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Abstract
Fine/ultrafine particles can easily reach the pulmonary acinus, where gas is exchanged, but they
need to mix with alveolar residual air to land on the septal surface. Classical fluid mechanics
theory excludes flow-induced mixing mechanisms because of the low Reynolds number nature of
the acinar flow. For more than a decade, we have been challenging this classical view, proposing
the idea that chaotic mixing is a potent mechanism in determining the transport of inhaled particles
in the pulmonary acinus. We have demonstrated this in numerical simulations, experimental
studies in both physical models and in animals, and mathematical modeling. However, the
mathematical theory that describes chaotic mixing in small airways and alveoli is highly complex;
it not readily accessible by non-mathematicians. The purpose of this paper is to make the basic
mechanisms that operate in acinar chaotic mixing more accessible, by translating the key
mathematical ideas into physics-oriented language. The key to understanding chaotic mixing is to
identify two types of frequency in the system, each of which is induced by a different mechanism.
The way in which their interplay creates chaos is explained with instructive illustrations but
without any equations. We also explain why self-similarity occurs in the alveolar system and was
indeed observed as a fractal pattern deep in rat lungs (Proc. Natl. Acad. Sci. USA. 99:10173–
10178, 2002).
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1. INTRODUCTION
When a large number of aerosol particles enter the lungs in each breath, it is mostly the fine
and ultrafine particles that reach the gas exchange region of the lungs. What fraction of the
inhaled particles (e.g., particulate pollutants or therapeutic drug particles) actually deposits
on the alveolar surface depends on how the particle-laden tidal air mixes with the alveolar
residual gas, so mixing can have enormous physiological and pathophysiological
consequences.
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Even today, the most widely-used models of aerosol mixing (e.g., ICRP, 1994) cannot
explain the transport of inhaled fine particles in the pulmonary acinus in a way that accords
with experimental observations such as (Heyder et al., 1988). The most fundamental error in
these classical models is that the possibility of flow-induced mixing is excluded a priori; for
instance, Davies (1972) states, “Mixing between tidal and reserve air takes place in the dead
space, above the respiratory bronchioles. In the alveolated regions there is no mixing…..”
Such models are based on a result from fluid mechanics: quasi-steady zero Reynolds number
flow (Stokes flow) is kinematically reversible when the motion of the fluid’s boundaries is
kinematically reversible (Taylor, 1960). Because acinar airflow has a very low Reynolds
number (Pedley, Schroter, & Sudlow, 1977) and the basic mode of the acinar wall motion is
kinematically reversible (Gil & Weibel, 1972; Ardila, Horie & Hildebrandt, 1974; Gil et al.,
1979; Miki et al., 1993; Weibel, 1986), this assumption appears to be reasonable at first
sight. However, the classical view of acinar fluid mechanics does not consider the details of
local structure of alveolar flow. Moreover, it is well-established that chaotic transport
(which is essentially irreversible) can occur in a wide range of flows at arbitrarily low
Reynolds number (see Ottino, 1989 for examples).

It is reasonable to ask whether diffusion will enable particles to cross alveoli rapidly; where
this happens (as it does for gases such as O2 and CO2), the details of the flow are largely
irrelevant. The diffusivity in air of submicron particles, say from 0.5 µm down to 10 nm in
diameter, is from around 10−7 to 10−4 cm2/sec respectively. Therefore, the Péclet number,
which expresses the importance of airflow-mediated transport relative to diffusive transport,
is much larger than unity in the acinus during normal breathing. This indicates that particle
mixing and deposition in the acinus is largely determined by the acinar airflow pattern.
Weak diffusion may allow a particle to sample different parts of the pattern before it is
deposited or ejected from the acinus (Laine-Pearson & Hydon, 2008), but the impact of this
upon transport and deposition cannot be determined until the underlying flow is known. In
essence, the flow provides a template for the transport of submicron particles, to which
diffusion can be added as a weak perturbation. Throughout this paper, we restrict attention
to particles that are carried passively with the flow, ignoring the effects of diffusion and
particle inertia. We will also treat the flow as incompressible; this is an excellent
approximation, because the maximum acinar flow speed is very much less than the speed of
sound in air.

Over a decade ago, the first author and his group started to investigate more closely the fluid
mechanics in the pulmonary acinus. We began by examining the effects of cyclic wall
motion on acinar flow irreversibility (Tsuda, Henry, & Butler, 1995). We solved
numerically low Reynolds number flow in an axisymmetric alveolated duct model and
found that, provided the expanding and contracting alveoli are deep enough for recirculation
to occur, the flow exhibits the following hallmarks of chaos. We observed a stagnation
saddle point within the region in which the flow recirculates. The trajectories of particles
that pass close to such a saddle point are complex; they are highly entangled and twisted, in
a way that rapidly stretches and folds any sheet of particles, in much the same way that
pastry dough is stretched and folded repeatedly to create flaky pastry. Consequently, the
trajectories of nearby particles eventually diverge rapidly; this 'chaotic mixing' mechanism is
highly efficient.

In a subsequent study (Henry, Butler, & Tsuda, 2002), we simulated the behavior of a tracer
bolus (i.e., a cloud of fluid particles) in an axisymmetric acinar model with multiple alveoli
and showed that a bolus evolved into fractal-like patterns after a few cycles. In parallel with
these axisymmetric studies, we also solved Stokes flow in a fully three-dimensional alveolus
model with cyclically expanding/contracting walls (Haber et al., 2000), confirming basic
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features of alveolar flow with a characteristic vortex and an associated stagnation saddle
point in the alveolar flow field.

On the experimental side, both physical model and animal model experiments have been
performed (Tsuda, Otani, & Butler, 1999; Tippe & Tsuda, 2000; Tsuda et al., 2002; Karl,
Henry, & Tsuda, 2004). For instance, using a large-scale axisymmetric alveolated duct
model with moving walls, we confirmed a key prediction of our numerical analyses; namely,
the presence of recirculation in an expanding (and contracting) alveolated geometry (Tippe
& Tsuda, 2000). Developing a new visualization technique for physiological flows, we also
demonstrated how inhaled tidal air and residual alveolar gas interact kinematically in animal
lungs (Tsuda et al., 2002); we also found substantial alveolar flow irreversibility with
stretched and folded fractal patterns, which lead to a marked increase in mixing. These
experimental findings support our prediction that chaotic alveolar flow governs flow
kinematics in the pulmonary acinus, and hence it determines the transport and deposition of
inhaled fine particles.

However, there remains a substantial gap in the current understanding of acinar chaotic
mixing by most biologists. We believe that this is mainly because of a lack of an accessible
explanation of the highly mathematical concept of mixing by Hamiltonian chaos. Currently
available explanations are either too mathematical, taking a highly specialized approach, or
too superficial to impart any meaningful knowledge of basic mechanisms. The objective of
this work is to achieve the middle ground, bridging biology and mathematics. We will
describe the minimal essential components of this theory to extract the basic physics of
acinar chaotic mixing, using instructive illustrations, but no equations. The ultimate goal of
this work is to lead general readers of this journal (general biologists) to a basic
understanding of chaotic mixing and thus to explain why this phenomenon occurs in the
pulmonary acinus.

To keep our explanation of Hamiltonian chaos as simple as possible, we will assume that
each particle's motion in the recirculating alveolar flow is restricted to a two-dimensional
plane that is parallel to the ductal flow which drives the recirculation. Even though this is
not so, it provides a foundation from which we can begin to understand chaotic mixing in
the fully three-dimensional flow, as we discuss towards the end of the paper.

2. OVERVIEW OF ALVEOLAR FLOW
Our claim that chaotic mixing can occur in the acinus uses the fact that there are two kinds
of frequency in the system, which are induced by two different mechanisms – it is their
interplay that can create chaos.

One type of frequency (f1) is associated with recirculation in the alveoli. If recirculation
were the only type of fluid motion, particles that are carried passively with the flow would
move around the alveolar cavity on closed trajectories called recirculation orbits, as shown
schematically (in cross-section) in Fig. 1. The recirculation frequency f1 for such a trajectory
is the number of cycles around it that a particle completes per unit time; this frequency
depends on which orbit is chosen. For instance, the recirculation frequency will be relatively
small on orbits that lie very close to the alveolar wall, where the flow is slow; the frequency
is greater closer to the center of the alveoli, where the flow is faster and the orbit length is
shorter. It is important to note that the recirculation frequencies are intrinsic to the lung,
depending on geometric factors such as the alveolar cavity shape and the size of the alveolar
opening.
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Flow past the opening is produced by breathing, which is externally determined by
diaphragm and rib cage motion (controlled by the central nervous system). Furthermore,
breathing causes the alveoli to expand and contract somewhat at the breathing frequency, f2.

The motion of a particle depends on the ratio f1/f2; roughly speaking, this ratio dictates
whether or not a particle will follow a chaotic path, as is explained in detail later. For now, it
suffices to state that at certain ratios, when the frequencies f1 and f2 are said to be resonant,
the interaction between the frequencies produces a net drift. This drift results in Hamiltonian
chaos, except where it produces no qualitative change to the particle trajectories. The key to
understanding chaotic mixing in the alveolus is to realize that when the Reynolds number1
(Re) is zero and the alveolar walls are stationary, passive particles in the alveoli simply
recirculate. In this case, resonance does not produce a qualitative change in particle
trajectories: each particle moves back and forth on a single (closed) path forever. However,
wall motion (Tsuda, Henry, & Butler, 1995; Henry, Butler, & Tsuda, 2002; Laine-Pearson &
Hydon 2006), airflow inertia (Tsuda, Henry, & Butler, 1995; Henry, Butler, & Tsuda, 2002;
Henry, Laine-Pearson, & Tsuda, 2009) and a small amount of geometric hysteresis (Haber et
al., 2000; Haber & Tsuda, 2006) all perturb the particle motion in a way that depends on the
breathing frequency f2 but not on f1. Each of these perturbations produces qualitative
changes in those trajectories where f1 and f2 are resonant; surprisingly, these changes are not
strongly dependent on the cause of the perturbation. They are described by the mathematical
theory of ‘perturbed Hamiltonian dynamical systems.’ Therefore we use the terms
‘unperturbed system’ and ‘base model’ for Stokes flow with alveolar recirculation and
cyclically oscillating ductal flow alone. When wall motion and/or the airflow inertia is
included, we describe the system as perturbed.

3. UNPERTURBED SYSTEM (BASE MODEL)
3.1 Trajectories lie on a torus

The interplay between the two kinds of frequencies (f1, f2) determines the motion of
particles during a breathing cycle; this can be visualized schematically2 using nested tori
(Fig. 2), with coordinates (I1, θ1, θ2). Here θ2 represents the phase in the breathing cycle:
inspiration (marked Insp.) takes place between 0 and T/2; this is followed by expiration
(marked Exp.) to time T, when the cycle begins again. For each value of θ2, the cross-
section gives an instantaneous snapshot of the particles that lie on each orbit, which is a
circle of radius I1. As time progresses, each particle moves around its orbit; its angle to the
horizontal is θ1(t). So for each fixed I1, a train of particles moves around the circle. By
introducing the phase as an extra variable, we are able to visualize each particle’s motion as
a trajectory on the torus with the appropriate I1 (Fig. 3, left). The passage of time is marked
by an increase in phase, and by the change of the angle θ1(t) (see Fig. 3, right). So the
trajectory on the torus looks like a thread that winds around the torus, passing through the
hole in the middle once every time the orbit is completed.

This idea, and each of the results that follow, holds whenever an orbit can be deformed
continuously into a circle; such an orbit may look like very a squashed circle indeed! So, for
the remainder of the paper, we use the term 'circle' to describe any simple closed curve in the
plane. The 'angle' θ1(t) now has nothing to do with the horizontal; it is merely a coordinate

1Re = UL/ν, where U and L are (respectively) a characteristic velocity and length scale for the flow and ν is the kinematic viscosity
of the alveolar gas. Typically, Re < 1 in alveoli; consequently, the convective inertia of the gas produces only a small perturbation to
Stokes (zero Re) flow.
2It does not matter that inspiration and expiration are not necessarily of the same duration. What is important is that the closed
trajectories exist and that breathing is (roughly) periodic in time.
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that identifies where a given particle is located on the 'circle.' Similarly, a 'torus' is obtained
by supplementing a 'circle' with the phase variable θ2.

The alveolar cavity is packed with a family of orbits with different frequencies (Fig.1). The
recirculation frequency f1 increases smoothly as the center of an alveolus is approached;
consequently, between any two orbits with recirculation frequencies f1a and f1b, there lies an
orbit with any specified intermediate frequency.

3.2 Rational or irrational frequency ratio
There are two qualitatively different types of unperturbed particle motion, depending on
which recirculation orbit a particle is traveling on. We will include the phase for the rest of
this subsection, so that we can think about which torus the particle moves on. Then the
thread analogy is helpful: either the thread eventually joins up with itself forming a finite
loop around the torus, or it continues winding around the torus forever (see Fig. 4). The
distinction can be made by whether the ratio of the two frequencies (f1/f2) is a rational
number or an irrational number3.

A 'rational torus' is one for which the ratio of frequencies (f1/f2) is rational, so that the
frequencies are resonant. For such a torus, one can always choose time units such that f1 = p
and f2 = q, where p and q are integers. The particle comes back to its original position after p
revolutions with respect to the angular coordinate θ1 and after q revolutions with respect to
the phase coordinate θ2. The trajectory is closed (that is, the thread joins up), because it
repeats its motion and phase after p rotations along the alveolar recirculation orbit and after
q breathing cycles (Fig. 4, Middle).

On the other hand, for 'irrational tori,' for which the ratio of frequencies (f1/f2) cannot be
expressed as the ratio of two integers, the particle never comes back to its original position.
The trajectory cannot ever close (Fig. 4, Top and Bottom).

The recirculation frequency f1 varies continuously from one torus to the neighboring tori,
whereas the breathing frequency f2 is fixed. Therefore the ratio f1/f2 varies continuously and
so any set of nested tori will contain both rational and irrational tori. The distinction between
rational and irrational tori is important, because rational (resonant) tori break into chaos
under perturbations while ‘sufficiently irrational’ tori remain as tori (although they may
deform).

3.3 Poincaré section
Because it is difficult to trace the 3-dimensional particle orbit on the curved surface of a
torus, we introduce a powerful method – the idea of the Poincaré section. This is a plot of
the points where one (or several) particle’s trajectory on the torus intersects the surface θ2 =
0; see Fig 5 (Left). In other words, it is a trace of the positions in the alveolar cross-section
of one or more particles, recorded at the beginning of each inspiration (though any other
fixed phase would do as well).

Rational torus – periodic points—A particle on a rational torus returns to its original
position after p revolutions of θ1 and q revolutions of θ2; the particle then traces the same
trajectory on the torus repeatedly. In the Poincaré section, this trajectory appears as a set of q
‘periodic points,’ which is determined by the particle’s initial position.

3A rational number is a number that can be expressed as a fraction p/q where p and q are integers and q is positive. An irrational
number is a number that cannot be expressed as a fraction p/q for any integer p, q. Irrational numbers have decimal expansions that
neither terminate nor become periodic.
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Irrational torus – quasiperiodic orbit—A particle on an irrational torus will never
come back to its original position at the original phase and therefore can never repeat the
same orbit. In this case, the trajectory on the torus is called quasiperiodic. In the Poincaré
section, this corresponds to an infinite set of non-periodic points; for any particular starting
point. The set appears to fill a circle after many revolutions of θ1 and θ2 have been
completed.

4. PERTURBED SYSTEM
Now, let us perturb the system. As described above, the perturbations include alveolar wall
motion, airflow inertia (Reynolds number), and geometric hysteresis in the respiratory
physiology. Surprisingly, the Poincaré section undergoes a dramatic qualitative change even
when the perturbation is infinitesimal.

4.1 Irrational tori
Irrational tori can be split into two categories, which determine the fate of these tori when
their system is perturbed infinitesimally. The distinction is between irrational numbers that
can be well-approximated by rational numbers whose denominator is small (which are
‘insufficiently irrational’) and those that cannot, which are classed as ‘sufficiently
irrational’. This terminology comes from number theory (Tabor, 1989).

Sufficiently irrational tori—Irrational tori for which f1/f2 is sufficiently irrational survive
infinitesimal perturbation and remain essentially intact4; although they may deform,
trajectories on them continue to resemble closed curves in the Poincaré section.

Insufficiently irrational orbits—Tori for which f1/f2 is insufficiently irrational react to
the perturbation similarly to the nearest rational torus whose denominator is small (see
below). This is unsurprising, because these tori are very near neighbors. What is more
surprising is that the smaller the denominator is for a rational torus, the greater is its region
of influence. It ‘swallows’ the neighboring insufficiently irrational tori (and the neighboring
rational tori whose denominator is large), creating instead a highly complex structure, which
we describe next.

4.2 Rational orbits
Rational tori cannot persist when a perturbation is applied. These tori, and the surrounding
insufficiently irrational tori, break and are replaced by a complex pattern of chaos
intermingled with regularity. The regularity occurs because an orbit of a particle drifts a
little bit from the original rational torus due to an applied perturbation, but the particle still
intersects the Poincaré section near the periodic points, forming a circle around the periodic
points on the Poincaré section; an example is given in Fig. 5 (Right).

Before continuing with this explanation, let us see how the perturbation, which produces
circles on the Poincaré section Fig. 5 (Right), affects the 3-dimensional torus structure. Fig.
6 gives an example for three tori. When the system is perturbed, the two sufficiently
irrational tori are persistent but the rational torus has been replaced by a tube-like object that
winds around the inner torus but is encased by the outer torus. Fig. 7 shows the same effect
for five tori.

4These persistent tori are guaranteed by KAM (Kolmogorov-Arnol’d-Moser) Theory (Tabor, 1989; Lichtenberg & Lieberman, 1992)
and its extensions, provided that the perturbation is sufficiently small. Typically, for alveoli, the perturbation is small enough (Laine-
Pearson & Hydon, 2006; Henry, Laine-Pearson, & Tsuda, 2009).
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4.3 Direction of particle motion on the closed curves
Newly developed tube-like structures (a decadence of rational tori) are bounded by
deformed sufficiently irrational tori. Now, let us consider the behavior (frequency and
direction) of rotation of those inner/outer irrational tori and the original rational torus
appearing in Fig. 5. Recall that the alveolar recirculation frequency increases toward the
center of an alveolus. Therefore particles on the inner irrational torus rotate the fastest; those
on the rational torus rotate more slowly, and those on the outer irrational torus rotate the
slowest. Suppose for definiteness that all particles are rotating counter-clockwise. If we look
at the frequency differences from the rational torus, particles on the inner irrational torus
appear to rotate counterclockwise, while those on the outer irrational torus rotate clockwise
(see Fig. 8, Left). Considering the opposing directions of the inner/outer irrational tori, as a
result, particles on each of the closed curves that surround a periodic point will rotate
clockwise. It is important to bear in mind that the apparent direction of motion on the
Poincaré section is merely a pale reflection of the complex behaviour of trajectories in 3-
dimensional space. Nevertheless, it provides a snapshot that enables us to deduce the
existence of chaos, as we now explain.

4.4 The existence of unstable points
The points around which particles appear to rotate on closed curves (in the Poincaré section)
are called ‘elliptic fixed points’ (Fig. 8, Left). These points are Lyapunov stable; roughly
speaking, this means that any trajectory that starts near such a point remains near to it for all
time5. Now, let us consider the flow of the arrows, i.e., the local direction of particle
movement, in Fig. 8. By tracing the direction of the arrows for the closed curves around the
stable points, it follows that another set of points that are in between the elliptic points must
exist. This is because all of the particles on closed curves in a single perturbed orbit rotate in
the same direction (‘clockwise’ - in this example). Consequently, as the flow is continuous,
there is a meeting-point between the flows that rotate about each elliptic fixed point6 (Fig. 8,
Right). Each meeting-point is called a ‘hyperbolic fixed point’; in Hamiltonian dynamical
systems, such points are unstable, because each one has a direction in which the flow is
directed away from it. As we shall see, hyperbolic points are the origins of Hamiltonian
chaos.

4.5 Hyperbolic points, lobes and heteroclinic tangles
We now focus on the phenomena that occur close to a hyperbolic point, H. For the sake of
our discussion, consider two hyperbolic points (H1 and H2) in close proximity and the
elliptic point (E) that lies between them (Fig. 9a). First, notice the direction of flow near
each H; the flow goes into and comes out of H. The curves that point toward H1 and H2 are
called ‘stable curves (S)’, and the curves that point away are called ‘unstable curves (U)’.
The stable and unstable curves are orbits, so if a particle lies on such a curve at any instant,
it remains on the curve forever.

The question arises: how do these stable (S) and unstable (U) curves intersect each other?
We follow the nice explanation given by Nicolis & Prigogine (1989); complementary
explanations can be found elsewhere (Tabor, 1989; Ottino, 1989; Lichtenberg & Lieberman,
1992). One possibility would be that S and U join smoothly, forming an arc between H1 and
H2 7. However, this is a rather special8 case and only occurs strictly for integrable9 systems.

5For a strict definition of this type of stability, see page 101 of Ottino (1989).
6These points, and the elliptic points, are guaranteed by the Poincaré-Birkhoff Fixed-Point Theorem (Tabor, 1989; Lichtenberg &
Lieberman, 1992).
7This is called a ‘heteroclinic orbit’ or ‘heteroclinic connection’; see Fig. 10.
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Because our perturbed system is a near-integrable (and thus nonintegrable) system, this
highly special case should be disregarded.

The typical behavior of most types of near-integrable systems was discovered by Poincaré
and studied later in some detail by Birkhoff and Smale: the stable (S) and unstable (U)
curves cross at a point (X) called a ‘heteroclinic point’. Furthermore, they intersect not just
once, but infinitely many times, as we now explain. We use the notation Xn to mark all
intersection points in the Poincaré section (Figs. 9b–9g); the subscript n denotes the order
along S and U in which they occur. After each successive breathing cycle, any particle that
lies on the stable curve S in mapped to another point on S .that is closer to H2. Therefore
there is a sequence of points X1, X2, X3, …, Xn that lies on the stable curve (S) and
converges to H2 as n approaches infinity. Similarly, by looking backwards in time (like
playing a movie backwards), one generates a sequence of points X−1, X−2, X−3, ….X−n, that
lies on the unstable curve (U) and converges to H1 as n approaches infinity. Fig. 9b
illustrates this. [Note: do not assume that a particle at X1 is mapped to X2, which is mapped
to X3, etc. As we explain in our discussion of lobes (see below) it turns out (typically) that
each intersection point is mapped to the next point but one, so that X1 is mapped to X3, etc.]

So far, we have looked only at the evolution of particles that lie on S and U separately. To
see why there must be infinitely intersections between these curves, suppose that there is one
intersection X (Fig. 9c); we shall regard this as the point X1. As the heteroclinic point X1
belongs to U and S simultaneously, a particle on it moves after one breathing cycle to
another point that belongs to both U and S; the process is repeated with each successive
breathing cycle. The same is true for all other heteroclinic points. Therefore the unstable
curve (U) must repeatedly intersect the stable curve (S) at X2, X3, …, as shown in Fig. 9d.

Similarly, one can retrace back in time to see that the stable curve (S) intersects the unstable
curve (U) at the points X−1, X−2, and so on (Figs. 9e, 9f). Furthermore, Xn must converge to
the hyperbolic points H2 (respectively H1) as n approaches positive (respectively negative)
infinity, suggesting that there must be infinite numbers of heteroclinic points near to the
hyperbolic points H1 and H2 (Fig. 9g).

A second set of heteroclinic points is generated by the other U and S curves emanating from
H1 and H2 that lie beneath E. Fig. 9h10 shows both sets of curves and heteroclinic points.
There now appears an overlap of curves near the two hyperbolic points. This ‘tangle’ of
curves will be explained in more detail below. In 1899 Poincare attempted to draw a similar
figure and remarked that: “One is impressed by the complexity of this figure that I will not
even try to draw” (Poincare, 1899).

The crossing of unstable and stable curves creates areas called lobes, as shown in Fig. 9h;
the area of each alternate lobe is conserved11. Roughly speaking, lobe area is conserved
because the flow is incompressible. Each lobe is bounded by the curves U and S; if one

8Another possibility would be that the S and U from the same point connects back to itself (it creates a loop). This is called a
‘homoclinic orbit’ or ‘homoclinic connection’. However, again, this is a rather special case, and only occurs in integrable systems,
thus should be disregarded. The third possibility could be that the S and U do not connect to anything – they extend to infinity. This
last possibility also has to be disregarded for periodic systems such as ours. See Fig. 10 for illustrations.
9Loosely speaking, the term ‘integrable’ implies that a Hamiltonian system is solvable in principle; however, it does not guarantee
that the calculations will be manageable! Classical integrable systems exhibit regular motion, whereas nonintegrable systems have
chaotic motion. Therefore integrability is an intrinsic property and not just a matter of whether a system can be explicitly integrated in
exact form.
10We are fully aware of the fact that a real aerosol particle is subject to stochastic bombardment by neighboring gas molecules (e.g.
Brownian motion), which gives rise to diffusion. The closer two particles’ trajectories come to each other, the more rapidly will
diffusion blur their independent existence. Therefore, a structure like Fig 9h is not likely to be seen in the real alveoli. However, with
Fig. 9h, we are showing the underlying flow phenomena which one needs to consider when dealing with diffusive particles. The
weaker the diffusion is, the longer is the time during which the underlying flow structure will be visible.
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takes phase into account, these curves form the boundary of a rope-like region that winds
around the torus. No particle can cross the boundary, because once a particle is on a stable or
unstable curve (in any Poincaré section, for any phase) it remains there forever. The
particles that are in a given lobe remain in every lobe that is formed by later intersections of
the initial lobe’s ‘rope’ with the Poincaré section. As the fluid is incompressible, each of
these lobes has the same area.

Typically, the above sequence of lobes constitutes the alternate lobes, so there are usually
two such sequences intertwined. The reason for this is that the direction of flow close to the
stable and unstable curves is preserved. For instance, if the flow is clockwise close to S (and
therefore anticlockwise close to U) in one lobe, these directions are reversed in both of the
adjacent lobes. The directions in successive lobes alternate, whereas in each ‘rope,’ the
particle flow is in a single direction close to S (or U). Thus each lobe is mapped to the next
lobe but one. We have already seen that lobe area is preserved at every successive
intersection of the ‘rope’ with the Poincaré section, so we must conclude that area is
preserved in every alternate lobe. (A helpful aid is to think of any pair of adjacent lobes as a
single unit; this is mapped to each successive pair, preserving the lobe areas and the
directions of flow of the original pair at each stage.) The argument above also explains why
a particle at X1 is mapped to X3 rather than X2.

The preservation of lobe areas has an important consequence: because the distance between
the X points becomes shorter and shorter as the heteroclinic points approach H1 and H2, the
lobes have to be thinner and thinner, as well as more and more stretched to maintain equal
areas. The overlapping of lobes seen in Fig. 9h becomes more and more complicated as the
lobes are stretched further and further. Specifically, any part of a lobe that intersects another
lobe (with the same directions) does so not just once, but for ever. This is a very complex
tangle! Chaotic motion occurs in a tangle12 because the lobes are repeatedly stretched,
squashed and folded, rapidly separating the trajectories of particles that began as neighbors.
This mechanism is reminiscent of the action of a salt water taffy pulling machine. It is
commonly accepted that the existence of heteroclinic points is diagnostic of chaos (Ottino,
1989).

4.6 Self-similarity
To explain the concept of ‘self-similarity’ we return to the tube-like objects of Fig. 6 and
Fig. 7. Recall that after perturbation the rational and insufficiently irrational tori do not
persist. Instead, the periodic points of rational tori are the seeds for elliptic points and
hyperbolic points. Around the elliptic points, we have seen that small circles can form in
Poincaré sections and that these circles relate to 3D tube-like objects that are bounded by
surviving sufficiently irrational tori.

The small circles are reminiscent of the concentric circles seen for the Poincaré sections of
unperturbed tori. This is not a coincidence. To understand why this occurs, we must recall a
few details.

Note 1: For a sufficiently small perturbation, most of the tori will survive (these are the
sufficiently irrational tori) 13.

11See page 140 of Ottino (1989) for more details. Our explanation is simplified for clarity; a more complete analysis of transport
mechanisms involving lobes can be found in Horner et al. (2002) and Wiggins (1992)
12It is called a ‘Smale horseshoe’.
13This is due to KAM Theory (Tabor, 1989; Lichtenberg & Lieberman, 1992).
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Note 2: On perturbation, the rational (and insufficiently irrational) tori will be replaced by a
set of alternating elliptic and hyperbolic fixed points14.

On adding an infinitesimal perturbation to a set of concentric circles, Note 1 guarantees that
most will survive. Those that do not survive are replaced according to Note 2, which
acknowledges that elliptic points will form. As these points are stable points, circles can
form in a neighborhood of each elliptic point.

Now, while the system is being perturbed, these newly created elliptic points and their
circles are also subject to the perturbation. Circles that are sufficiently irrational are
guaranteed to persist according to Note 1; these circles relate to the tube-like objects shown
in Fig. 6 and Fig. 7. Those that would have been rational or insufficiently irrational will be
taken care of by Note 2 – they are replaced by a set of alternating elliptic and hyperbolic
points. Around these elliptic points, a set of circles can form and so on.

In principle, the process of applying Note 1 and Note 2 simultaneously can be done
infinitely many times (i.e. on all scales/magnifications). This means that we could zoom into
an island (this is a name commonly used for the region around an elliptic point) and see that
it is partly made up of chains of smaller islands. We could then zoom into one of these
smaller islands to find, again, that these are partly made up of even smaller chains of islands
(Fig. 11). This phenomenon appears on all scales and so we describe such a behavior as
‘self-similar’. (For the 3D picture, imagine that the tube-like objects will be wound by finer
tubes, and these tubes will be wound by even finer tubes, and so on and so forth. One could
try constructing such a structure by winding a rope around a rubber ring and then winding a
piece of string around the rope, and then winding a thread around the string. Even this
demonstration would only hint at the level of complexity occurring.)

Therefore, when the system is perturbed, an intricate re-organization occurs. Chaos is seen
on all scales, because each time elliptic points are generated, so too are hyperbolic points.
But this is a well-organized chaos – it is trapped by regularity15.

We finish this subsection with an example of organized chaos that occurs in a simple model
that combines recirculation in a two-dimensional cavity with oscillating wall motion. Fig. 12
shows Stokes flow in the cavity; each color represents a different particle trajectory. The
left-hand figure shows the paths that particles follow when the walls are stationary. The
right-hand figure is a Poincaré section that illustrates how particle paths change when the
walls oscillate very slightly. On comparison of the left and right figures, some of the original
closed curves persist after perturbation but have deformed, while others have broken and are
replaced by chaos. Additional trajectories have been added to the right-hand figure for
further detail – they show the features that are universal in perturbed Hamiltonian systems,
namely chains of islands surrounded by seas of chaos.

4.7 What happens when particle motion is not two-dimensional
As we stated in the Introduction, a major simplifying assumption in the above explanation is
that in the recirculating flow, each particle's motion is restricted to a two-dimensional plane.
In reality, however, the flow in cavities such as alveoli is three-dimensional. The cross-plane
motion is slow relative to the recirculation, and therefore it is reasonable to regard this as an
extra perturbation to the case we have already considered. Just as we created a Poincaré
section for the two-dimensional motion in a single plane, we can do the same for the whole
alveolus, taking a snapshot of particle positions once per breathing cycle. Because the fluid

14This is due to the Poincaré-Birkhoff Fixed-Point Theorem (Tabor, 1989).
15This is typically described as ‘Hamiltonian chaos’.
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is incompressible, this process creates a volume-preserving map, called a Liouvillian map,
which takes each point in the alveolus to its position one breath later.

In three spatial dimensions, the circles that we described in the base model are in fact cross
sections of cylinders (with the usual allowance for these to be continuously deformed).
Consequently, within the region where recirculation occurs, the base model without cross-
plane flow is an example of an integrable two-action, one-angle Liouvillian map. The effects
of perturbations on such maps have only recently begun to be understood; see Cartwright et
al. (1996) for an accessible account. Briefly, the perturbations due to cross-plane flow, wall
motion, etc., cause a particle to stay on a torus in the alveolar space for a while, until it
encounters a region of chaos (produced by resonance), when it is able to move to another
torus. So a typical particle will alternately exhibit regular and chaotic motion. This type of
chaotic mixing is much more effective than when each particle is confined to a plane; it
allows particles to move efficiently across the whole alveolus.

5. CONCLUSIONS
The essential structure of the pulmonary acinus is a collection of air pockets where airflow
patterns form. When an alveolus is sufficiently deep and a flow passing by its opening is
sufficiently strong, recirculation can occur. The theoretical basis for the existence of alveolar
chaotic mixing is essentially the complex interplay between this alveolar recirculation and
cyclic breathing as we have explained above. From this, therefore, a couple of fundamental
conclusions can be readily drawn. (1) There are several hundred million alveoli in human
lung (e.g., Weibel, 1963; Ochs et al., 2004) and, according to our recent calculations (Tsuda,
Henry, & Butler, 1995, 2008; Henry & Tsuda, 2010), most of the alveoli have recirculating
flow. This means that as we breathe, hundreds of millions of alveoli in our lung act as a
mixing generator. While each individual unit may be small, the cumulative effect of this
enormously large number of mixers is likely to be significant. (2) We have shown, through
our past studies (summarized in Tsuda, Henry, & Butler, 2011), that alveolar recirculation is
intrinsic to the system. Some lung diseases affect this; for example, enlarged
emphysematous alveoli have different alveolar recirculating flow patterns to healthy alveoli
(Tsuda, Henry, & Butler, 2011). (3) In the first few years of life, the alveolar shape may
have an even more significant role in determining particle transport. As the lungs develop,
not only does the number of alveoli increase, but also the shape of each alveolus changes
dramatically. Newborn babies have shallow saccular alveoli, in which recirculation does not
occur. By the age of two, many of the alveoli are sufficiently deep for recirculation to occur.
Consequently there are dramatic changes in alveolar flow and particle mixing as the lungs
develop, particularly over the first two years of life.
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Highlights

• Chaotic mixing is a potent mechanism in determining the transport of inhaled
particles in the pulmonary acinus.

• The key to understanding chaotic mixing is to identify two types of frequency in
the system, each of which is induced by a different mechanism; their interplay
creates chaos.

• The paper explains why chaotic mixing of particles needs to occur in the
pulmonary acinus, with instructive illustrations but without any equations.

• The paper also explains why self-similarity occurs in the alveolar system.
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Fig. 1.
Schematic of the recirculating alveolar flow pattern calculated in an asymmetric alveolar
duct model, which is driven by flow past the alveolar entrance [modified from Tsuda et al.,
1995].
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Fig. 2.
Nested tori; the minor circles (I1, θ1) represent different alveolar recirculation orbits and θ2
is the phase in the breathing cycle, whose period is T.
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Fig. 3.
The torus surface; Left: an example of a particle path on a torus; Right: the minor and major
circles that are used to construct a torus surface.
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Fig. 4.
Rational orbit with p = 2 and q = 3 (Middle, radius is IB) and two irrational orbits (Top and
Bottom, radii are IA and IC respectively); IA>IB>IC.
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Fig. 5.
Two Poincaré sections at θ2= 0; Left: a cross-section of three unperturbed tori (the periodic
points – shown as dots – on the rational torus – shown as thin-line circle – denote where a
particle’s trajectory has passed in this plane); Right: after applying the perturbation the
rational torus (thin-line circle in left-hand figure) is replaced by a new structure – a very
simple schematic of this structure is illustrated by a cross-section of three small circles.
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Fig. 6.
Top: the three tori of Fig. 5 before perturbation [we denote the red (outer and inner) ones as
irrational and the gray (middle thin) one as rational) with cross-section; Middle: the three
tori after perturbation (the gray torus has been replaced by a blue tube-like object that winds
around the inner red torus but is encased by the outer red torus) with cross-section; Bottom:
stripping away the outer torus shows the tube-like object.
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Fig. 7.
Top: five tori before perturbation (we denote the green, red and yellow tori as irrational and
the purple and blue tori as rational) with cross-section; Middle: the five tori after
perturbation (the purple and blue tubes replace the tori) with cross-section; Bottom Left:
stripping away the outer torus shows the tube-like objects; Bottom Right: full view of the
purple tube wound around the red torus.
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Fig. 8.
Left: the direction of closed curves – solid outer and inner circles are from irrational tori (IT)
and the dotted circle comes from a rational torus; Right: in between the circles that surround
elliptic fixed points, other points must exist to balance the direction of movement (of
particles) – the points lying at the center of the crosses are hyperbolic fixed points.
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Fig. 9.
This is the interaction of stable and unstable curves.
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Fig. 10.
These are the possible scenarios for integrable Hamiltonian systems – curves with arrows
pointing towards H are stable, those pointing out are unstable; Left: heteroclinic orbit (or
heteroclinic connection); Middle: homoclinic orbit (or homoclinic connection); Right: the
curves lead off to infinity.
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Fig. 11.
the crosses denote hyperbolic points whereas the groups of small concentric circles are each
centered on an elliptic point (it is customary to describe each small circle group as an
‘island’). This illustration shows the self-similarity of the perturbed system: zooming into an
island shows that it is made up of regular curves, islands (appearing in a neighbourhood of
elliptic points) and intermingled with chaos (originating from around the hyperbolic points)
but on a smaller scale. The zooming in can be repeated for the islands on this smaller scale
too. In principle, this zooming into islands can be done on all scales.
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Fig. 12.
Poincaré sections of particle transport; each color represents a different trajectory. Left:
Stokes flow in a cavity – no perturbation present and seven particle paths shown. Right: The
addition of a perturbation by wall motion creates islands in a sea of chaos; eight more
particle paths have been added to the original seven for further detail. Similar figures can be
seen in Laine-Pearson & Hydon (2006).
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