the selection of the COXEN biomarkers among human-homologous hepatocellular
toxic biomarkers obtained from the second step. In the fourth step, we further selected the
biomarkers known to be directly related to liver toxicity and cell death performed by
Ingenuity Pathway Analysis. This functional analysis step led to the final 32 biomarkers of
hepatocellular toxicity. The last step was the multivariate prediction model construction
based on the final 32 genes.
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Figure 2. Co-Clustering and pathway analysis of 32 universal hepatocellular toxicity biomarkers
(A) Two test sets---Rat2 and Human1 of the 32 universal hepatocellular toxicity
biomarkers---were standardized (subtracted by its mean and divided by its standard
deviation) for each gene within each set and combined for a hierarchical clustering analysis
on this combined set. Most of the samples from both in vivo rat or in vitro human liver cells
were found to be well stratified between the toxic and non-toxic (control) compound-treated
ones. Five functional subclusters of the 32 biomarkers were identified by examining
common biological functions of these gene subclusters by the Affymetrix functional analysis
tool (NetAffx). (B) The pathway analysis was also performed for these 32 genes in
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Ingenuity Pathway Analysis. The IPA network of the first pathway (Hepatic Fibrosis/
Hepatic Stellate Cell Activation, p-value=2.90×10−7) is shown. Among our 32 biomarkers,
GHR, SLC1A2, MMP2, VTN, DYPD, EIF4E, PGF, KDR, FASLG, EZR, CCL5, and
NR1H4 were included in this network.
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Figure 3. Prediction of in vivo data sets Rat2, Rat3 and Rat4
(A) Comparison of COXEN scores of rats in set Rat2 treated with low dose and high
sublethal-dose of acetaminophen. (B) Comparison of COXEN scores of rats in set Rat3
treated with low dose and a high sublethal-dose of 1,4-dichlorobenzene. Predicted scores of
these two compounds were plotted in each of two sub-panels: 6 hrs and ≥24hrs after drug
treatments. In these applications, animals treated with high sublethal-doses for 24 hrs could
be perfectly discriminated from those with low doses by our prediction model. (C)
Comparison of COXEN predictive scores of control rats in set Rat4 (without any treatment),
rats treated with low-toxic and toxic compounds. Toxic and low toxic compounds were
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defined by the Micromedex database (www.micromedex.com). Predicted scores of these
compounds were plotted in three sub-panels: ≤24 hrs, 3 days, and 5 days after drug
treatments. Statistical significance (p value) of the set of predictions was assessed by a two
sample t-test.
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Figure 4. High correlation between predicted scores and experimental ALT levels in independent
set Rat2
Our predicted scores of hepatotoxicity were highly associated with the experimentally
observed ALT levels of animals across the entire range of liver toxicity (Spearman
correlation=0.66 with P-value = 0.0002).
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Figure 5. Prediction of in vitro data sets Human1 and Human2
(A) Comparison of COXEN scores of HepG2 cells treated with low toxic (include control)
and toxic compounds. Predicted scores of samples treated with toxic compounds were
significantly higher than those treated by low-toxic compound and control samples (p-
value<0.001). (B) Comparison of COXEN scores of primary human hepatocytes treated
with high doses (≥ 30 µM) and low doses (≤10 µM) of three compounds, myclobutanil
(MYC), propiconazole (PPZ), and triadimefon (TDF). Based on toxic information at the
Pesticideinfo site (http://www.pesticideinfo.org), PPZ and TDF were classified as toxic
compounds whereas MYC was considered as a low-toxic compound. Predicted scores were
significantly different for toxic compounds PPZ and TDF (p-values=0.026 and 0.019,
respectively). Furthermore, predicted hepatocellular toxicity scores of 100µM were higher
than those of 30µM among the toxic dose group. On the contrary, predicted scores of the
low and high dose groups of the low-toxic compound MYC were not statistically different
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(p-value = 0.13). Statistical significance (p value) of the set of predictions was assessed by a
two-sample t-test.
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