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Abstract
We report a summary of recent developments and current status of our team’s efforts to image and
quantify in vivo nonlinear strain and tissue mechanical properties. Our work is guided by a focus
on applications to cancer diagnosis and treatment using clinical ultrasound imaging and quasi-
static tissue deformations. We review our recent developments in displacement estimation from
ultrasound image sequences. We discuss cross correlation approaches, regularized optimization
approaches, guided search methods, multiscale methods, and hybrid methods. Current
implementations can return results of high accuracy in both axial and lateral directions at several
frames per second.

We compare several strain estimators. Again we see a benefit from a regularized optimization
approach. We then discuss both direct and iterative methods to reconstruct tissue mechanical
property distributions from measured strain and displacement fields. We review the formulation,
discretization, and algorithmic considerations that come into play when attempting to infer linear
and nonlinear elastic properties from strain and displacement measurements. Finally we illustrate
our progress with example applications in breast disease diagnosis and tumor ablation monitoring.
Our current status shows that we have demonstrated quantitative determination of nonlinear
parameters in phantoms and in vivo, in the context of 2D models and data. We look forward to
incorporating 3D data from 2D transducer arrays to noninvasively create calibrated 3D
quantitative maps of nonlinear elastic properties of breast tissues in vivo.

I. INTRODUCTION
Excellent reviews of the early history of elasticity imaging are presented elsewhere in this
Special Issue and will not be presented at length here. We do, however, consider our efforts
to be an extension of work dating back to the early 1980’s [1]–[3] where tissue mechanical
properties were inferred by using ultrasound signals to monitor displacements resulting from
physiological stimuli [1], [2] or compensating for undesirable physiological motion among
multiple images [3]. Our work also builds on the first attempts to form strain images [4]
which was facilitated by the improvements in hardware over that used by the earlier
investigations. We also build on the early attempts to reconstruct elastic modulus
distributions from displacement estimates (combined with other boundary conditions
information) such as the work from Kallel and Bertrand [5].

Several other research groups have taken steps to exploit the potential of nonlinear elasticity
imaging. Skovoroda and coworkers pioneered this direction a few years ago [6]–[8], until
Skovoroda’s untimely death. They focused largely on studying changes in strain contrast
with overall applied strain. Their treatment of quantitative reconstruction [6] accounts for
large deformation, but assumes a linear (neoHookean) stress-strain law. Nitta and Shiina [9],
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on the other hand, present “nonlinear elasticity” images that show tissue nonlinear
stiffening. These represent the slope of the Young’s modulus with strain, based on two
assumptions not made in Skovoroda’s work: stress is uniaxial and constant, and the stress-
strain law is quadratic. Thus their images may be thought of as rescaled strain-slope images.

Another approach involves nonlinear propagation of shear waves [10], [11]. A key challenge
of this technique is overcoming the strong attenuation of shear waves which significantly
dampens nonlinear effects. Finally, the recent work by Samani and coworkers [12]–[14]
deserves mention here. These lay a strong foundation to motivate spatial reconstruction of
nonlinear elastic properties.

This review highlights the progress of the collaborative efforts among the coauthors and is
not an extensive review of the field of elasticity imaging in general or even of the more
narrow field of quasi-static elasticity imaging. The manuscript is, in part, a historical
overview of our work. But more importantly, it provides a background for why we are
approaching the elasticity imaging problem in this particular manner.

In the following section we describe our work in studying methods for inducing quasi-static
deformation. Section III reviews our efforts in displacement estimation from ultrasound
echo signals and the related system development efforts including the development of a
reliable metric to judge the “quality” of strain images in unknown media (human tissues).
High quality displacement estimates are a required input into our methods of estimating the
modulus distribution and those methods are reviewed in Sections V and VI. Some results of
our initial applications of these techniques are reported in Sections VI and VII followed by
some concluding remarks.

II. INDUCING QUASI-STATIC DEFORMATION
Both single step or piece-wise slow but continuous – potentially cyclic – deformations have
been used to induce motion for elasticity imaging. However, in a practical sense, we assume
as a first approximation that tissue being imaged remains in quasistatic equilibrium before
and after deformations are applied. Quasi-static deformation is likely the most conceptually
simple method of inducing motion for elasticity imaging. It is simple to model in
computational analysis and to perform in carefully controlled laboratory experiments (see,
for example, [15] and [16]). Uniaxial motion is desirable since our typical motion tracking
methods (see Section III) are most sensitive to motion along the acoustic beam. The acoustic
pressure field has amplitude and phase modulation in the direction of the acoustic beam but
varies only in amplitude in the perpendicular (azimuthal and elevational) directions. The
lack of phase information, along with the more coarse spatial sampling in the perpendicular
directions, greatly reduces the accuracy and increases the variance of displacement estimates
perpendicular to the acoustic beam [17]. Therefore, most methods for inducing motion in
quasi-static elastography attempt to create uniaxial deformation parallel to the beam line.

Although laboratory fixtures, particularly those with stepper motors, make controlled
deformations of simple materials (e.g., phantoms) quite easy, most clinical applications of
quasi-static compression techniques require freehand scanning (typical of clinical ultrasound
imaging exams). For example, pressing on a breast with an ultrasound transducer can
produce unpredictable motion that must be monitored to control. Obtaining tissue motion
that approximates the desired uniaxial deformation using freehand scanning requires real-
time feedback to the user to control the direction of transducer motion. This requirement
created the need for real-time displacement tracking algorithms integrated into the imaging
system as described in the next section. A key finding from our initial work was that a strain
image frame rate of at least 4f/s was required to provide sufficient feedback to the user to
control in vivo motion and obtain consistent high quality strain images [18].
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III. DISPLACEMENT AND STRAIN ESTIMATION
A significant part of our research has focused on efforts to develop methods for real-time
motion tracking for in vivo tissues during freehand scanning in parallel with efforts to
develop methods to judge motion tracking accuracy especially for in vivo applications
where “ground truth” is unknown. Developing a real-time strain imaging system that offers
instant feedback to the operator (i.e. high frame rate and high quality strain images) is
essential for clinical use. Otherwise, obtaining consistent high quality elasticity information
can be quite difficult [19].

A. Motion Tracking
With few exceptions [20]–[22], the vast majority of motion tracking techniques using
ultrasound signals are correlation based. Therefore, echo signal decorrelation limits their
ability to accurately track motion. Echo signal decorrelation due to gross motion/
deformation could be reduced by signal processing such as temporal stretching [23], [24] or
companding [15], [16]. Global companding or stretching of the post-compression echo
signal by a fixed stretch factor can compensate for gross motion/deformation but requires an
estimate of the applied compression and may only work well for relatively uniform media.
Although adaptive stretching [24] that relies on varying the stretch factor according to the
local strain can be done for inhomogeneous media, it is likely too computationally intensive
to produce real-time or near real-time elasticity images in a clinical setting.

Early work has demonstrated that 1D tracking may fail to correctly track motion with
deformations as small as 0.6% axial strain [16]. To achieve real-time image formation while
maintaining acceptable image quality, the strain imaging algorithm must be not only
computationally efficient but also robust enough to track complex in vivo tissue motion at
least in 2D. Our group developed a scheme now known as the “guided search strategy”.

This strategy enables multi-dimensional motion tracking for imaging large (e.g. 1%) tissue
deformation in real-time [25]. We selected the framework of block-matching algorithms as
our basis for algorithm implementation because of its simplicity and flexibility for multi-
dimensional motion tracking. The basic assumption of the guided search strategy is that an
initial exploratory search can first be applied to selected/pre-determined locations and then
certain prediction strategies may be employed to advance the estimation process from one
point to its neighbors (e.g. as simple as a row-to-row or “axial” guidance [25]) assuming
tissue motion is continuous. Using neighboring displacements as guidance, the predictive
search reduces the computational demands by about 90% [25] by limiting the search range
to as small as one radiofrequency (RF) sample in each direction. The method typically
works well with data from modern clinical ultrasound imaging systems because the spatial
sampling interval (within the image plane) is small compared to the correlation length of the
imaging system point spread function (adjacent samples are highly correlated – an accurate
displacement estimate for any sample is a good prediction of the displacement for its
immediate neighbors). The unfortunate downside of the guided search strategy is the
potential cascading errors, i.e. displacement estimate errors may provide incorrect guidance
and then create downstream errors through bad guidance. One of the keys for a guided
search is to make sure that large tracking errors due to false correlation peaks (“peak
hopping errors” [26]) are eliminated. After iterations of designing ad hoc error detection and
correction schemes [25], [27], we cast this effort into a more rigorous mathematical
framework known as motion regularization.

The basic idea is that “peak hopping” errors randomly occur and thus do not satisfy motion
continuity constraint when tissue is deformed as a continuum [28], [29]. To regularize the
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estimated deformation field, motion tracking can be modeled as an optimization problem
using a cost function combining signal correlation and a smoothness constraint as follows,

(1)

where α is an adaptively chosen scale factor, Ec is a measure of ultrasound signal similarity
and Es is the a measure of local motion smoothness. Some early investigations into this
approach [30]–[32] were implemented as iterative techniques and are therefore too slow to
meet our goal of producing real-time strain images. Thus, we [28], [29], among others [33],
[34], implemented an optimization method named the Viterbi algorithm [35] to more
efficiently solve Eqn.(1). Our initial work [28] attempted to use regularized motion tracking
(i.e. Eqn.(1)) for the central column of the region of interest (ROI) followed by a guided
search utilizing displacement vectors obtained along the central column (hereafter referred
to as the “lateral-guidance” approach). Later on, we extended the use of regularized motion
tracking onto an evenly-spaced coarse grid covering the entire ROI (hereafter referred to as
the “multi-grid approach”) in conjunction with multi-resolution motion tracking. We found
that the multi-grid approach [29] performed significantly better in numerous tests at the
expense of a slower frame rate (approximately a factor of 9). Because of that reduction in
computational efficiency, the multi-grid algorithm is only a near real-time algorithm (1–2
frames/second). Furthermore, our work [29] has also explored how to adjust the relative
contributions to the overall cost function (Eqn. (1)) between the signal correlation and the
smoothness constraint by using different forms of the smoothness function to apply various
levels of the motion continuity constraint. Although it is still under development, we think a
new direction for motion tracking may be “organ-specific” system design. For instance, for
motion tracking around breast lesions, motion continuity is expected and therefore should be
enforced. However, in situations where irregular motion can be expected, such as when
large vessels are present, when there is an inter-organ boundary (e.g., liver, kidney and
prostate) or when there is an intra-organ cavity (e.g., uterine cavity and common carotid
artery), only minimal constraints are needed.

The new motion tracking algorithm reported by Chen and colleagues [36] captured our
attention. They introduced a remarkably simple but very effective guided search strategy
where a sorted list was used to ensure that the highest quality initial displacement estimates
(hereafter referred as to “seeds”) obtained from the exploratory search carry priority in
guiding subsequent motion tracking. We quickly realized that, in Chen’s approach [36], a
“brute-force” search was used to generate initial seeds and therefore the underlying
reliability of those seeds is unknown. Using a regularized motion tracking method and
additional tests to improve the quality of, and confidence in, these initial seeds (hereafter
referred to as the “hybrid method”), we should be able to improve the outcome of their novel
guided search scheme. Our initial results [37] show that this new hybrid method performs
comparably to the multi-grid approach but offers significantly higher frame rates (a factor of
8 for 1% frame-average strain).

In an example using a tissue mimicking phantom [38], shown in Figure 1, it is easy to see
that 1D tracking fails to correctly track motion in a tissue-mimicking phantom undergoing
axial deformation of 1.5% strain, whereas the 2D tracking performs very well with only
occasional mistakes (i.e. “peak-hopping” errors). Although the 2D “axialguidance”
algorithm [25] is computationally efficient, it sometimes suffers from the “cascade error
artifact” which in this image starts at the top right corner and propagates through the entire
axial extent of the image. In our testing, the new hybrid approach appears to be a good
balance between the speed and the image quality.
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Volumetric ultrasound data acquisition is now available from clinical and prototype imaging
systems to form 3D strain images [39]–[42] (see Sec. IV). Consequently, it is logical to
anticipate that the availability of volumetric echo data and subsequent full 3D motion
tracking will significantly reduce echo signal decorrelation induced by tissue motion/
deformation in the elevational direction that cannot be accurately tracked in 2D echo data.
For instance, initial results [42] using data acquired by a 2D CMUT prototype transducer
[43] on a tissue-mimicking phantom have demonstrated that full 3D tracking can provide
significantly higher quality strain images (measured by the contrast-to-noise ratio and the
motion tracking accuracy) compared to other 2D or pseudo-3D tracking strategies.

Since ultrasound echo data are discretely sampled, variants of the classic block-matching
algorithm described above likely lead to the correct RF sample-level locations between the
pre- and post-deformation echo data. To obtain displacements with the sub-sample accuracy
in the framework of a block-matching algorithm, the most straightforward approach is to use
an interpolation function to predict the “true” correlation peak from a discretely sampled
correlation function. Since the underlying correlation function is not known, any adopted
interpolation function could lead to biased estimates for the sub-sample displacement. In the
literature, the grid slopes algorithm [44] has shown to be relatively unbiased in comparison
with the use of other conventional interpolation functions such as cosine [45], cubic spline
[44] and parabolic [46] functions.

In most ultrasound strain imaging systems, the displacements perpendicular (lateral) to the
ultrasound beam are estimated only because they are necessary for accurate motion tracking
(see Fig. 1). Given the time constraints of real-time imaging, axial and lateral sub-sample
displacements are commonly obtained through two separate interpolations. Work from
several groups has independently shown that coupling of the sub-sample estimation for the
axial and the lateral directions can significantly improve the accuracy of sub-sample
estimation both for the axial and lateral directions. Konofagou and Ophir [47] proposed an
approach where both axial and lateral displacements, estimated separately during the sub-
sample estimation, can be used to re-correlate ultrasound echo signals that are iteratively
compensated for motion using the most recent axial and lateral displacement estimates. In
recent work, Brusseau et al. [48] mathematically formalized the local 2D motion/
deformation as an affine transformation and then jointly solved all parameters including the
axial and lateral translations using a constrained nonlinear programming technique. Ebbini
[49] elegantly proved that, in the vicinity of the true correlation peak, magnitude vectors of
the correlation function are orthogonal to its zero-phase contours. With this observation, he
developed a phase-based tracking method to simultaneously determine sub-sample
displacements. A novel method developed by Viola and Walker [50] provides an alternate
approach to the sub-sample estimation problem. They first use 1D cubic splines to define a
continuous representation of the reference 1D echo signal in time domain, then determine
the 1D displacement with sub-sample accuracy by minimizing an analytic matching function
between the reference and the target (pre- and post-deformation) signals. Viola and Walker
have extended their method for multi-dimensional tracking [51] and this extension makes
their method a coupled sub-sample estimated algorithm as well.

We are developing a simple alternative to couple the axial and the lateral sub-sample
estimation. It is worth noting that all four methods mentioned above were designed as
general purpose displacement estimation algorithms for multi-dimensional tracking without
explicit constraints of either global or local motion continuity. Consequently, these
approaches could suffer from “peak-hopping” errors when the deformations are large (as in
quasi-static elasticity imaging). However, our sub-sample estimation method (described
below) is based on the hybrid motion tracking algorithm described above, so it would be less
likely to contain “peak-hopping” errors. More specifically, to simultaneously calculate sub-
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sample estimates for a given displacement vector whose integer values are known, we first
calculate a correlation function with improved spatial resolution (e.g. 0.02mm [lateral] ×
0.002mm [axial]) in the vicinity of the correlation peak and then estimate an iso-contour
near the correlation peak of this up-sampled correlation function. Modeling the ultrasonic
imaging system with linear systems theory (e.g. [52]), suggests the shape of the iso-contour
is elliptic and the center of the iso-contour is the true correlation peak. Consequently, to
obtain the axial and lateral sub-sample estimates, we fit the iso-contour to an ideal ellipse to
obtain its center coordinates. Conceptually, extending this approach to 3D motion tracking,
fitting an ellipsoid to the 3D iso-surface simultaneously estimates sub-sample displacements
in all three directions. More details of the implementation and validation of this method are
forthcoming [53]. Furthermore, during the calculation of the up-sampled correlation
function described above, all search kernels from which the local correlation values are
calculated can be deformed to locally compensate for known deformation (e.g. 1D
compressive loading and shearing).

Results in Fig. 2 demonstrate how coupled sub-sample estimation could improve both the
axial and lateral displacements obtained by the hybrid approach using quadratic
interpolation versus the coupled sub-sample estimation. The general appearance of the axial
and lateral displacement and axial strain images obtained with the new sub-sample
estimation method is smoother compared to results from the hybrid approach. It is
interesting to note that the lateral displacement image using the new coupled estimation
method seems more consistent with landmarks visible in the B-mode image (see Fig. 1), i.e.
the gross appearance of the target. Although this new coupled sub-sample estimation
algorithm is numerically intensive, all sub-sample estimations are entirely independent once
their integer estimates are known. Thus, this coupled sub-sample estimation algorithm [53]
may be ideally suited for parallel processing using graphic processing units (GPUs).

B. Strain Estimation
Although considerable effort has been devoted to improve the accuracy of motion tracking
as described above, it is inevitable that displacement estimates contain noise. Calculation of
local strains (i.e. gradient of the displacement field) through a simple finite difference
scheme, such as a two-point forward scheme, acts like a high-pass filter and amplifies noise
in the estimated displacements. The resultant strain image is often too noisy to be clinically
useful. To improve the quality of strain estimation, researchers [54] investigated the use of
wavelet-based methods to reduce the displacement noise prior to the strain estimation.
Wavelet shrinkage, a spatially adaptive image denoising method, can be employed to
remove Gaussian uncorrelated noise while retaining discontinuity details of the
displacement data. To reduce the apparent noise in strain images, another simple method is
to average strain estimates over time [23]. However, simple averaging trades either temporal
or spatial resolution for the improved strain signal-to-noise ratio.

The most popular strain estimator is a least-squares estimator [55]. This approach estimates
1D local strains by linearly fitting local 1D displacements within a spatial window to a line
whose slope is the calculated strain value. Luo et al. [56] presented a unified approach using
the concept of a low-pass digital differentiator to study the tradeoffs among several known
strain estimators. In a more general mathematical framework, the numerical differentiation
can be treated as an optimization problem to obtain a strain curve s(x) as follows [57],

(2)

where x is one of the dimensions of the object being imaged (for example, depth along the
acoustic beam when estimating ‘axial’ strain), R(s(x)) is a regularization term that penalizes
irregularity of the estimated strain s(x), β is a regularization parameter, d(x) is the integrated
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displacement from the starting point up to L(x) and, A(s(x)) is an antidifferentiation operator
defined as follows [57],

(3)

The process of obtaining a regularized strain curve s(x) balances the regularity of the strain
curve (i.e. the first term in the right hand side of Eqn. (2)) and the fidelity of displacement
estimates (i.e. the second term in the right hand side of Eqn. (2)) during the minimization of
F(s). Recently, we implemented the total variational differentiation (TVD) strain estimator
originally proposed by Chartrand [57]. More specifically, an R term in Eqn. (2) is chosen to
penalize small local variations while allowing for discontinuous solutions.

As shown in Fig. 3-(b) below, a strain curve was estimated from simulated displacements
(Fig. 3-(a)) along an Aline using three different approaches: 1) two-point forward finite
difference method, 2) least-squares strain estimator with a window length of 0.2mm and 3) a
TVD strain estimator where the regularization parameter β is 10. This figure clearly shows
that both the least-squares strain estimator and the TVD strain estimator produce less noisy
strain estimates, whereas the 2-point finite difference scheme will greatly amplify the noise
in the displacement estimates and therefore is not acceptable for clinical use. Currently, our
work uses the framework presented in Eqn. (2) as a unified way to optimize the strain
estimation.

C. Performance Metrics
Like many new diagnostic imaging systems, phantom development [38], [58], [59], in
particular, the development of anthropomorphic phantoms [59], has aided in testing
prototype strain imaging systems and potentially uncovering weaknesses in these systems.
However, we found that many strain imaging algorithms perform well and show great
promise in phantom experiments (with regular geometry and simple boundary conditions)
but fail to live up to expectations in in vivo clinical trials because the underlying motion in
phantom experiments is too simple and uniform whereas that found in in vivo tissue motion
during clinical trials has significantly heterogeneous mechanical properties and complex
boundary conditions. Consequently, alongside this technical development in motion tracking
and strain estimation algorithms, there has been a progression in the understanding of strain
image quality facilitating the development of predictive theories for the design and
enhancement of ultrasonic strain-imaging systems.

In early work [26], [60]–[66], attention was focused on estimating lower bounds on error
variance for (time-delay and) displacement estimation, because measuring tissue motion
plays a critical role in strain imaging as described above. That work collectively
demonstrated that the minimum error achievable in axial strain estimates is predictable, once
the strain processing and ultrasound system parameters (i.e., bandwidth, center frequency,
tracking window length Z and window separation distance ΔZ) are known. Varghese and
Ophir [66] proposed a quantity named the elastographic SNRe they defined as the ratio of
the mean value of the estimated strains and their standard deviation. The theoretical
behavior of SNRe – which is based on these minimum error variance bounds as a function of
axial strain – is similar to a band-pass filter; therefore, the analysis result was called a “strain
filter”.

These theoretical efforts collectively led to better designs for strain imaging systems in
general but are inadequate for applications like ours for several important reasons. First, the
derivation of the minimum error variance bounds assumes that all residual motion tracking
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errors are sub-sample jitter. This is a good assumption for applications such as radiation-
force experiments [67], [68] where deformations are small compared to the acoustic
wavelength. But axial strain in our applications, in particular imaging tissue nonlinear
parameters, are typically 1 or 2% from frame-to-frame. Tissue deformations like ours
include maximum displacements of several wavelengths and potentially involve “peak-
hopping” errors. Second, these minimum error variance bounds predict the limit on the best
possible result in a statistical sense when an unbiased time-delay estimation algorithm is
used. However, in medical image formation where accuracy in a single observation is
important, we found that descriptions of anticipated image noise like the strain filter [66] are
insufficient to assess the quality for a specific strain image. Third, the methods used to
derive these error bounds assume 1D correlation techniques, but our methods generally
employ 2D tracking kernels that include correlated data. The effects of correlation within the
tracking kernel were not accounted for in the reported work. These combined inadequacies
provided motivation for the development of an empirical metric to assess the fidelity of
strain image formation in an individual basis.

A displacement quality metric (DQM; [69]) can be calculated for each strain image in a
sequence. The DQM is the product of the normalized cross-correlation coefficient among
the entire pre-deformation and motion-compensated post-deformation RF echo fields and
the normalized cross-correlation coefficient between two consecutive motion-compensated
strain images [69]. The rationale behind developing this empirical metric is briefly justified
below. First, by applying the displacement estimates to the deformed echo data and
remapping to the coordinates of the pre-deformation echo data field, we can register the two
RF echo fields. A higher normalized cross correlation (NCC) value between two registered
regions implies that two regions with apparent deformations are better registered. Hence, it
may be surmised that displacement estimates between the two RF fields are more accurate.
Second, for small frame-to-frame deformations (e.g. 1%), the local strain is dependent on
the local tissue stiffness (possibly corrupted by uncorrelated noise). Thus, high NCC
between two consecutive strain images means similarity and relatively low noise among
both strain images, and thereby suggests better strain image quality. By multiplying these
two NCC values we obtain a DQM value that is automatically normalized, with 1 providing
the best possible result, and provides a fidelity measure of the process of strain image
formation. In several of our recent studies, we have demonstrated that the DQM method can
be used for automated data selection to reduce user-dependency during clinical studies [70],
data selection for modulus reconstruction [71] or comparison among different motion
tracking algorithms involving in vivo data [27]–[29].

IV. EXTENSIONS TO 3D ELASTICITY IMAGING
Most of our previous work with clinical imaging systems employed 1D array transducers to
obtain 2D RF echo fields, displacement fields and strain fields. However, more recently we
have investigated extensions of our motion tracking algorithms to 3D data fields from 2D
linear arrays [39], [42] and from mechanically rocked 1D arrays [39], [40]. While the
mechanically rocked 1D arrays are commercially available, they are less desirable for quasi-
static elasticity imaging for several reasons. First, they tend to be relatively low frequency
(intended for use in abdominal imaging) which also reduces the absolute bandwidth – both
of which increase the lower bound on displacement estimate error variance [26]. Second, the
mechanically rocked 1D arrays typically have a curved contact surface which induces a
complex stress and strain pattern at the contact surface [72] that can complicate the motion.
Third, these array systems typically provide sector-shaped RF echo fields which complicates
the interpretation of “axial strain”. Example strain images obtained with a prototype 9MHz
2D CMUT linear array [42] and obtained with a 5MHz mechanically rocked 1D array (C7F2
fourSight), both operated by the Siemens SONOLINE Antares (Siemens Healthcare,
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Ultrasound Business Unit, Mountain View, CA, USA) and imaging the same phantom, are
shown in Fig. 4. Modulus reconstruction obtained from the displacement fields from the 2D
CMUT array were recently reported [42].

V. DIRECT INVERSION TANGENT MODULUS RECONSTRUCTION
We have also developed a simple linear inversion technique to obtain the spatial distribution
of elastic moduli given the displacements and force measurements along boundaries [73]. In
this approach, the conventional procedures of displacement-based finite element analysis
(FEA) are used to construct a linear system of equations as follows,

(4)

where K,U and F are the system stiffness matrix, displacement vector and force vector for a
discretized elastic object, respectively. In conventional forward FEA solutions, the stiffness
value for each (finite) element is known and the displacement vector (see Eqn. (4)) will be
solved for given certain boundary conditions. In this linear inversion process, we rewrite the
left hand side of Eqn. (4) using the Young’s modulus distribution as explicit variables while
assuming all displacements can be measured. In other words, this process makes the spatial
distribution of modulus values the unknown vector in a new linear system of equations.
Given appropriate force boundary conditions, the solution of this new linear system is very
straightforward. In the initial publication [73] the modulus distribution was solved in a least-
squares sense and therefore the solution was sensitive to the noise level in the displacement
vector as expected. However, the performance of this method could be improved if a
constrained least-squares solver is used. It is also worth noting that the new linear system for
the inverse problem is a redundant system (i.e. more equations than the unknowns).
Consequently, future work includes reducing the required measurements similar to
approaches used in compressed sensing.

VI. RECONSTRUCTING NONLINEAR ELASTIC MODULUS
For this review, we outline the issues surrounding nonlinear modulus reconstruction from
measured strain fields. Many of these issues are identical to those that occur in linear
modulus reconstruction. Others, while not identical, have their counterparts in linear elastic
modulus reconstruction. Still others are unique to the problem of nonlinear modulus
estimation.

The section is organized roughly linearly in terms of the decisions and modeling choices that
must be made in tackling the reconstruction problem. In each case, we describe the options
we have chosen and give justification for those choices. While we believe they are good
choices, the methodology we have developed by no means represents the only way, nor even
necessarily the best way, to solve the problem. It does, however, seem to represent a feasible
path to obtaining practical results that we believe will prove useful in the clinic.

In the next part of this section, we first describe the choice of the mathematical model used
to describe breast tissue deformation. Our recent focus has been on a modified Veronda-
Westman model for incompressible tissue in plane stress. Given that model, we next discuss
the data requirements to determine the modulus distribution unambiguously. Then we
discuss the iterative computational solution of the inverse problem within the context of
nonlinear modulus inversion. We close with computational examples, and a brief discussion
of current research directions.
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A. Mathematical modeling
Though we live in a three-dimensional world, most clinical ultrasound scanners today
provide two dimensional images. This situation is in a rapid state of flux, and indeed, we are
currently translating all our work to 3D. Up to now, however, most of our applications have
been based on 2D data. There are two main 2D approximations of 3D deformation, plane
stress and plane strain. The accuracy of either can be questioned when applied to 3D
deformations, but plane stress offers significant advantages when it comes to inversion. For
one thing, the forward plane stress problem is better conditioned for incompressible
materials. For plane strain, special treatment of incompressibility is required even to get a
good forward solution. For plane stress, no such special treatment is required. A second
advantage to plane stress is that the inverse problem is better posed. For the linear elastic
inversion, a single deformation gives the modulus distribution up to a multiplicative
constant. For plane strain, a single deformation gives rise to a family of possible modulus
distributions. The relative accuracy of these two assumptions is demonstrated with a later
example.

We also make the assumption that the tissue behaves as an incompressible solid. Given that
soft tissues comprise mobile fluid components, this assumption may be justifiably
questioned. In evaluating this assumption, one must take account of the time scales of
deformation, the time scales of observation, and the time scales of fluid redistribution within
the tissue. By our estimates [74], with compression and observation times on the order of
one to several seconds, fluid redistribution most likely has a negligible effect on the tissue
deformation patterns.

The nonlinear stress-strain behavior of breast tissue is thought to be determined largely by
the collagen network which provides the main tissue structure. Like soft tissues, such
networks exhibit a large “toe” region of compliant behavior at low strains, followed by a
relatively steep increase in the stress after the network “locks”. Several models have been
proposed in the literature to capture such behavior. Three popular choices are the Yeoh
model, the Arruda-Boyce model [75], and the Veronda-Westmann model [76]. O’Hagan and
Samani [14] have fit these, along with others, to the mechanical behavior of breast tissue,
and found satisfactory agreement with all of them. Of these various options, we have relied
most heavily upon a modified Veronda-Westmann model.

The Veronda-Westmann model was introduced in 1970 [76] to model the observed
exponential stiffening of skin tissue. In our early work [77] we introduced a simplified
Veronda-Westmann that reduces the original three parameters to just two. These two
parameters represent the shear modulus at zero strain, and the exponential stiffening
parameter. The recent results of O’Hagan and Samani [14] indicate that our original choice
is suboptimal in three respects. First, though all models give satisfactory performance they
report more accurate fits from the Yeoh and Ogden models. Second, the best fitting three-
parameter Veronda-Westmann model is inconsistent with the simplified two-parameter
model that we have chosen. Third, for incompressible materials, the Veronda-Westmann
model does not give a purely deviatoric stress tensor. Therefore, we are currently using an
exponential model due apparently to Blatz and coworkers [78].

B. Data requirements
The exponential model we currently use to represent the nonlinear behavior of phantoms and
tissues is:

Hall et al. Page 10

Curr Med Imaging Rev. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(5)

Here, W represents the strain-energy density (energy per unit volume), μ is the shear
modulus at zero strain, and γ represents the degree of nonlinearity, or exponential growth
rate of stress with strain. The symbols I1 and J are strain measures, given by:

(6)

(7)

and λ1, λ2, λ3 are the principle stretches of the material. If we denote by ε = ΔL/L the
change in length divided by the initial length, then the stretch is λ = final length/original
length = (L + ΔL)/L = 1 + ε. Thus, in an undeformed material, the strain is zero, and λ1 =
λ2 = λ3 = 1. In an incompressible material, which we assume, J ≡ 1. In an inhomogeneous
material, μ(X) and γ(X) are functions of (original) position in the material.

In uniaxial tension, this model leads to the following stress-strain relation:

(8)

(9)

At small strains where ε2 is negligible, this model predicts linear elastic incompressible
behavior with shear modulus μ. Therefore, if we confine our attention to very small (i.e.
linear) strains, we can determine μ as if the material is linear elastic. For plane stress
conditions, this means that a single small-strain deformation determines the entire spatial
distribution of μ(X), up to a multiplicative constant [79]. Currently the uniqueness theory
for γ is underdeveloped, but initial calculations based on uniaxial stress conditions imply
that γ may be determined absolutely from two different large deformation strain field
measurements.

C. Computational formulation
We treat the inverse problem as an optimization problem. The goal is to find the material
parameter distribution that, when used in a forward model of the experiment, predicts the
measurements as closely as possible. Such a description might fit any number of approaches,
however, and so here we briefly discuss some of the features of our particular approaches.

The objective function we seek to optimize is:

(10)

Here, πdata is the data matching functional, and R1 and R2 are regularization functionals.
This objective is minimized as a function of μ(X) and γ(X) under the constraint that the
predicted displacement fields ui satisfy the equations of equilibrium.

The data matching functional is how we define what is meant by “match the measurement as
closely as possible.” Typically we know the measurements more accurately in the ultrasound
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axial direction than in the ultrasound lateral (or elevational) directions (see Sec. II).
Therefore, it makes sense to place greater confidence in the axial measurements than in the
lateral. Hence we choose for our data matching functional:

(11)

We choose the matrix T a priori to weight different components of the displacement field
different amounts, depending upon our confidence in those measures. Statistical estimation

theory for Gaussian distributed uncertainties suggests that  [80], [81].

The regularization terms enforce a priori knowledge of the probability distribution of the
modulus. They help control the impact of noise on the reconstruction, and improve the
conditioning of the optimization problem. It is worthwhile emphasizing that they enforce
(read “impose”) a priori assumptions on the modulus distribution. If a strong Tikhonov
regularization is used on the modulus derivatives, any inclusion will be reconstructed as a
smooth bump, regardless of its original profile. Similarly, a strong total variation (TV)
regularization will yield an inclusion with sharp sides, again regardless of the inclusion’s
actual profile. A desirable feature of TV regularization is its ability to preserve sharp
boundaries at interfaces.

In practice, we usually use a weak and regularized TV regularization. This is given by the
equation:

(12)

Total variation regularization is achieved in the limit of β → 0. In this limit, however, the
regularization functional is singular at ∇μ = 0. Therefore, we use a small nonzero β. We
have recently noticed that the convergence behavior of the iterative optimization algorithm
is strongly dependent on the smallness ofβ.

Our experience indicates that for reasonable regularization levels, the optimization
functional is well behaved, and so local search methods work efficiently. The BFGS
(Broyden-Fletcher-Goldfarb-Shanno [82], [83]) is a gradient based method that gradually
builds an approximate Hessian with each iteration, and converges satisfactorily quickly for
these problems. We prefer gradient based methods, since the adjoint method can be used to
efficiently compute the gradient.

Iterative optimization methods require the forward solution for each of several different
material property distributions. In the nonlinear elasticity inverse problem, a typical iteration
of the inverse problem proceeds as follows. Instead of the current guess for the material
properties, one solves the forward problem to compute the “predicted” displacement field.
The BFGS algorithm is used to obtain an updated guess of the parameter values, based upon
the function value, its (current) gradient, and past history. Then one solves the linearized
“adjoint problem” in order to compute the gradient of the optimization functional. As the
adjoint problem is linear, the dominant computational cost is thus clearly in the solution of
the nonlinear forward problem. This is traditionally solved by a continuation method from
zero loading to the full nonlinear loading. In this application, however, one can use a
continuation method in the material properties from the previous material property
distribution. This typically yields convergence of the forward problem in a very few Newton
iterations.
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The final key ingredient required for the successful computational solution of this inverse
problem is an appropriate, stable, forward discretization method. The key issue here is
dealing efficiently with the incompressibility of the material. Whether the effective
Poisson’s ratio of the tissue is taken to be exactly 1/2 or some close approximation like 0.49,
standard FEM formulations are inadequate. The key issue is to avoid mesh locking at
reasonable mesh sizes. In our experience, some solutions of the locking problem yield
impractically small load step requirements for the forward problem. Recently we have
implemented the stabilized FE method described in [84]. This gives accurate solutions and
converges well with large load steps (i.e. large material property steps). This work is
described in [85].

D. Sample results
We begin with an example that shows the benefits of 3D inversion over 2D inversions. The
reconstructions were obtained from the 3D phantom data described in [86]. Figure 5 shows a
vertical slice from the 3D reconstruction through the center of the phantom. We see a stiff
layer along the top and a stiff inclusion about 5mm in size, of the same stiffness as the layer.
When the displacement fields from this single slice are used in plane stress or plane strain
reconstructions, the modulus fields shown in Figures 6(a) and 6(b) result, respectively. We
note from these figures that the plane stress reconstruction is much more faithful to the more
accurate 3D reconstruction. Nevertheless, the 2D plane stress reconstruction shows artifacts
resulting from the 3D nature of the displacement field. One of these is an artificial
enhancement of the stiffness in the upper stiff layer. A second related artifact is the
appearance of a stiff horizontal layer along the bottom edge. Both of these are recognized as
being due to a combination of sticking of phantom at the boundaries, which is exacerbated
by the incompressibility of the material. The peak inclusion stiffness of about 2.7 is
correctly identified in the plane stress reconstruction.

We next show the results of reconstructions from two in vivo clinical datasets. These are
both 2D datasets reconstructed under of the assumption that plane stress conditions applied.
In neither case do we have calibration data to determine the shear modulus, so the shear
modulus reconstruction is relative. The gamma parameter, however, is calibrated and
therefore may be interpreted as quantitative. These parameters refer to the reduced Veronda-
Westmann strain energy density function described in [87]. Figure 7 shows the (relative)
shear modulus μ and nonlinear parameter γ for a fibroadenoma.

In the shear modulus image, we see an apparently stiff, small nodule in the lower left that we
believe to be an artifact due to noisy strain measurements. The fibroadenoma itself is the
light green oval shape on the left, whose outline is traced in the right hand figure. In
simulated and phantom data, we have seen boundary condition errors create stiff surface
layer artifacts, which may explain the apparently stiff layer at the skin surface in this
reconstruction. We note the stiffness (i.e. shear modulus, μ) contrast is roughly 10:1, while
γ is no larger than about 10. It is assumed at this point that the red region in the γ
reconstruction is an artifact, but whether due to model error, boundary conditions, or noisy
data is not known.

Figure 8 shows the reconstructed shear modulus and nonlinear elasticity parameter for an
invasive ductal carcinoma. The shear modulus image shows a kidney bean shaped region of
elevated stiffness, with a contrast of roughly 10:1. Thus, this stiffness is not considerably
different from that of the fibroadenoma. By contrast, however, the nonlinear parameter γ is
highly elevated. Most of the lesion is characterized by a value of γ ≥ 30. So far, in about ten
cases studied, we have seen a marked contrast between the reconstructed values of γ in a
fibroadenoma and the reconstructed values of γ in an invasive ductal carcinoma.
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Though our clinical data so far is limited to 2D, we continue to work toward the goal of full
calibrated 3D modulus and nonlinear elastic reconstructions. Extending the methodology to
3D is nontrivial. At a minimum, it requires appropriate treatment of incompressibility in the
forward model. Several treatments we have tried interact poorly with the inverse iterations.
More problematic, however, is the conditioning of the 3D inverse problem. It is more
analogous to the plane strain problem than to the plane stress problem (c.f. Figure 6).
Nevertheless, 3D reconstructions of linear shear modulus from phantom data are reported in
[86], [88]. Here, we show (Fig. 9) the results of 3D nonlinear reconstructions performed
with simulated data. The “measured”displacement field was generated by solving the
forward problem with a specified material distribution and adding 3% white noise. The
exact distribution comprises of a hard, strain hardening inclusion in a soft background with a
contrast of 1:5 in the shear modulus and the nonlinear parameter. The reconstructions are
able to recover this contrast quite well.

E. Current directions
Our current directions are aimed at automating the processing steps and making the
inversion process more efficient. At the moment, this effort takes two specific and related
directions: controlling and improving the convergence of the iterative process, and
automating the choice of the regularization parameters.

We have found that the rate of convergence of the iterative inversion depends on both the
type of regularization and the choice of regularization parameters. Tikhonov regularization,
perhaps because it gives a nicely convex contribution to the objective function, gives rise to
quite fast convergence. Total variation regularization, on the other hand, has a less
predictable impact on the convergence behavior, and can be an order of magnitude slower.
Furthermore, the convergence, and to a lesser extent the result, can depend upon the choice
of β(see equation (12)). We are currently working on identifying the appropriate scaling to
select β(andα, the overall regularization parameter) to ensure both accurate results and
efficient convergence.

Next steps include developing an adjoint formulation that does not require a priori
knowledge of the problem boundary conditions. While the adjoint formulation for the
optimization problem depends upon these boundary conditions [89], the inverse problem
itself does not [90].

VII. APPLICATIONS
A. Clinical trials of strain imaging in breasts

A multi-observer, multi-institution study of breast elasticity imaging was conducted based
on the first-generation fully-integrated real-time elasticity imaging system [18]. The details
of the conduct and results of that study are reported by Burnside, et al. [70]. Several
significant findings are worth noting. First, the overall results suggest that, even in that early
stage of strain imaging system development, elasticity image information interpreted by
highly trained breast radiologists (who were also specifically trained in strain image
interpretation) significantly improved their ability to assess the risk of breast cancer for 98
biopsy-confirmed cases. (Combining results for three radiologists, the area under the
receiver operating characteristic curve for B-mode imaging alone was 0.876. The area
increased to 0.903 when strain images were displayed simultaneously with B-mode.)
Second, the confidence of the observers interpretation increased with increased strain image
quality, but observer variability significantly lowered the overall performance in elasticity
image interpretation (in some cases the radiologists were unable to determine if they were
observing high-quality strain images or just visually pleasing strain images). That finding
prompted our investigations into a robust metric for strain image quality (see Sec. III).
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Significant improvements in strain imaging systems (those currently commercially
available) and a quantitative measure of strain image quality should significantly reduce
observer variability in image interpretation and increase observer performance in assessing
breast cancer risk. This is an ongoing area of investigation.

B. Ablation monitoring
Thermal ablation is a medical procedure where tumor or some dysfunctional tissue (e.g.
heart) is ablated using external thermal energy to treat a medical disorder. Radiofrequency
(RF) ablation [91], one of most popular thermal ablation techniques, has become
increasingly accepted in the last 15 years with promising results in treating hepatic tumors.
Its application for cancer therapy has now been expanded into neoplasmas in bones, kidneys,
lungs and breasts. While thermal ablation can be an effective cancer treatment tool, the lack
of a reliable imaging modality to monitor progression of ablation treatment is still a
significant problem [91]–[94]. Unfortunately, because of a lack of adequate imaging-based
treatment monitoring options, undertreated portions of the tumor often go undetected until
follow-up. In clinical practice, ultrasound is less effective in depicting the actual boundaries
of a thermal ablation zone while repeated CT dosage becomes an issue both for patients and
physicians. MR is less frequently used because of the low availability of interventional MR
scanners and the lack of MR-compatible ablation equipment. Consequently, the local
recurrence rate, a technical term for treatment efficacy, varies widely ranging from 33–55%
under ultrasound guidance [93], [95].

During RF ablation, protein denaturation during heating results in an increase in the elastic
modulus of tissue [96]. Therefore, thermal ablation zones appear to be stiffer than
surrounding untreated tissue and may be differentiated by new elasticity imaging methods
that directly estimate mechanical properties of soft tissue. Our group is developing an elastic
modulus imaging (EMI) method for visualizing thermal ablation zones. Compared to
modulus inversion methods developed for breast imaging (Sections V and VI), this method
is designed for using ablation applicatorinduced deformation [97]. Consequently, the
displacements induced by the the needle-like applicator are treated as the source of
mechanical stimulus and enforced during the solution of the forward problem.

In our recent pre-clinical animal study [98], we compared the radiological/pathological
correlation and accuracy of this technique in 14 in vivo thermal ablation zones created in
normal porcine livers. We found that comparison of elastic modulus imaging measurements
and gross pathology measurements showed high correlation with respect to the area of
thermal ablation zones (Pearson coefficient = 0.950 and p < 0.0001). The radiological/
pathological correlation was lower (correlation = 0.853, p < 0.0001) for strain imaging
among same ablation zones. More importantly, elastic modulus images provided higher
(more than a factor of 2) contrast-to-noise ratios for evaluating these thermal ablation zones
than those on corresponding strain images, thereby reducing inter-observer variability.
Unlike strain, elastic modulus images are not dependent on the assumption of uniform stress
distribution, thereby providing unambiguous information regarding tissue elasticity [99].

Figure 10 provides an example reconstruction where elastic modulus imaging shows
superior visualization compared to strain imaging. The calculated CNRs were 0.55 and 4.65
for the strain (10(b)) and elastic modulus (10(c)) images, respectively. Three contours of the
thermal ablation zone depicted by three human observers in the corresponding strain image
have nearly no overlap, thereby demonstrating poor visibility using strain imaging for the
case investigated.
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VIII. CONCLUSIONS
We, and other groups, continue to make progress in developing and testing quasi-static
elasticity imaging systems. Quasi-static methods for mechanical strain imaging have gone
from laboratory investigations through clinical and on to commercially available products.
Relative strain images in 2D are a common part of clinical breast evaluation in many centers
around the world. But, there are many opportunities for continuing development.

Great progress is being made to obtain quantitative elastic modulus and elastic nonlinearity
images, instead of relative strain. Quantitative images will allow more precise
communication among clinicians regard patient conditions, it will also allow direct
comparison of tissue properties from one examination to the next facilitating tracking
disease progression and monitoring the effects of therapy. All of this work is being extended
to3D. Further, it is our vision that elastic modulus imaging could potentially provide rapid
feedback to clinicians for the real-time or near real-time evaluation of the ablation zone to
help reduce the number of local recurrences and subsequent re-treatment sessions after
thermal tumor ablation. The future of this technology looks very bright.
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Fig. 1.
Images of B-mode and axial strain from a tissue-mimicking phantom [38] with one spherical
inclusion that is approximately 2 times stiffer than the background. Local strains were
estimated using four variants of block-matching algorithms (BMA). Arrows in each strain
image point to locations of de-correlation noise resulting from errors due to poor motion
tracking.
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Fig. 2.
Axial and lateral displacement, and axial strain images of the tissue-mimicking phantom
displayed in Fig. 1.
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Fig. 3.
(a) Simulated displacements along an A-line and, (b) estimated strain curves using three
different methods: 1) two-point forward finite difference method, 2) least-squares strain
estimator with a window length of 0.2mm and, 3) a TVD strain estimator with a
regularization parameter of 10. The ideal strain is also presented using a dashed line in (b).
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Fig. 4.
3D strain images obtained using the lateral guidance motion tracking algorithm for two
methods of 3D RF echo data acquisition. The upper left image in each composite set is the
“top view” or C-scan image plane. The bottom left image is the normal “B-scan” or
azimuthal image plane. The bottom right image is the elevational image plane. The top right
image is the 3D volume with cross sectional slices through each plane for visualization.
Note that the 2D array has higher center frequency than the mechanically rocked 1D array.
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Fig. 5.
One slice from a 3D reconstruction of linear shear modulus in a tissue mimicking phantom.
Data from [86]. The phantom was manufactured to have a 1cm thick stiff layer at the top,
and a 5mm inclusion of the same stiffness. (The upper 2 − 3mm of the top layer have been
cropped in the processing.)
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Fig. 6.
Two dimensional reconstructions of linear shear modulus in the same plane as shown in
Figure 5. The left figure (a) is the linear shear modulus reconstructed using the plane stress
approximation; the right figure (b) is the linear shear modulus reconstructed using the plane
strain approximation. Observe that the plane stress approximation produces a more accurate
reconstruction, but is nevertheless highly sensitive to boundary artifacts.
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Fig. 7.
Reconstructed shear modulus distribution (a) and nonlinear elastic parameter (b) of a
fibroadenoma, reconstructed from two dimensional in vivo data under assumptions of plane
stress. The apparently stiff, small nodule in the lower left we believe is an artifact due to
noisy strain measurements. The fibroadenoma is the light green oval shape on the left,
whose outline is traced in the right hand figure. In simulated and phantom data, we have
seen boundary condition errors create stiff surface layer artifacts, which may explain the
apparently stiff layer at the skin surface in this reconstruction (c.f. Figure 6). Note the
stiffness (i.e. shear modulus, μ) contrast of roughly 10:1, while γ is no larger than about 10.

Hall et al. Page 28

Curr Med Imaging Rev. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Reconstructed shear modulus distribution (a) and nonlinear elastic parameter (b) of an
invasive ductal carcinoma, reconstructed from two dimensional in vivo data under
assumptions of plane stress. Note the stiffness (i.e. shear modulus, μ) contrast of roughly
10:1, but here γ is significantly larger than about 30. In the ten or so cases we have so far
investigated, the striking difference in γ between fibroadenomas and invasive ductal
carcinomas is consistent. We note that regions showing elevated stiffness near the skin
surface and in image corners are attributed to artifacts, whose origin is unknown.
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Fig. 9.
Reconstruction of the linear shear modulus (a) and the non-linear strain hardening parameter
(b) for an incompressible material. The “measured” displacement field was generated by
solving the forward problem with a specified material distribution and adding 3% white
noise. The exact distribution comprises of a hard, strain hardening inclusion in a soft
background with a contrast of 1:5 in the shear modulus and the nonlinear parameter. The
reconstructions are able to recover this contrast quite well.

Hall et al. Page 30

Curr Med Imaging Rev. Author manuscript; available in PMC 2012 September 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Images of an in vivo thermal ablation zone: (a) B-mode, (b) strain, (c) reconstructed relative
elastic modulus and (d) photography of gross pathology. The contours on (b) and (c) were
replicas of human observers’ boundaries of ablation zones. Arrows in (a) and (d) point to the
thermal ablation zone.
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