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Thirty thousand years ago, humans kept track of numerical quan-
tities by carving slashes on fragments of bone. It took approximately
25,000 y for the first iconic written numerals to emerge among
human cultures (e.g., Sumerian cuneiform). Now, children acquire
the meanings of verbal counting words, Arabic numerals, written
number words, and the procedures of basic arithmetic operations,
such as addition and subtraction, in just 6 y (between ages 2 and 8).
What cognitive abilities enabled our ancestors to record tallies in the
first place? Additionally, what cognitive abilities allow children to
rapidly acquire the formal mathematics knowledge that took our
ancestors many millennia to invent? Current research aims to
discover the origins and organization of numerical information in
humans using clues from child development, the organization of the
human brain, and animal cognition.

analog magnitude | functional MRI | mathematics education |
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This review traces the origins of numerical processing from
“primitive” quantitative abilities to math intelligence quotient

(IQ). “Primitive” quantitative abilities are those that many animals
use to estimate the value of an object or event, for instance its
distance, length, duration, number, amplitude, saturation, or lu-
minance (among others). The constraints on how human and an-
imal minds process these different quantities are similar (1). For
example, all of these quantities show cognitive processing limi-
tations that can be predicted by Weber’s law. Weber’s law states
that quantity discrimination is determined by the objective ratio
between their values. This ratio-based psychological and neural
signature of quantity processing indicates that many quantities are
represented in an analog format, akin to the way in which a ma-
chine represents intensities in currents or voltages (1). I discuss the
types of constraints that influence quantity discrimination, using
“number” as the initial example, and then consider the psycho-
logical and neural relationship between “number” and other
quantitative dimensions. Similar constraints on processing across
different quantities have been interpreted as evidence that they
have a common evolutionary and/or developmental origin and
a common foundation in the mind and brain (2–11). The resolu-
tion of these issues is important for understanding the inherent
organization of our most basic conceptual faculties. The issue is
also important for understanding how our formal mathematical
abilities originated.
Primitive quantitative abilities play a role in howmodern humans

learn culture-specific, formal mathematical concepts (1). Preverbal
children and nonhuman animals possess a primitive ability to ap-
preciate quantities, such as the approximate number of objects in
a set, without counting them verbally. Instead of counting, children
and animals can mentally represent quantities approximately, in an
analog format. Studies from our group and others have shown that
human adults, children, and nonhuman primates share cognitive
algorithms for encoding numerical values as analogs, comparing
numerical values, and arithmetic (4, 12–14). Developmental studies
indicate that these analog numerical representations interact with
children’s developing symbolic knowledge of numbers and mathe-
matics (12, 15). Furthermore, the brain regions recruited during
approximate number representations are shared by adult humans,
nonhuman primates, and young children who cannot yet count to
30 (2, 16, 17). Finally, it has recently been demonstrated that neural

regions involved in analog numerical processing are related to the
development of math IQ (18). Taken together, current findings
implicate continuity in the primitive numerical abilities that are
shared by humans and nonhumans, as well as a degree of continuity
in human numerical abilities ranging from primitive approximation
to complex and sophisticated math.

Oldest Numbers in the World
The fact that humans have been recording tallies with sticks and
bones for 30,000 y is impressive, but the critical issue is this: what
cognitive abilities enabled them to encode quantities in the first
place? To identify the inherent constraints on humans’ ability to
process numerical information, it is helpful to consider the evo-
lutionary history of numerical thought.We can look for clues to the
evolutionary precursors of numerical cognition by comparing hu-
man cognition with nonhuman primate cognition. The degree to
which humans and nonhuman primates share numerical abilities is
evidence that those abilities might derive from a common ances-
tor, in the same way that commonmorphology like the presence of
10 fingers and toes in two different primate species points to a
common morphological heritage.
So far, there is evidence that nonhuman primates share three

essential numerical processing mechanisms with modern humans:
an ability to represent numerical values (17, 19–21), a general
mechanism for mental comparison (22), and arithmetic algorithms
for performing addition and subtraction (23, 24). These findings
compliment and extend a long history of research on the numerical
abilities of nonhuman animals (see ref. 25 for review).

Representation. When adult humans and monkeys are given a task
in which they have to rapidly compare two visual arrays and touch
the array with the smaller numerical value (without counting the
dots), their performance reliably yields the pattern shown in Fig. 1:
accuracy decreases as the ratio between the numerical values in the
two arrays approaches 1 (19; see refs. 1 and 26 for review). The
explanation of this performance pattern is that both groups are
representing the numerical values in an analog format (Fig. 2).
In an analog format, number is represented only approximately,

and it is systematically noisy (1, 26). More precisely, the probability
of noise (i.e., the spread of the distributions) in the subjective
representation of a number increases with the objective number of
items that are coded by that representation. Consequently, the
probability of confusion (i.e., the overlap between distributions)
between any two objective numbers increases as their value
increases. This means that the probability of having an accurate
subjective representation of a numerical value decreases with its
objective value. This relationship can be succinctly quantified by
the ratio between the numerical values being compared. Two
different pairs of numerical values that have the same ratio (e.g., 2
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and 4, 4 and 8) have the same amount of overlap, or the same
probability of confusion. As numerical pairs get larger and closer
together, their ratio increases and so does the probability that they
will be confused (leading to more errors). For example, one might
be 80% accurate at choosing the larger number when the nu-
merical choices are 45 vs. 70 (45/70 = a 0.64 ratio) but might
perform at chance when the choices are 45 vs. 50 (45/50 = a 0.9
ratio). This effect is known as Weber’s law. The curves in Fig. 1
(from ref. 4) represent predicted data from a model of number
representation under Weber’s law (27), and they show that the
predictions of this analog numerical model fit the data well.
The empirical data frommonkeys and humans and the fit of the

analog model demonstrate that although humans have a means of
representing numerical values precisely using words and Arabic
numerals, they still have an approximate, analog numerical system
that functions essentially in the same way as in monkeys.

Comparison. The ratio effect, described by Weber’s law, indicates
that numerical values can be represented in an analog format.
However, that does not tell us anything about the process by
which two numerical values are compared. We have identified
a signature of mental comparison in monkeys that is commonly
observed when adult humans make judgments of magnitudes:
the semantic congruity effect (22, 28). The semantic congruity

effect is a response time effect that is observed in adult humans’
response times whenever they have to compare things along
a single dimension. For instance, when people are presented with
pairs of animal names and asked to identify the larger or smaller
animal from memory, they show a semantic congruity effect in
their response time: people are faster to choose the smaller of
a small pair of items (e.g., ant vs. rat) than they are to choose the
larger of that pair. However, for pairs of large items (e.g., horse
vs. cow), people are faster to choose the larger item than the
smaller item. This effect suggests that the physical size of the
animal interacts with the “size” of the question (whether “Which
is larger?” or “Which is smaller?”) in subjects’ judgments. In
humans, the semantic congruity effect is observed for judgments
of many dimensions, including judgments of numerical values,
from Arabic numerals. We found that this effect is also observed
in monkeys when they compare numerical values from arrays of
dots. Monkeys performed a task in which they had to choose the
larger numerical value from two visual arrays when the back-
ground color of the computer screen was blue, but when the
screen background was red, they had to choose the smaller nu-
merical value of the two arrays. As shown in Fig. 3 (from ref 22),
both monkeys showed a crossover pattern of faster response
times when choosing the smaller of two small values compared
with the larger of two small values, and the opposite pattern for
large values. The semantic congruity effect is the signature of
a mental comparison process wherein context-dependent mental
reference points are established (e.g., 1 for “choose smaller” and
9 for “choose larger”), and reaction time is determined by the
distance of the test items from the reference points; this has been
modeled as the time it takes for evidence to accrue in the
comparison of each item to the reference point (28). In humans
the semantic congruity effect is observed for a variety of mental
comparisons from both perceptual and conceptual stimuli:
brightness, size, distance, temperature, ferocity, numerals, etc.

Fig. 1. Accuracy on a numerical discrimination task for monkeys and
humans plotted by the numerical ratio between the stimuli. From Cantlon
and Brannon (19).

Fig. 2. An analog representation of numerical value represents an objective
numerical value with a probability distribution that scales with the size of
the objective numerical value. From Cantlon et al. (48). Reprinted with
permission from AAAS.

Fig. 3. Semantic congruity effect in the response times of two different
monkeys (Feinstein and Mikulski) on a numerical comparison task in which
they sometimes chose the larger numerical value from two arrays (blue) and
other times chose the smaller value (red). The cross-over pattern reflects the
effect of semantic congruityy. From Cantlon and Brannon (22).

10726 | www.pnas.org/cgi/doi/10.1073/pnas.1201893109 Cantlon

www.pnas.org/cgi/doi/10.1073/pnas.1201893109


Our data from nonhuman primates indicate that the mental
comparison process that yields the semantic congruity effect is
a primitive, generalized, nonverbal mental comparison process
for judging quantities and other one-dimensional properties.
In fact, the ability to compare quantities, and the proposed

algorithm underlying that ability, could be so primitive that it
extends to nonprimate animals. A recent study by Scarf et al.
(29) showed that pigeons can compare numerical values, and in
doing so they represent an abstract numerical rule that can be
applied to novel numerical values. Pigeons’ accuracy on that
ordinal numerical task is comparable to that of monkeys tested
on an identical task (21).

Arithmetic. Arithmetic is the ability to mentally combine values
together to create a new value without having directly observed
that new value. We have found that monkeys possess a capacity
for basic, nonverbal addition that parallels human nonverbal
arithmetic in a few key ways (24). First, monkeys and humans
show a ratio effect when performing rapid nonverbal addition,
similar to the ratio effect described earlier. Monkeys’ and
humans’ accuracy during arithmetic depends on the ratio be-
tween the values of the choice stimuli. We also observed a classic
signature of human arithmetic in monkeys’ performance: the
problem size effect. Adult humans typically exhibit a problem
size effect wherein performance worsens as the problem out-
come value increases (30). Like humans, monkeys exhibited
a problem size effect in their addition accuracy (even when
controlling for the ratio effect).
However, there are also important and potentially informative

differences between the performance of humans and monkeys.
Adult humans and young children show a practice effect in their
arithmetic performance wherein performance on a specific
problem improves the more that it is practiced (30). Monkeys do
not show a practice effect for specific problems. This was the
case even over 3 y of practice on a specific problem (Fig. 4 shows
performance for two monkeys, over 3 y of testing on 1 + 1, 2 + 2,
and 4 + 4). Nonhuman primate arithmetic thus parallels human
nonverbal arithmetic in the ratio and problem size effects but not
the practice effect, which has been observed primarily in sym-
bolic arithmetic performance in humans. Presumably, discrete
symbols are necessary for humans to encode arithmetic problems
in a format that is amenable to memorization, which is why
monkeys do not show a practice effect.
The overarching conclusion from this line of research is that

the abilities to represent, compare, and perform arithmetic

computations reflect a cognitive system for numerical reasoning
that is primitive and based on analog magnitude representations.
However, if analog numerical cognition is truly “primitive” and
homologous across primate species, then it should be rooted in
the same physical (neural) system in monkeys and humans. In
fact, there is evidence from multiple sources that analog nu-
merical processing recruits a common neural substrate in mon-
keys, adult humans, and young children (Fig. 5).
In monkeys who are trained to match visual arrays of dots

according to number, single neurons along the intraparietal
sulcus (IPS) will respond maximally to a preferred numerical
value, and their firing rate decreases as the number that is pre-
sented gets numerically farther from that preferred value (31).
This neural firing pattern has been linked to the behavioral ratio
effect and is thought to reflect analog numerical tuning in the
IPS. A similar pattern of numerical tuning has been observed
with functional MRI in the human IPS. Manuela Piazza et al.
(32) found a neural adaptation effect for numerical values in the
IPS that depended on the ratio between the adapted numerical
value and a deviant numerical value. Our group also observed
neural adaptation in the IPS for numerical values ranging from 8
to 64 in preschool children who could not yet verbally count to 30
(33). Together, these studies reflect a common neural source for
analog numerical representation that bridges species as well as
stages of human development and is thus independent of lan-
guage and formal mathematics experience. These neural data
support the conclusion derived from the behavioral data that
there is continuity between humans and nonhuman animals in
the mechanisms underlying analog numerical representations.

Then There Were Symbols
A long history of studies with preverbal human infants has shown
that they too possess an ability to quantify objects with approx-
imate, analog representations (12). Thus, there is general
agreement that the analog system for numerical reasoning is
primitive in human development. A fundamental question is how
a child’s developing understanding of numerical symbols inter-
faces with preverbal analog representations of number. Of par-
ticular interest is how children initially map numerical meanings
to the first few symbolic number words (15, 34–37). There is
currently a debate over the types of preverbal numerical repre-
sentations that form the initial basis of children’s verbal count-
ing. However, regardless of how this initial mapping transpires,
behavioral evidence suggests that as children learn words in the
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Fig. 4. The lack of a practice effect in monkeys’ addition performance over
3 y. Data from Cantlon and Brannon (24).

Fig. 5. Monkeys, human adults, and human children exhibit similar activa-
tion in the IPS during analog numerical processing. Redrawn from refs. 31, 32
[Reprinted fromNeuron, 44(3), PiazzaM, Izard V, Pinel P, Le BihanD, Dehaene
S, Tuning curves for approximate numerosity in the human intraparietal sul-
cus, 547–555, Copyright (2004) with permission from Elsevier], and 33.
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counting sequence, they map them to approximate, analog rep-
resentations of number (38–40). Lipton and Spelke (39) found
that 4-y-old children could look at a briefly presented array of 20
dots and, if they could count to 20, they could verbally report
(without counting) that there were twenty dots in the array, and
their errors were systematically distributed around 20 (i.e., their
errors exhibited a numerical ratio effect). If they could not yet
count to 20, however, they responded with random number
labels. Thus, as soon as children learn a particular verbal count
word in the sequence, they know the approximate quantity to
which it corresponds without counting, suggesting that number
words are attached to the analog numerical code as soon as they
are learned. These data have been taken to indicate that analog
numerical representations are used to assign semantic meanings
to numerical symbols over human development. There is also
evidence that children who have learned to count verbally, but
have not yet learned to add and subtract, psychologically “piggy
back” on analog arithmetic representations as they transition to
an understanding of exact symbolic arithmetic (40). The general
conclusion that then emerges is that the cognitive faculties that
children initially use for nonsymbolic, analog numerical oper-
ations (and which they share with nonhuman animals) provide
a scaffolding for verbal counting in early childhood.

Is “Number” Alone?
The data from the development of counting in early childhood
make the case that a primitive numerical system is conceptually
transformed into a system for symbolic numbers. However, how do
we know that analog numerical representations are the sole pre-
cursors of formal, symbolic numerical cognition? Currently, we do
not. Although numerical reasoning seems to be primitive in the
sense that it is shared among primate species, other quantitative
abilities are just as widespread. For instance, the abilities to judge
nonnumerical intensities such as size, time, brightness, height,
weight, velocity, pitch, and loudness are as common among animal
species as the ability to judge numerical values. Furthermore, all of
these quantities can be discriminated by human infants, and dis-
criminations among instances from those continua bear many of
the same properties and signatures as numerical discrimination
[e.g., ordinality, Weber’s law, the semantic congruity effect, arith-
metic transformations (see ref 11 for review)]. In adults, all of
these dimensions are effortlessly mapped to numerals. For ex-
ample, adult humans can represent loudness, handgrip pressure,
time, size, and brightness as numerical values. Finally, evidence
from the semantic congruity effect (described earlier) suggests that
many different quantitative dimensions are mentally compared by
a common process. The modularity and taxonomy of analog nu-
merical representations is a central issue for understanding the
development and origins of numerical and mathematical cogni-
tion. Here I discuss relations between numerical cognition and
other quantitative dimensions, such as size, length, duration,
brightness, pitch, and loudness.
Until recently, the cognitive and neural mechanisms of numer-

ical cognition were considered to be specialized processes. Neu-
ropsychological and neuroimaging studies of adult humans have
shown that numerical knowledge dissociates from other forms of
semantic knowledge, and it has been argued from those data that
the processes subserving numerical knowledge are domain specific
(see ref. 16 for review). For example, individuals with semantic
dementia, resulting from left temporal lobe atrophy, exhibit severe
impairments on picture and word naming tasks but can be spared
for number tasks (41). The opposite disorder of impaired nu-
merical cognition but spared semantic and linguistic knowledge
has also been demonstrated (42, 43). Moreover, in cases of de-
velopmental dyscalculia, mathematical reasoning can become se-
lectively impaired over development (without impairments to
other aspects of reasoning). Furthermore, developmental dyscal-
culia is coupled with atypical anatomy and functional responses in

the IPS (44, 45). The fact that focal brain injuries and de-
velopmental impairments, perhaps especially to the IPS, specifi-
cally impair numerical reasoning indicates that at some level of
cognitive and neural processing, numerical computation is in-
dependent. However, it remains unclear what aspects of numerical
processing operate independently of other psychophysical and
conceptual domains. Most previous neuropsychological and neu-
roimaging studies controlled for many nonnumerical abilities (eye
movements, spatial attention, memory, semantic knowledge), but
they did not test performance on continuous dimensions other
than number (length, area, brightness, etc.). Thus we cannot know
whether other quantitative abilities were simultaneously impaired
in many of those neuropsychological patients.
Recently, Marco Zorzi et al. (7) found that representations of

spatial and numerical continua can be jointly impaired in patients
with right parietal lesions and hemispatial neglect; patients not
only neglect the left visual field and place the midpoint of a line
right of center in a line bisection task, but they also overestimate
themiddle value of two numbers in a numerical bisection task. The
patients thus neglect both the left side of a line and the left side of
their mental representation of the numerical continuum. This
finding and several others have led to proposals that concepts of
“space” and “number” are interrelated (8, 9).
The degree to which “space” (e.g., size, height, or length)

interacts with numerical information is currently being investigated
with a range of methods (see refs. 4, 5, and 9 for reviews). One view
is that space and number have a biologically privileged psycho-
logical relationship (6, 46, 47). Evidence for this view comes from
developmental studies of number and space representation (6, 47).
In line-bisection tasks, incidental displays of dot arrays presented at
the endpoints of the line systematically distort preschoolers’ per-
ception of the line’s midpoint; subjects bisect the line asymmetri-
cally toward the larger number of dots (6). In addition, infants
spontaneously map number onto space when habituated to posi-
tively correlated number/line-length pairs (47). The fact that
infants map number onto space within the first months of life has
been used to argue for an innate bias to relate space and number.
Biologically privileged relations between space and number are

also indicated by the universality of their association (46). The
ability to map numbers onto space (number lines) is widespread
among human cultures. The Mundurucu, an Amazonian people
who lack a rich linguistic system for discrete number words or
symbols, can place sets of objects that vary in numerical value onto
horizontal lines in numerical order (just as Western subjects do).
That finding supports the conclusion that mapping between space
and number is not culturally determined by reading and reciting
numerical symbols, because Mundurucu do not generally use such
symbols. However, this finding does not necessarily indicate the
presence of an innate bias tomap numbers to space in humans, but
may represent an analogical relation between the ordinal prop-
erties of the stimuli or the primacy of “space” alone (48). In sup-
port of those alternatives, there is evidence that a similar mapping
to space is made with representations of pitch in typical adults
from Western cultures (49). If pitch shows the same kind of re-
lation to space as number does, then a biologically “privileged”
relation between space and number seems less likely. One possi-
bility is that the relationship is ubiquitous among any of a number
of dimensions (e.g.., pitch, number, length, loudness, etc). Alter-
natively, number and space and pitch and space could be related
because of a privileged representation of space alone, which
grounds a number of quantitative representations.
Several researchers have suggested deep psychological inter-

actions not just between number and space but among many
quantitative dimensions. In their review of behavioral data from
humans and other animals, Gallistel and Gelman (50) argued that
although number is objectively a discrete property, it should be
represented with an analog magnitude code. They argued that
animals must combine discrete number with continuous quantities
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inmaking decisions. For example, they observed that animals need
to combine estimated time and amount of potential food inmaking
foraging decisions (i.e., for “rate”). Because natural numbers are
discrete and time is continuous, combining information from these
incompatible formats necessitates conversion to a common analog
format. The same argument could be applied to “density,” which
integrates information about number and surface area. This idea
implicates the possibility of common representations and shared
computations for multiple quantities.
Studies in young children provide evidence that different

quantitative representations have a common foundation, in the
sense that they develop together. As described earlier, numerical
discriminations are modulated by the ratio between the values, as
per Weber’s law. In human infants, the ratio effects for judg-
ments of size, time, and number are refined at a similar rate of
development (11, 51, 52). Infants’ discriminations of size, time,
and number improve by approximately 30% between 6 and 9 mo
of age. Similarly, in children, the precision of numerical dis-
crimination improves from ages 6 to 8 y, and the discrimination
of luminance, duration, and length systematically follow the
same developmental trajectory (53, 54). Because they develop at
the same rate, it is likely that either the same mechanism
underlies the different abilities or that different mechanisms are
subject to the same constraints. The developmental trajectories
of the discrimination of other quantities, such as loudness, pitch,
pressure, temperature, density, motion, and saturation, have not
been tested. However, there is evidence that young children and
even infants can form compatible representations across many of
these different dimensions (55–58).
As mentioned earlier, the dimensions of space and number can

be related to one another already in infancy (47). One recent study
showed that 9-mo-olds were equally likely to transfer an arbitrary,
experimentally learnedmagnitude-to-texture association from one
dimension (e.g., number) to another dimension (size or duration)
(59). In addition, 9-mo-olds can readily learn pairs of positively
(but not negatively) correlated line lengths and tone durations
(60), suggesting that infants at least can represent an abstract
“more-than” and “less-than” representation that applies to both
dimensions. However, 9-mo-old infants do not show equal sensi-
tivity to monotonic pairings between the dimensions of loudness
and space as they do for pairing of space and time (60). Those
findings suggest that there may be an asymmetry between magni-
tudes in their intrinsic ordinal associations. It is important to note,
however, that asymmetries in relations between magnitudes could
arise either through a biologically privileged psychological map-
ping (6) or through correlational and statistical learning (see ref. 3
for discussion).
Perhaps the best evidence for early-developing psychological

relations among quantities is that infants at 4 mo of age sponta-
neously prefer to look at a ball that is bouncing congruently with
the pitch of an auditory stimulus (the ball goes up when the pitch
goes up) compared with a ball that is bouncing incongruently with
pitch. In addition, they prefer to look at a shape that is getting
sharper as the pitch of the auditory stimulus gets higher than the
reverse (58). Infants are thus capable of aligning the dimensions of
pitch and space (height) as well as pitch and shape (sharpness)
early in development. Similarly, 3-y-olds reliably match high-
pitched sounds to smaller and brighter balls in a categorization
task (56). Those data show that magnitude dimensions beyond the
canonical “privileged” dimensions of space and number can be
mapped onto each other early in development.
Relations among different quantities also have been found at

the neural level in adult humans and nonhuman primates. As
mentioned above, individuals with spatial neglect resulting from
damage to parietal cortex can exhibit impaired numerical pro-
cessing. Single-neuron data from neurophysiology studies of
monkeys broadly indicate that regions of parietal cortex repre-
sent space, time, and number (61). Moreover, some data even

suggest that a single parietal neuron can represent more than
one type of magnitude. In one study (61), monkeys were trained
to perform a line-length matching task and a numerical matching
task. During stimulus presentation as well as a subsequent delay,
single neurons in the IPS responded selectively to visual stimuli
according to their numerosity or length. Although some neurons
responded only to numerosity and others only to line length,
a subset of cells (∼20%) responded to both magnitudes of line
length and numerical value. These and other studies, including
functional MRI studies of adults, have led some researchers to
argue for a “distributed but overlapping” representation of dif-
ferent magnitudes at the neural level (4, 8, 61). Simply put,
different types of magnitude representation, including size,
number, and time (and possibly others such as brightness), share
some neural resources in parietal cortex but not others. The next
section discusses some possible explanations of the origin of the
relationship between number and other quantitative dimensions.

How Is Number Linked to Other Quantities?
How do different quantitative dimensions become related in the
mind and brain in thefirst place?Wehave recently reviewed existing
theoretical frameworks for how quantitative relations might origi-
nate (3). Here, I briefly sketch five mechanisms for how different
quantities could become related in the mind. These hypotheses are
not mutually exclusive and may even be complementary.

Correlational and Statistical Associations. Learning via association
and correlation is the classic developmental account of the ori-
gins of abstract percepts and concepts (e.g., ref. 62). On this
view, integrated representations of information coming from
separate senses, modalities, or cognitive domains arise from
exposure to correlations in the environment. Under this account,
relations among magnitudes would arise from the strength of
their correlations in the natural environment. For example, it
takes a long time to walk a great distance (time and space are
correlated), and a large number of a particular object tends
to take up more surface area than a small number of that
object (number and space are correlated). In this way, empirical
correlations between different quantities can be absorbed
through experience.

Analogical Reasoning. Another possibility is that conceptual align-
ment of relational information, termed “structural similarity,”
mediates mapping among magnitude dimensions (55). On this
view, cross-dimensional mapping could be a form of analogy.
Relations between magnitudes could develop through conceptual
knowledge of how those dimensions are structured (60). For ex-
ample, knowledge of the conceptual fact that time and number are
ordinal andmonotonic dimensions (they are organized from small/
short to large/long) could serve as the cognitive basis for identi-
fying relations among those dimensions.

Amodal Representations. A third conceptual framework that could
be useful for understanding relations among magnitudes derives
from the literature on cross-modal sensory perception. Gibson (63)
argued that an abstract, amodal representation of intensity or
amount of stimulation is present from birth or very early in infancy.
On her view, amodal representations can take one of two forms: (i)
intersensory redundancy (e.g., timing information about hammer
strikes can be sampled from both the auditory and visual modali-
ties), and (ii) relative intensity (e.g., “sharpness, bluntness, and
jerkiness”; ref. 63, p. 219). Under a conceptualization ofmagnitude
representation within this framework, redundancy of information
would be the main source of representational overlap. For exam-
ple, a bright light could bemapped to a loud tone because they both
evoke an amodal representation of relatively high intensity.
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Automatic Cross-Activation. A fourth hypothesis is suggested by
evidence that infants experience something akin to synesthesia of
sensory representations near birth (reviewed in ref. 64). A strong
version of this hypothesis claims that a percept experienced in
one modality automatically stimulates a percept in another
modality. Over the course of the first year of life, these associ-
ated percepts become weaker as overabundant neural con-
nections between different functional areas of the brain become
pruned or inhibited. Magnitudes, under a similar conceptualiza-
tion, might be related via automatic cross-activation of dimension
representations. This could imply that patterns of associations
(mappings) between many magnitudes are initially strong in in-
fancy, then get weaker during the first year(s), and then return to
a strong state later in development. Generally speaking, the
developmental data from cross-modal perception indicate that
patterns of associations among magnitudes might not strengthen
straightforwardly over development.

Evolutionary History. A final possibility is that relations among
magnitudes derive from their evolutionary history rather than
solely from developmental processes that unfold within an in-
dividual lifespan. On this view, one quantitative dimension
evolved from another, inheriting functional similarities and po-
tentially mutual dependencies in neural and computational
operations. For example, many magnitude representations could
have emerged from descent with modification of the functional
substrates that code for space, resulting in a common psycho-
logical and neural code for dimensions such as space, number,
time, loudness, brightness, and pitch (3).
Clearly there is a dense set of possibilities for how different

quantities could come to be related in the mind and brain. The
five hypotheses sketched above address different levels of in-
fluence ranging from ontogeny to phylogeny. They also address
different levels of psychological functioning ranging from basic
representations of psychophysical values to abstract perceptual
and conceptual relations. Different levels of analysis will be
important for understanding the full taxonomy of numerical
cognition in humans. However, although questions remain as to
how primitive numerical representations are organized with re-
spect to other types of quantities (e.g., size, time, loudness), it is
clear that human children use those primitive numerical repre-
sentations to learn the process of verbal counting early in de-
velopment. Verbal counting (discussed earlier) is the first formal
cognitive step toward acquiring the uniquely human capacity for
complex symbolic math. In the next section we discuss how the
“primitive” analog numerical abilities are related to symbolic
math in humans.

Origins of Math IQ
A further issue central to understanding the taxonomy of primitive
numerical cognition is the extent to which analog numerical abil-
ities bear a neural relationship with full-blown formal mathematics
IQ. Researchers have begun to examine, in humans, how formal
math intelligence may be modulated by developments in the
“primitive” analog numerical system that is shared by nonhuman
primates, adult humans, and children. These studies have largely
hinged on analyses of individual differences in numerical and
mathematical abilities.
Individual differences inmath IQ are predicted by differences in

analog numerical sensitivity (18, 65, 66). Studies with children
indicate that analog numerical ability correlates with performance
on math IQ tests and that formal math ability is more closely
correlated with analog numerical abilities than it is with other
formal abilities, such as reading. For example, in Fig. 6, adoles-
cents’ analog numerical ability (measured by theNumericalWeber
Fraction) correlates with their math IQ from early childhood
[measured by the Test of Early Mathematics Ability (TEMA)-2
test score]. This and similar findings indicate that the “primitive”

ability to estimate numerical values from sets of objects is related
to the development of full-blown math skills. Other studies high-
light the role of executive function and working memory in the
development of formal mathematical reasoning (67–69). To-
gether, these studies indicate a need to understand the relative
contributions of domain-specific and domain-general processes to
formal mathematical skill.
Behavioral data, like those described earlier, provide evidence of

a relationship between the skills required for analog numerical
processing and those that are used in formal mathematics by chil-
dren. Neuroimaging studies of children can provide an independent
source of data on whether there is a common foundation for analog
numerical abilities and formal math by testing whether a common
neural substrate underlies both faculties. As described above, ana-
log quantity judgments recruit regions of the IPS in adult humans,
human children, and nonhuman primates. One issue is whether the
same neural patterns that are evoked during analog numerical
processing are observed when children and adults process the
symbolic numbers that are unique to human culture (e.g., numerals,
number words). Several studies suggest that they do: regions of the
IPS exhibit activity that is greater for numerical symbols compared
with control stimuli, and those IPS regions also exhibit the nu-
merical distance and ratio effects in their neural responses (2, 70–
73). Research further suggests that the same neural response pat-
terns are elicited for both symbolic and nonsymbolic (analog)
numbers in the same subjects (72). Together, these results implicate
neural overlap in the substrates underlying symbolic and non-
symbolic (analog) numerical representations in humans.
In humans, a second brain region is often recruited during

symbolic numerical tasks: the prefrontal cortex, particularly the
inferior frontal gyrus, bordering insular cortex (72–75). Structur-
ally, the prefrontal cortex is thought to be unique in primates
compared with other mammals (76). In humans the prefrontal
cortex responds during many types of abstract judgments (77), and
several studies have noted a unique involvement of the prefrontal
cortex in the development of semantic representations, symbols,
and rules (see ref. 78 for review). A pattern of greater activation of
prefrontal sites in children compared with adults has also been
observed for numerical and basic mathematical tasks (73, 74, 79).
The role of prefrontal cortex in children’s symbolic numerical
processing is related to performance factors such as response time,
or “time on task” (75; see also ref. 80), which could reflect the
nascent state of children’s abstract, symbolic numerical repre-
sentations. Studies with nonhuman primates have suggested that
they too engage prefrontal cortex during numerical processing (see
ref. 78 for review) and that prefrontal regions play a unique role in
associating analog numerical values with arbitrary symbols at the
level of single neurons in monkeys (81).

Fig. 6. Childhood math IQ (measured by the TEMA-2) is correlated with the
precision of analog numerical discrimination (measured by subjects’ Weber
fractions). A higher Weber fraction reflects worse discrimination. Redrawn
from Halberda et al. (18).
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Findings that highlight mutual involvement of the IPS and
prefrontal cortex in basic numerical tasks have led to the hy-
pothesis that interactions between frontal and parietal regions
are important for the development of uniquely human numerical
cognition, such as symbolic coding. Specifically, it has been pro-
posed that the IPS computes “primitive” analog numerical rep-
resentations and the prefrontal cortex facilitates links between
those analog numerical computations and symbolic number rep-
resentations in humans (73, 78). If this hypothesis is correct then
network-level neural synchrony between frontal and parietal
regions should predict formal mathematics development in
humans. That is, individual variability in the strength of correla-
tions between neural responses in frontal and parietal regions, or
“functional connectivity,” should be related to individual vari-
ability in mathematics performance. We have recently tested this
hypothesis and found that number-specific functional connectivity
of the fronto-parietal network does predict children’s math IQ test
scores (independently of their verbal IQ test scores) (75). The
implication is that number-specific changes in the interactions
between frontal and parietal regions are related to the develop-
ment of symbolic, formal math concepts in children. This general
conclusion is in line with the hypothesis that interactions between
the “primitive” numerical operations of the IPS and the abstract,
symbolic operations of frontal cortex give rise to formal mathe-
matics concepts in humans.

Conclusion
The goal of this review has been to examine the origins and orga-
nization of numerical abilities ranging fromanalog quantification to
formal arithmetic. The general hypothesis is that the uniquely hu-
man ability to perform complex and sophisticated mathematics can
be traced back to a simpler computational system that is shared
among many animals: the analog numerical system. Humans and
nonhuman animals possess a common system formaking numerical
judgments via analog representations. Throughout development,
analog numerical representations interact with the uniquely human
ability to represent numerical values symbolically, suggesting a re-
lationship between “primitive” and modern numerical systems in
humans. Data from neural analyses of numerical processing sup-
port this conclusion and provide independent confirmation that
these are in fact related systems. Questions remain regarding the
precise taxonomy of the development and organization of numer-
ical information, and its relationship to other domains, such as
“space.” However, the general nature of the relationship between
“primitive” and modern numbers seems to derive from evolution-
ary constraints on the structure of numerical concepts in the mind
and brain as well as the conceptual and neural foundation that
evolution has provided for the development of numerical thinking
in humans.
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