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Abstract: In order to improve algorithm efficiency and performance, a technique for image 
fusion based on the Non-subsampled Contourlet Transform (NSCT) domain and an 
Accelerated Non-negative Matrix Factorization (ANMF)-based algorithm is proposed in this 
paper. Firstly, the registered source images are decomposed in multi-scale and multi-
direction using the NSCT method. Then, the ANMF algorithm is executed on low-frequency 
sub-images to get the low-pass coefficients. The low frequency fused image can be generated 
faster in that the update rules for W and H are optimized and less iterations are needed. In 
addition, the Neighborhood Homogeneous Measurement (NHM) rule is performed on the 
high-frequency part to achieve the band-pass coefficients. Finally, the ultimate fused image 
is obtained by integrating all sub-images with the inverse NSCT. The simulated experiments 
prove that our method indeed promotes performance when compared to PCA, NSCT-based, 
NMF-based and weighted NMF-based algorithms.  

Keywords: image fusion; non-subsampled contourlet transform; nonnegative matrix 
factorization; neighborhood homogeneous measurement 

 

1. Introduction 

Image fusion is an effective technology that synthesizes data from multiple sources and reduces 
uncertainty, which is beneficial to human and machine vision. In the past decades, it has been adopted 
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in a variety of fields, including automatic target recognition, computer vision, remote sensing, robotics, 
complex intelligent manufacturing, medical image processing, and military purposes. Reference [1] 
proposed a framework for the field of image fusion. The fusion process is performed at different levels 
of the information representation, which is sorted in ascending order of abstraction: pixel, feature, and 
decision levels. Of these, pixel-level fusion has been broadly studied and applied for it is the foundation 
of other two levels.  

Pixel-level image fusion consists of two parts: space domain and frequency domain. The classic 
algorithms in the frequency domain include Intensity Hue Saturation (IHS) [2], Principal Component 
Analysis (PCA) [3], pyramid [4,5], wavelet [6,7], wavelet packet [8], Dual Tree Complex Wavelet 
Transform (DT-CWT) [9,10], curvelet [11,12], contourlet [13,14], and Non-subsampled Contourlet 
Transform (NSCT) [15], etc.  

Until recently, the multi-resolution decomposition based algorithms have been widely used in the 
multi-source image fusion field, and effectively overcome spectrum distortion. Wavelet transformation 
provides great time-frequency analytical features and is the focus of multi-source image fusion. NSWT 
is made up of the tensor product of two one-dimension wavelets, solving the shift-invariant lacking 
problem that the traditional wavelets cannot do. Being lacking in anisotropy, NSWT fails to express 
direction-distinguished texture and edges sparsely. In 2002, Do and Vetteri proposed a flexible 
contourlet transform method that may efficiently detect the geometric structure of images attributed to 
their properties of multi-resolution, local and directionality [13], but the spectrum aliasing phenomenon 
occurs posed by unfavorable smoothness of the basis function. Cunha et al. put forward the NSCT 
method [15] in 2006; improvements have been made in solving contourlet limitations, and it was an 
ultra-perfect transformation with attributes of shift-invariance, multi-scale and multi-directionality [16]. 

Non-Negative Matrix Factorization (NMF) is a relatively new matrix analysis method [17] presented 
by Lee and Seung in 1999, and has been proven to converge to its local minimum in 2000 [18]. It has 
been successfully adopted in a variety of applications, including image analysis [19,20], text  
clustering [21], speech processing [22], pattern recognition [23–25], and so on. Unfortunately, some 
NMF-involved works are time consuming. In order to reduce time costs, an improved NMF algorithm 
has been introduced in this paper. Our improved NMF algorithm is applied to fuse the low-frequency 
information in he NSCT domain, while the fusion of high-frequency details can be realized by adopting 
the Neighborhood Homogeneous Measurement (NHM) technique used in reference [26]. The 
experimental results demonstrate that the proposed fusion method can effectively extract useful 
information from source images and inject it into the final fused one which has better visual effects, 
and the running of the algorithm takes less CPU time compared with the algorithms proposed in [27] 
and [18]. 

The remainder of this paper is organized as follows: we introduce NSCT in Section 2. This is 
followed by a brief discussion on how NMF is constructed, and how we improve it. Section 4 presents 
the whole framework of the fusion algorithm. Section 5 shows experimental results for image fusion 
using the proposed technique, as well as the discussion and comparisons with other typical methods. 
Finally, the last Section concludes with a discussion of our and future works.  
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2. Non-Subsampled Contourlet Transform (NSCT)  

NSCT is proposed on the grounds of contourlet conception [13], which discards the sampling step 
during the image decomposition and reconstruction stages. Furthermore, NSCT presents the features of 
shift-invariance, multi-resolution and multi-dimensionality for image presentation by using a non-
sampled filter bank iteratively. 

The structure of NSCT consists of two parts, as shown in Figure 1(a): Non-Subsampled Pyramid 
(NSP) and Non-Subsampled Directional Filter Banks (NSDFB) [15]. NSP, a multi-scale decomposed 
structure, is a dual-channel non-sampled filter that is developed from the àtrous algorithm. It does not 
contain subsampled processes. Figure 1(b) shows the framework of NSP, for each decomposition of 
next level, the filter H (z) is firstly sampled an using upper-two sampling method, the sampling matrix 
is D = (2, 0; 0, 2). Then, low-frequency components derived from the last level are decomposed 
iteratively just as its predecessor did. As a result, a tree-like structure that enables multi-scale 
decomposition is achieved. NSDFB is constructed based on the fan-out DFB presented by Bamberger 
and Smith [28]. It does not include both the super-sampling and sub-sampling steps, but relies on 
sampling the relative filters in DFB by treating D = (1, 1; 1, −1), which is illustrated in Figure 1(c). If 
we conduct L levels of directional decomposition on a sub-image that decomposed by NSP in a certain 
scale, then 2L number of band-pass sub-images, the same size to original one, are available. Thus, one 
low-pass sub-image and band-pass directional sub-images are generated by carrying out L levels 

of NSCT decomposition. 

Figure 1. Diagram of NSCT, NSP and NSDFB. (a) NSCT filter bands; (b) Three-levels 
NSP; (c) Decomposition of NSDFB. 

 
(a) (b) (c) 

3. Improved Nonnegative Matrix Factorization 

3.1. Nonnegative Matrix Factorization (NMF)  

NMF is a recently developed matrix analysis algorithm [17,18], which can not only describe  
low-dimensional intrinsic structures in high-dimensional space, but achieves linear representation for 
original sample data by imposing non-negativity constraints on its bases and coefficients. It makes all 
the components non-negative (i.e., pure additive description) after being decomposed, as well as 
realizes the non-linear dimension reduction. NMF is defined as: 

1
2

L
l

j
j
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Conduct N times of investigation on a M-dimensional stochastic vector v, then record these data as 
vj, j = 1,2,…, N, let V = [ V•1, V•2, V•N ], where V•j = vj, j = 1,2,…, N. NMF is required to find a  
non-negative M × L base matrix W = [W•1, W•2,…, W•N] and a L × N coefficient factor H = [H•1, 
H•2,…, H•N ], so that V ≈ WH [17]. The equation can also be wrote in a more intuitive form of that

. . .
1

L

j i j
i

V W H
=

≈∑ , where L should be chose to satisfy (M + N) L < MN. 

In the purpose of finding the appropriate factors W and H, the commonly used two objective 
functions are depicted as [18]: 

2 2
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F ij ij
i j

E V WH V WH V WH
= =

= − = −∑∑  (1) 
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( || ) ( log ( ) )
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In respect to Equations (1) and (2), ∀i, a, j subject to Wia > 0 and Haj > 0, a is a integer. ||•||F is the 
Frobenius norm, Equation (1) is called as the Euclid distance while Equation (2) is referred to as K-L 
divergence function. Note that, finding the approximate solution to V ≈ WH is considered equal to the 
optimization of the above mentioned two objective functions. 

3.2. Accelerated Nonnegative Matrix Factorization (ANMF)  

Roughly speaking, the NMF algorithm has high time complexity that results in limited advantages 
for the overall performance of algorithm, so that the introduction of improved iteration rules to 
optimize the NMF is extremely crucial to promote the efficiency. In the point of algorithm 
optimization, NMF is a majorization problem that contains a non-negative constraint. Until now, a 
wide range of decomposition algorithms have been investigated on the basis of non-negative 
constraints, such as the multiplicative iteration rules, interactive non-negative least squares, gradient 
method and projected gradient [29], among which the projected gradient approach is capable of 
reducing the time complexity of iteration to realize the NMF applications under mass data conditions. 
In addition, these works are distinguished by meaningful physical significance, effective sparse data, 
enhanced classification accuracy and striking time decreases. We propose a modified version of 
projected gradient NMF that will greatly reduce the complexity of iterations; the main idea of the 
algorithm is listed below. 

As we know, the Lee-Seung algorithm continuously updates H and W,  fixing the other, by taking a 
step in a certain weighted negative gradient direction, namely: 

( )T T
ij ij ij ij ij ij

ij

fH H H W A W WH
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η η∂⎡ ⎤← − ≡ + −⎢ ⎥∂⎣ ⎦
 (3) 
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ij ij ij ij ij ij
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fW W W AH WHH
W

ς ς∂⎡ ⎤← − ≡ + −⎢ ⎥∂⎣ ⎦
 (4) 

where ηij and ζij are individual weights for the corresponding gradient elements, which are expressed 
like follows: 
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and then the updating formulas are: 

( )
( )

T
ij

ij ij T
ij

W A
H H

W WH
← , 

( )
( )

T
ij

ij ij T
ij
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W W

WHH
←  (6) 

We notice that the optimal H related to a fixed W can be obtained, column by column, by independently: 

2
2

1min  || ||     s.t.    0
2 j j jAe WHe He− ≥  (7) 

where ej is the jth column of the n × n identity matrix. Similarly, we can also acquire the optimal W 
relative to a fixed H by solving, row by row: 

2
2

1min  || ||     s.t.    0
2

T T T
i i iA e HW e W e− ≥  (8) 

where ei is the ith column of the m × m identity matrix. Actually, both Equations (7) and (8) can be 
changed into an ordinary form: 

2
2

1min  || ||     s.t.    0
2

Ax b x− ≥  (9) 

where A ≥ 0 and b ≥ 0. As the variables and given data are all nonnegative, the problem is therefore 
named the Totally Nonnegative Least Squares (TNNLS) issue. 

We propose to revise the algorithm claimed in article [17] by using the same update rule with  
step-length α in [27] to the successive updates in improving the objective functions about the two 
TNNLS problems mentioned in Equations (7) and (8). As a result, this brings about a modified form of 
the Lee-Seung algorithm that successively updates the matrix H column by column and W row by row, 
with individual step-length α and β for each column of H and each row of W respectively. So we try to 
write the update rule as: 

( )T T
ij ij j ij ijH H W A W WHα η← + −  (10) 

( )T T
ij ij i ij ijW W AH WHHβ ς← + −  (11) 

where ηij and ζij are set equal to some small positive number as described in [27], αj (j = 1,2,…,n) and 
βi (i = 1,2,…,m) are step-length parameters can be computed as follows. Let x > 0, 

( )  and  [ . / ( )]T Tq A b Ax p x A Ax q= − = D , where the symbol “./” means component-wise division and “ D ” 
denotes multiplication. Then we introduce variable ô ∈(0, 1):  

ˆ ˆ( ,  { : 0})
T

T T

p qmin max x p
p A Ap

α τ α α= + ≥  (12) 

We can easily obtain the step-length formula of αj or βi if (A, b, x) is replaced by (W, Aej, Hej) or 
(HT, ATei, WTei), respectively. It is necessary to point out that q is the negative gradient of the objective 
function, and the search direction p is a diagonally scaled negative gradient direction. The step-length 
α or β is either the minimum of the objective function in the search direction or a τ-fraction of the step 
to the boundary of the nonnegative quadrant. 

Learning from article [27] that both quantities, pTq/pTATAp and max{â : x + âp ≥ 0} are greater than 1 
in the definition of the step α, thereby, we make αj ≥ 1 and βi ≥ 1 by treating τ sufficiently close to 1. In 
our experiment, we choose τ = 0.99 which practically guarantees that α and β are always greater than 1. 
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Obviously, when α←1 or β←1, update Equations (10) and (11) reduce to updates Equations (3) and 
(4). In our algorithm, the step-length parameters are allowed to be greater than 1. It is this indicates 
that for any given (W, H), we can get at least the same or greater decrease in the objective function 
than the algorithm in [27]. Hence, we call the proposed algorithm the Accelerated NMF (ANMF). 
Besides, the experiments in Section 5.5 will demonstrate that ANMF algorithm is indeed superior to 
that algorithm by generating better test results, especially when the amount of iterations is not too big. 

4. The ANMF and NSCT Combined Algorithm 

4.1. The Selection of Fusion Rules 

As we know, approximation of an image belongs to the low-frequency part, while the  
high-frequency counterpart exhibits detailed features of edge and texture. In this paper, the NSCT 
method is utilized to separate the high and low components of the source image in the frequency 
domain, and then the two parts are dealt with different fusion rules according to their features. As a 
result, the fused image can be more complementary, reliable, clear and better understood. 

By and large, the low-pass sub-band coefficients approximate the original image at low-resolution; 
it generally represents the image contour, but high-frequency details such as edges, region contours are 
not contained, so we take the ANMF algorithm to determine the low-pass sub-band coefficients which 
including holistic features of the two source images. The band-pass directional sub-band coefficients 
embody particular information, edges, lines, and boundaries of region, the main function of which is to 
obtain as many spatial details as possible. In our paper, a NHM based local self-adaptive fusion 
method is adopted in band-pass directional sub-band coefficients acquisition phase, by calculating the 
identical degree of the corresponding neighborhood to determine the selection for band-pass 
coefficients fusion rules (i.e., regional energy or global weighted). 

4.2. The Course of Image Fusion  

Given that the two source images are A and B, with the same size, both have been registered, F is 
fused image. The fusion process is shown in Figure 2 and the steps are given as follows (Figure 2): 

Figure 2. Flowchart of fusion algorithm. 

 

(1) Adopt NSCT to implement the multi-scale and multi-direction decompositions for source images 
A and B, and the sub-band coefficients

0 ,{ ( , ), ( , )}A A
i i lC m n C m n , 

0 ,{ ( , ), ( , )}B B
i i lC m n C m n can be obtained. 

(2) Construct matrix V on the basis of low-pass sub-band coefficients
0
( , )A

iC m n  and 
0
( , )B

iC m n : 
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where vA and vB are column vectors consisting of pixels coming from A and B, respectively, according 
to principles of row by row. n is the number of pixels of source image. We perform the ANMF 
algorithm described in Section 3.2 on V, from which W that is actually the low-pass sub-band 
coefficients of fused image F is separated. We set maximum iteration number as 1,000 with τ = 0.99. 

The fusion rule NHM is applied to band-pass directional sub-band coefficients , ( , )A
i lC m n , , ( , )B

i lC m n of 
source images A, B. The NHM is calculated as: 

,

, ,
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,
, ,
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i j

A B
i j i j

k j N m n
i j A B
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E m n E m n
∈

+

∑i i
 (14) 

where Ei,l(m, n) is regarded as the neighborhood energy under resolution of 2l in direction i, Ni,l (m, n)  
is the 3 × 3 neighborhood centers at point (m, n). In fact, NHM quantifies the identical degree of 
corresponding neighborhoods for two images, the higher the identical degree is, the greater the NHM 
value should be. Because 0 ≤ NHMi,l(m, n) ≤ 1, we define a threshold T; generally we have it that 0.5 < 
T < 1. As the quality of fusion image is partly influenced by T (see Table 1), we take two factors into 
consideration [i.e., when T =0.75 the SD (Standard Deviation) and AG (Average Gradient) are better], so 
the threshold is given as T = 0.75. The fusion rule of band-pass directional sub-band coefficients is 
expressed as: 

when NHMi,l (m, n) < T: 
, , , ,

, , , ,

( , ) ( , )  ( , ) ( , )

( , ) ( , )  ( , ) ( , )

F A A B
i l i l i l i l

F B A B
i l i l i l i l

C m n C m n if E m n E m n

C m n C m n if E m n E m n

⎧ = ≥⎪
⎨

= <⎪⎩
 

when NHMi,l (m, n) ≥ T: 

, , , , , , ,( , ) ( , )  ( ( , ), ( , )) (1 ( , ))  ( ( , ), ( , ))F F A F B
i l i l i l i l i l i l i lC m n NHM m n max C m n C m n NHM m n min C m n C m n= + −i i  

(3) Perform inverse NSCT transform on the fusion coefficients of F obtained from step (2) and get 
the ultimate fusion image F. 

Table 1. The tradeoff selection for T. 

T SD AG T SD AG 
0.55 
0.6 
0.65 

30.478 
30.664 
30.412 

8.3784 
8.4322 
8.4509 

0.75 
0.8 
0.9 

30.539 
30.541 
30.629 

8.5109 
8.4376 
8.4415 

0.7 30.456 8.5322 0.95 30.376 8.2018 

5. Experiments and Analysis 

5.1. Experimental Conditions and Quantified Evaluation Indexes  

To verify the effectiveness of the proposed algorithm, three groups of images are used under the 
MATLAB 7.1 platform in this Section. All source images must be registered and with 256 gray levels. 
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By comparison with the five typical algorithms below: NSCT-based method (M1), NMF-based 
method (classic NMF, M2), weighted NMF-based method (M3), PCA and wavelet, we can learn more 
about the one presented in our paper.  

It may be possible to evaluate the image fusion subjectively, but subjective evaluation is likely 
affected by the biases of different observers, psychological status and even mental states. Consequently, 
it is absolutely necessary to establish a set of objective criteria for quantitative evaluation. In this paper, 
we select the Information Entropy (IE), Standard Deviation (SD), Average Gradient (AG), Peak Signal 
to Noise Ratio (PSNR), Q index [30], Mutual Information (MI), and Expanded Spectral Angle Mapper 
(ESAM) [31] as our evaluation metrics. IE is one of the most important evaluation indexes, whose 
value directly reflects the amount of information in the image. The larger the IE is the more 
information is contained in a fused image. SD indicates the deviation degree between the gray values 
of pixels and the average of the fused image. In a sense, the fusion effect is in direct proportion to the 
value of the SD. AG is capable of expressing the definition extent of the fused image, the definition 
extent will be better with an increasing AG value. PSNR is the ratio between the maximum possible 
power of a signal and the power of corrupting noise. The larger the PSNR is, the better is the image. 
MI is a quantity that measures the mutual dependence of the two random variables, so a better fusion 
effect makes for a bigger MI. Q index measures the amount of edge information “transferred” from 
source images to the fused one to give an estimation of the performance of the fusion algorithm. Here, 
larger Q value means better algorithm performance. ESAM is an especially informative metric in terms 
of measuring how close the pixel values of the two images are and we take the AE (average ESAM) as 
an overall quality index for measuring the difference between the two source images and the fused one. 
The higher the AE, the less the similarity of two images will be. The AE is computed using a sliding 
window approach, in this work, sliding windows with a size of 16 × 16, 32 × 32, and 64 × 64 are used. 

5.2. Multi-Focus Image Fusion  

A pair of “Balloon” images are chose to be source images, both are 200 by 160 in size. As can be 
seen from Figure 3(a), the left side of the image is in focus while the other side is out of focus. The 
opposite phenomenon emerges in Figure 3(b). Six variant approaches, M1–M3, PCA, wavelet (bi97), 
and our method, are applied to test the fusion performance. Figure 3(c–h) show the simulated results.  

From an intuitive point of view, the M1method produces a poor intensity that makes Figure 3(c) 
somewhat dim. On the contrary, the other five algorithms generate better performance in this aspect, 
but artifacts located in the middle right of Figure 3(e) can be found. Compared with the M2 and M3 
methods, although the definition of the bottom left region in our method is slightly lower than that of 
the two algorithms, the holistic presentation is superior to the two. As for PCA and wavelet, the similar 
visual effects as Figure 3(h) are obtained, except the middle bottom balloon in Figure 3(f) is slightly 
blurred. Statistic results in Tables 2 and 3 verify the above visual effects further. 
  



S

 

th
M
M
3
in
m
a
e

Sensors 201

Figure
focuse
image 
(h) Fu

PS
Q

AE
AE
AE
AE
AE
AE

 
Table 2 i

he criteria, 
M1–M3 and
M3 and PCA
3.3%, 0.6% 
ndices indic

method mea
algorithms. 
effect the w

2, 12 

e 3. Multi-f
ed image; (c

based on M
used image b

(a) 

(e) 

Table

 
IE 
SD 
AG 

SNR(dB) 
Q Index 

MI 

Tab

 
EaF16 × 16 
EaF32 × 32 
EaF64 × 64 
EbF16 × 16 
EbF32 × 32 
EbF64 × 64 

llustrates th
in both pro

d PCA. Of t
A by 3.1%
and 0.3 (fo

cate that our
ans the bes
In MI, our 

worst one. A

focus source
c) Fused im
M3; (f) Fus
based on ou

 

 

e 2. Compar

M1 
7.3276 
28.705 
8.4581 
35.236 
0.9579 
3.4132 

ble 3. ESAM

M1 
20.37 
19.85 
19.06 
20.08 
19.62 
18.98 

hat the prop
tection of im
them, the in
, 1.3%, 1.5

or AG), 5.3%
r method pr
t fusion alg
method is 

As for wave

e images an
mage based 
sed image b
ur method. 

(b) 

(f) 

rison of the 

M2 
7.4594 7
29.728 2
8.2395 8
36.246 3
0.9723 0
3.5268 3

M values be

M2 
19.96 
19.32 
18.62 
19.43 
18.88 
18.27 

posed metho
mage detail
ndexes IE, 
% and 0.8%
%, 2.6%, 1.
rovides a be
gorithm per
also the be
let, four of 

nd fusion re
on M1; (d

based on PC

fusion met

M3 P
7.4486 7
29.934 30
8.4595 8
36.539 3
0.9706 0
3.9801 4

etween mul

PCA 
19.89 
19.29 
18.53 
19.38 
18.81 
18.15 

od has adva
ls and fusio
SD, AG, PS
% (for IE), 
.8% and 1.3
etter visual 
rformance w
est, being su
f six metrics

esults. (a) L
d) Fused im
CA; (g) Fus

(c) 

(g) 

thods for mu

PCA W
.4937 7.
0.206 3
.4853 8.
6.746 37
.9812 0.
.0538 4.

ti-focus and

M3 W
19.82 
19.24 
18.42 
19.35 
18.76 
18.03 

antages over
n of image 
SNR of our
6.0%, 2.7%

3% (for PSN
effect. As f
when comp
uperior to t
s are slightl

eft-focused 
mage based 

sed image b

ulti-focus im

Wavelet Pr
.5982 
1.127 
.5014 
7.533 
.9901 
.1257 

d fused imag

Wavelet Pr
19.27 
18.95 
18.13 
18.87 
18.11 
17.66 

r most of ot
information

r method ex
%, 2.1% an
NR), respec
for index Q,
pared to va
that of M1 
ly inferior t

image; (b) 
on M2; (e)
based on w

(d) 

(h) 

mages. 

roposed meth
7.5608 
30.539 
8.5109 
37.224 
0.9844 
4.2578 

ges. 

roposed met
18.96 
18.42 
17.95 
18.54 
17.96 
17.38 

ther algorith
n, are super
xceed those
d 1.1% (for

ctively. The
, the 0.9844
alues of the 

by 19%; th
to ours whil

588

Right-
) Fused 

wavelet;  

hod 

thod 

hms since a
rior to that o
e of M1, M2
r SD), 0.6%

ese four bas
4 value of ou

former fou
he latter is i
le two of si

80 
 

all 
of 
2, 

%, 
ic 
ur 
ur 
in 
ix 



S

 

m
A
f
tr

5

in
a

 

th
e
u
o
im

Sensors 201

metrics are 
AEbF denote
followed by
ransferring 

5.3. Medical

Figure 4(
ncluding ou

are shown in

Figure
(c) Fu
M3; (f
based 

From Fig
he MRI sou

effect is poo
undesirable a
only produc
mage detail

IE
S
A

PSNR
Q In

M

2, 12 

inferior to o
e similarity 
y wavelet, M
details, the 

l Image Fus

(a,b) are me
ur proposed
n Figure 4(c

e 4. Medic
used image 
f) Fused im
on our meth

(a) 

(e) 

gure 4, imag
urce image i
or, which i
artifacts obs
e distinct ou
ed informat

Tab

 
E 5
D 2

AG 2
R(dB) 3
ndex 0

MI 4

ours. From 
between so
M3, PCA, 
performanc

sion  

edical CT a
d one, are ad
c–h). 

cal source 
based on M

mage based 
hod. 

 

 

es based on
s not fully d
s confirmed
served on bo
utlines and 
tion well. Re

ble 4. Comp

M1 
.4466 5
9.207 2
0.361 2
6.842 3
.9607 0
.0528 4

Table 3, it 
ource image 

M2, and m
ces of our m

and MRI im
dopted to ev

images and
M1; (d) Fus
on PCA; (g

(b) 

(f) 

n methods M
described ye
d by the lo
oth sides of 
rationally c
elated evalu

parison of th

M2 
5.7628 
27.768 
26.583 
37.238 
0.9695 
4.3726 

can be fou
(a) and the

method M1
method, wav

mages whose
valuate the 

d fusion re
sed image b
g) Fused im

M2 and M3 a
et. Although
ow brightne
f the cheek. 
control the b
uations are r

he fusion m

M3 
5.7519 
27.883 
25.194 
37.428 
0.9714 
4.3942 

 

und that our
e fused one;
 has the hi
velet, M3, P

e sizes are 2
fusion perf

esults. (a) C
based on M

mage based 

(c) 

(g) 

are not fused
h the externa
ess of the im
Oppositely,
brightness le
ecorded in T

methods for m

PCA 
5.8875 
28.549 
27.358 
37.853 
0.9821 
4.5522 

r method ha
 (b) and the
ighest AE. 

PCA, M2, an

256 by 256
formance, a

CT image; 
M2; (e) Fuse

on wavelet

d well enoug
al contour o
mage and t
, PCA, wave
evel, but als
Tables 4 and

medical ima

Wavelet 
6.1022 
31.836 
28.573 
38.737 
0.9874 
4.8736 

as the lowe
e fused one,

Therefore,
nd M1 decr

6. Six differ
and the simu

(b) MRI 
ed image ba
; (h) Fused

 
(d) 

 
(h) 

gh for the in
f M1 is clea
the appeara
elet and our
so preserve 
d 5.  

ages. 

Proposed m
6.064
31.62
29.20
38.45
0.983
5.083

588

st AE (AEa

, respectivel
 in terms o

rease. 

rent method
ulated resul

image;  
ased on 
d image 

nformation i
ar, the overa
ance of som
r methods no
and enhanc

method 
1 
8 
9 
8 
5 
7 

81 
 

aF, 
ly) 
of 

ds, 
lts 

in 
all 
me 
ot 
ce 



S

 

I
a
m
o
a
s
im
in
M

5

w

Sensors 201

AE
AE
AE
AEb

AEb

AEb

As reveal
E, SD, AG

are not liste
method poss
other approa
approach, an
second plac
mages are w
n experime

M3, PCA, M

5.4. Visible a

A group 
walking in f

Figure
(b) In
(e) Fu
wavele

 

2, 12 

Ta

 
aF16 × 16 
aF32 × 32 
aF64 × 64 
bF16 × 16 
bF32 × 32 
bF64 × 64 

led in Table
, PSNR of 

ed). The IE 
sesses an A
aches. In P
nd the SD o
e in MI an
well inherite
nt 1, our m

M2 and M1 

and Infrare

of register
front of a ho

e 5. Visible
frared band

used image b
et; (h) Fuse

(a) 

(e) 

able 5. ESA

M1 
18.45 
18.13 
17.74 
18.39 
18.08 
17.76 

e 4, the pro
Figure 4(h)
value of M

AG index o
PSNR and 
of M1 beat

nd the first 
ed. These d

method achie
arrange in a

ed Image Fu

red visible 
ouse are lab

e and infrar
d image; (c)
based on M

ed image bas

 

 

AM values b

M2 
18.09 
17.67 
17.22 
18.12 
17.74 
17.36 

posed meth
) are all gre
M1 is the lo
of 29.209 w
SD, our m
s that of M
place in Q,

details and e
eves the low
ascending o

usion  

and infrare
eled as Figu

red source i
) Fused im

M3; (f) Fuse
sed on our m

(b) 

(f) 

between CT

PCA 
17.83 
17.32 
16.95 
17.79 
17.21 
17.05 

hod is nearly
eater than th
owest, whic

which implie
ethod perfo

M2 and M3. 
, which ind
edges are ex
west values

order. 

ed images w
ure 5(a,b).  

images and
mage based o
ed image ba
method. 

T, MRI and 

M3 W
17.64 1
17.08 1
16.82 1
17.53 1
17.09 1
16.85 1

y the best b
hat of the fo
ch is precis
es the imag
orms well, 
As to Q in

dicates that 
xtremely im
s both in AE

with a size 

d fusion resu
on M1; (d)
ased on PCA

(c) 

(g) 

fused imag

Wavelet P
17.33 
16.79 
16.57 
17.38 
16.91 
16.34 

based on the
ormer four 
ely in acco

ge is clearer
being seco

ndex and M
the details 

mportant for 
EaF and AE

of 360 by 

ults. (a) Vi
) Fused ima
A; (g) Fuse

es. 

roposed me
17.04 
16.58 
16.12 
17.11 
16.62 
16.17 

e fact that th
algorithms 

ord with the
r than imag

ond only to 
MI, our meth

and edges 
medical dia

EbF, and tha

240 showi

isible band 
age based o
ed image ba

(d) 

(h) 

588

thod 

he metrics o
(percentage

e image. Ou
ges based o

the wavel
hod takes th

from sourc
agnosis. Lik
at of wavele

ing a perso

image; 
on M2;  
ased on 

82 
 

of 
es 
ur 
on 
et 
he 
ce 
ke 
et, 

on 



Sensors 2012, 12 5883 
 

 

Of these, Figure 5(a) has a clear background, but infrared thermal sources cannot be detected. 
Conversely, Figure 5(b) highlights the person and house but its ability to render other surroundings is 
weak. Effective fusions are achieved by the six methods. After concrete analysis on the six fused 
images, we draw the following conclusions: we can find that the image based on method M1 is the 
worst in overall effect, especially a dark area around the person, which is partly caused by the 
significant differences between two source images. Method M2 produces more smooth details than M1, 
as a case in point, the road on the right side of the image and the grass on the other side can easily be 
recognized for the enhancement of intensity. Approximate effects displayed in Figure 5(e–h) are 
achieved by using M3, PCA, wavelet and our method, from which we can easily distinguish most parts 
of the scene except the lighting beside the house in Figure 5(e) that can hardly be observed. It is 
difficult to judge the performances of the latter four methods through visual observation in case of the 
concrete data are not provided by Table 6.  

In so far as IE, AG, and PSNR are concerned, the proposed technique is evidently better than the 
former four ones. Specially, the value of our method exceeds them by 1.6%, 4.9%, and 0.7% while the 
SD is slightly smaller when compared with M3. In index Q, the optimal value is obtained on the basis 
of the wavelet approach, while that of M1 holds the final place. As for MI, our method still ranks the 
first place in Table 6. Analogous effects are achieved in Table 7, statistics show that the similarities 
between visible light, infrared and fused images generated by our method are the best in that both AEaF 
and AEbF are the smallest.  

Table 6. Comparison of the fusion methods for visible and infrared images. 

 M1 M2 M3 PCA Wavelet Proposed method 
IE 6.2103 6.3278 6.6812 6.7216 6.8051 6.7962 
SD 23.876 22.638 25.041 24.865 25.137 25.029 
AG 3.2746 3.0833 3.3695 3.4276 3.5234 3.5428 

PSNR(dB) 37.093 38.267 38.727 38.971 39.765 39.021 
Q Index 0.9761 0.9784 0.9812 0.9836 0.9956 0.9903 

MI 3.8257 4.2619 4.3128 4.5595 4.6392 4.7156 

 
Table 7. ESAM values between visible, infrared and fused images. 

 M1 M2 PCA M3 Wavelet Proposed method 
AEaF16 × 16 22.53 22.17 21.88 21.69 21.14 21.03 
AEaF32 × 32 22.14 21.84 21.65 21.13 20.82 20.56 
AEaF64 × 64 21.75 21.36 20.83 20.52 20.06 19.94 
AEbF16 × 16 22.44 22.13 21.76 21.38 21.03 20.87 
AEbF32 × 32 22.08 21.22 20.93 20.69 20.47 20.15 
AEbF64 × 64 21.69 20.87 20.55 20.07 19.89 19.68 

5.5. Numerical Experiment on ANMF  

In this section, we compare the performance of ANMF with that of algorithms presented in article [27] 
and [18] in order to prove its advantages. The algorithms are implemented in Matlab and applied to the 
Equinox face database [32]. The contrast experiments are conducted four times, where p is as described 
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in Section 3.2 and n denotes for the number of images chosen from the face database. The Y axis of  
Figure 6 represents the number of iterations repeated by the three algorithms and the X axis is the time 
consumption scale. We choose one group of these experiments and demonstrate the results in Figure 6 
with p = 100 and n = 1,000, in which algorithm in [18] is first performed for a given number of iterations 
and record the time elapsed and then run algorithm in [27] and our algorithm until the time consumed is 
equivalent to that of the former, respectively. We note that our algorithm offers improvements in all 
given time points, however, the relative improvement percentage of our method over other two 
algorithms goes down when the number of iterations increases. Actually, the performance of our method 
increases about 36.8%, 26.4%, 15.7%, 12.6%, 7.5% and 37.9%, 29.6%, 19.4%, 17.8%, 12.6%, 
respectively, when comparing with the algorithms in [27] and [18] at each of five time points. In other 
words, our method converges faster, especially at the early stages, but the percentage tends to decline, 
which implies that this attribute is merely useful for real-time applications without very large-scale  
data sets. 

Figure 6. Numerical comparison between three algorithms. 

 

5.6. Discussion  

Image fusion with different models and numerical tests are conducted in our experiments, where the 
above four experiments indicate that the proposed method has a notable superiority in image fusion 
performance over the four other techniques examined (see Sections 5.2–5.4), and has better iteration 
efficiency (see Section 5.5). We observed that images based on wavelet and our proposed methods 
enjoy the best visual effect, and then the PCA, M3, M2, and M1 are the worst. In addition to visual 
inspection, quantitative analysis is also conducted to verify the validity of our algorithm from the 
angles of information amount, statistical features, gradient, signal to noise ratio, edge preservation, 
information theory and similarity of structure. The values in these metrics prove that the experiments 
achieve the desired objective. 
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6. Conclusions 

In this paper, we have presented a technique for image fusion based on the NSCT and ANMF model. 
The accelerated NMF method modifies the traditional update rules of W and H, which achieves better 
effect by adopting the theory of matrix decomposition. The current approaches on the basis of NMF 
usually need more iterations to converge when compared to the proposed method, but the same or better 
results can be attained by our technique via less iterations. The results of simulation experiments show 
that the proposed algorithm can not only reduce computational complexities, but achieve better or equal 
performances when compared with other mentioned techniques both from the visual and statistical 
standpoints. The optimization for our method will be the next step in order to apply it in large scale  
data sets. 
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