Skip to main content
. 2012 Apr 30;12(5):5517–5550. doi: 10.3390/s120505517

Table 1.

The recent developed SMO thin film based resistance hydrogen sensors.

Materials Synthesis Method Working Temp. (°C) Detected Conc. (ppm) Hydrogen response Ref.
Smax Conc. (ppm) tresponse Temp. (°C)
SnO2 Sol-gel annealing 100–300 50–5,000 104 5,000 <10 s 100 [65]
In2O3 doped SnO2 Sol-gel annealing 22 100–15,000 105 15,000 tens of min. 22 [83]
(101)-SnO2 RF magnetron sputtering 550 300–10,000 300 10,000 <16 s 550 [70]
SWCNT doped SnO2 Sol-gel annealing 150–300 300–1,500 3 1,500 <5 s 250 [80]
Au or Pt enhanced SnO2 Sol-gel annealing 85–180 500–10,000 2 10,000 several min. 150 [79]
SnO2 Spray pyrolysis 250–400 1,000 3,040 1,000 2 s 350 [121]
Pd doped SnO2 Reactive Magnetron sputtering 50–300 10–1,000 85 1,000 several mins 200 [60]
SnO2 Sol-gel annealing 90–220 1,000 2,000 1,000 15 s 150 [66]
Al-doped ZnO HF magnetron sputtering 40–100 1,000–5,000 10 1,000 10 min 100 [76]
ZnO wirelike thin film Thermal oxidation 200 200 2.83 200 1.5 min 200 [68]
ZnO Thermal oxidation 400 40–160 4,000 160 1,000 s 400 [122]
Mg-doped ZnO PLD 150–300 5–5,000 50 5,000 5 min 300 [77]
Nanoporous TiO2 Thermal oxidation 500 5–500 10 500 10 s 500 [11]
Nanoporous TiO2 Anodic oxidation 100–300 1,200–10,000 1.24 10,000 - 225 [67]
Anatase TiO2 Micro-arc oxidation 100–300 1000 2.5 1,000 45 s 250 [71]
Nb2O5 NW thin film Thermal oxidation 20 100–2,000 50 2,000 <2 min 20 [69]
MWCNT-doped WO3 Electron beam evaporation 200–400 100–50,000 3 1,000 - 350 [81]
Pd-doped WO3 Sol-gel annealing 20–350 1,000–1,300 104 1,000 <100 s 20 [78]
Pt-doped WO3 RF magnetron sputtering 95–220 30–200 9.5 200 0.7 min 200 [123]
CuO Thermal oxidation 300–800 60,000 3.72 60,000 5 min 250 [72]
NiO PLD 25–250 30,000 1.16 (n) 1.76 (p) 30,000 10 min 125 [124]
NiO Magnetron sputtering 300–650 500–10,000 190 (p) 5,000 5 min 400 [74]