Table 1.
Compound | Solid state
|
Solution | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CQ/MHz ± 0.1 | ηQ ± 0.05 | δiso/ppm ± 5 | δσ/ppm ± 30 | ησ ± 0.05 | δ11/ppm ± 30 | δ22/ppm ± 30 | δ33/ppm ± 30 | α/degree ± 10 | β/degree ±15 | γ/degree ±30 | δiso/ppm | |
| ||||||||||||
1a | 4.0 | 1.00 | 58 | −243 | 0.93 | −185 | 66 | 292 | 81 | 70 | 87 | 22116 |
1b | 3.4 | 0.60 | 531 | 437 | 0.90 | 968 | 509 | 116 | 10 | 40 | 120 | 38216 |
1c | 4.2 | 1.0 | 31 | −314 | 0.65 | −314 | 54 | 258 | 45 | 45 | 90 | −14516 |
2 | 4.1 | 0.77 | 3219 | −302 | 0.70 | −521 | −145 | 9 | 40 | 40 | 75 | 215 (This work) |
SJZ0010816 | 6.0±0.4 | 0.7±0.05 | 426.3± 3 | 570±19 | 0.6±0.1 | - | - | - | 0±60 | 0±10 | 30±30 | 422 & 37516 |
The chemical shift parameters are defined such that |δxx – δiso |≤ |δyy – δiso |≤ |δzz – δiso | and δiso = (δxx + δyy + δzz)/3, δσ = δzz − δiso, ησ = (δyy − δxx)/( δzz − δiso) according to the Haeberlen-Mehring-Spiess convention.16 Here δii denotes the principal components of the chemical shift tensor.
The EFG parameters are CQ = eQVZZ/h and ηQ = (VXX − VYY)/VZZ where |VZZ| ≥ |VYY| ≥ |VXX|, e is the electron charge, and h is Planck’s constant.