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Assembly of a functioning neuronal synapse requires the precisely
coordinated synthesis of many proteins. To understand the evolu-
tion of this complex cellularmachine, we tracked the developmental
expression patterns of a core set of conserved synaptic genes across
a representative sampling of the animal kingdom. Coregulation, as
measured by correlation of gene expression over development,
showed a marked increase as functional nervous systems emerged.
In the earliest branching animal phyla (Porifera), in which a nearly
complete set of synaptic genes exists in the absence of morpholog-
ical synapses, these “protosynaptic” genes displayed a lack of global
coregulation although smallmodules of coexpressed genes are read-
ily detectable by using network analysis techniques. These findings
suggest that functional synapses evolved by exapting preexisting
cellular machines, likely through some modification of regulatory
circuitry. Evolutionarily ancient modules continue to operate seam-
lessly within the synapses of modern animals. This work shows that
the application of network techniques to emerging genomic and
expression data can provide insights into the evolution of complex
cellular machines such as the synapse.
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In the tree of life, sponges (Porifera), generally recognized as the
oldest surviving metazoan phyletic lineage (Fig. 1B), occupy

a highly informative position for understanding the evolution of
features that uniquely characterize animals (1). The synapse,
a cellular machine formed through the dynamic assembly of
multiple proteins that together perform a specific biological
function, is one such metazoan specialization. The synaptic ma-
chinery delivers a chemical signal via vesicle fusion at the pre-
synaptic neuronal membrane to postsynaptic receptors, which
convert that signal back to an electrical impulse in the postsynaptic
neuronal cell. Surprisingly, the genome of the Poriferan demo-
sponge, Amphimedon queenslandica, contains an almost complete
set of genes homologous to those found in mammalian synapses
(Fig. 1A), although the organism does not assemble any structure
morphologically resembling a synapse (1, 2). Although limited
gene innovation and the invention of new protein interaction sites
can partially explain how preexisting genes came together to form
the synaptic complex (3), the multiple evolutionary steps involved
in building a cellular machine through the assembly of an in-
teraction network that can operate as a unit with a discrete bi-
ological function remains unknown.
Changes in conserved transcriptional programs arising from

modification of instructions encoded in the genome have contrib-
uted to our understanding of animal evolution (4–7). Specific pat-
terns of expression can define discrete tissues, cell types, and even
functional protein complexes. Genes with similar expression pat-
terns often have similar function (8). Furthermore, when comparing
orthologues across divergent species, highly conserved coexpression
is a strong predictor of shared function in similar pathways (9–11).
These results suggest that functionally related genesmight be under
similar expression constraints (12). Thus, changes in coexpression

relationships for any group of genesmay contain information on the
assembly and evolution of cellular machines. To understand the
evolutionary transition leading to the emergence of a functional
synapse, we used network analysis to identify unique patterns of
synaptic gene coexpression in representative species from diverse
phylogenetic positions. We show that “protosynaptic” genes have
an inherent modular structure and that the coregulatory links be-
tween these modules characterize species with functional synapses.
In contrast, ancient eukaryotic cellular machines, such as the pro-
teasome and nuclear pore, already operate in early metazoans, and
their associated genes display highly correlated expression patterns
over development. These findings suggest that reorganization of
gene expression, most likely through the modification of tran-
scriptional regulation, was a key factor in the evolution of cellular
machines such as the synapse.

Results
To study functionalization of the synaptic gene network (Fig. 2A
and Fig. S1A), we obtained the expression profiles of sponge
synaptic gene homologues by sequencing the A. queenslandica
transcriptome at four developmental stages from larva to adult.
For comparison, expression data were also obtained for the same
set of synaptic genes from five representative animals with varying
complexities in tissue organization (Fig. 1B). Animal species in-
cluded in this study were the cnidarian coral, Acropora millepora;
invertebrate bilaterians, Caenorhabditis elegans (nematode) and
Drosophila melanogaster (arthropod); and vertebrates,Danio rerio
(zebrafish) and Xenopus tropicalis (frog) (13–17). The correlation
matrix for synaptic gene homologues from each species was con-
structed by computing the Pearson correlation coefficient between
all pairs of gene expression profiles across development (Fig. 3A).
The correlation matrix represents a network in which the genes
are nodes and the correlations between gene expression patterns
are edges. We averaged all elements of the correlation matrix to
obtain a measure of connectivity or coregulation,R (Fig. 3 B,D, F,
and H). By using a community detection algorithm (18–20), the
modularity, Q, of each network was computed by determining the
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optimal partition of the network into communities whose nodes
were more connected to other nodes inside of their own com-
munity than expected in a random null model (Fig. 3 C, E,G, and
I). The modularity, Q, can be interpreted as a measure of the
cohesiveness of coregulation: higher Q values indicate more seg-
regation between coregulated groups. To determine the statistical
significance of our results, we computed the same properties (R
and Q) for various random control models.
The synaptic gene expression profiles were more highly cor-

related in eumetazoan species than in the sponge (Fig. 3B). This
is apparent in the cnidarian coral, A. millepora, which possesses
nerve cells organized into a simple diffuse net. The bilaterian
synaptic gene networks showed even greater coregulation com-
pared with sponge or coral. Synaptic genes showed significantly
increased correlation compared with permuted and random con-
trols in all species (Fig. 3B and Table S1). To verify the observed
differences in expression coregulation, we performed pairwise
comparisons of subsets of synaptic genes common between species.
Comparison of genes found in sponge and the other five species
showed that the increased correlation in eumetazoans was signif-
icant (P < 1 × 10−5, two-tailed t test; Table S2). Pairwise com-
parison of average coregulation for genes common between coral
and each of the other species further revealed significantly greater
correlation in bilaterian organisms (P< 1× 10−10, two-tailed t test).

These pairwise correlation values were significantly greater than
coregulation within three separate random control models (P <
0.05, two-tailed t test; Materials and Methods). However, Q values
for most of the synaptic gene networks did not show the consistent
decrease relative to controls that would be expected in a set of
genes that were coherently coregulated. This suggests that the
synaptic gene network is composed of subsets of genes with dis-
tinguishable differences in their developmental expression pat-
terns, similar to what we would expect from a random collection of
genes taken from the transcriptome. These distinct modules may
be performing disparate activities that are necessary for the overall
function of the synaptic machinery (Fig. 3C and Table S1).
The detection of coregulated gene communities is a data-driven

process that is not biased by any prior knowledge of function. We
sought to determine whether functionally defined subsets of syn-
aptic proteins corresponded to the gene communities found in the
coregulation modules. Nodes in the synaptic protein interaction
network of each species were colored according to the coregulation
module from which they were derived (Fig. 4A). Module compo-
sition (i.e., node colors) of the three largest functional complexes
were tabulated (Fig. 4B). Those genes which comprise the post-
synaptic density tended to fall within a single module for most
eumetazoans. This same tendency was also true for the synaptic
vesicle genes inmost bilaterians. In contrast, sponge synaptic genes
in these functional complexes showed a more heterogenous ex-
pression pattern that appeared to follow a different regulatory
logic than that of functional synaptic networks, as reflected by the
greater diversity in module composition within each biological
complex. One striking exception is the vacuolar ATPase complex
(vATPase), which is tightly coregulated even in sponge, suggesting
a gain of functionality long before animal divergence (21). It should
be noted, however, that, although we did not see similar module
enrichment patterns for these functional complexes in the frog, we
did observe a strong correlation of synaptic gene expression in this
species (Fig. 3A).
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Like the synaptic network, the epithelial network also lacks
a morphological correlate in the sponge. In epithelial cells, the
adherens junction links to apical-basal polarity genes and Wnt/
planar polarity genes (Fig. 2B and Fig. S1B). Although A. queens-
landica expresses many orthologues of epithelial genes, the sponge
exhibits only rudimentary features of a functional epithelia (22, 23).
As in the synaptic gene set analysis, we extracted the expression
patterns of epithelial genes from six species and calculated the
average correlation, R, and modularity, Q, of the coregulation
network (Fig. 3 D and E). The epithelial network in all species that
were tested showed significantly greaterRwhen compared pairwise
vs sponge (P < 1 × 10−8, two-tailed t test; Table S2). As in the
synaptic network, the modularity of epithelial networks was not
consistently lower compared with random controls for most of the
species tested.
Neurons and epithelial cells and their defining cellular

machines appear in eumetazoans after sponges diverged from
other animals. We asked whether genes drawn from more an-
cient machines present in all eukaryotes might show a different
pattern of expression characteristic of machines that were
functionalized before the origin of animals. We performed
a similar modularity optimization on transcriptome data for
homologues of genes in the nuclear pore complex (NPC) and the
26S proteasome (Fig. 2 C and D and Fig. S1 C and D). These
networks are highly interconnected and exhibit a negatively
skewed degree distribution, which differs from the relatively
large hubs and positively skewed degree distribution observed in
mammalian synaptic and epithelial networks (Fig. 2E).
The nuclear envelope is a defining feature of eukaryotic cells

(24). Transport of molecules between the nucleus and cytoplasm is
mediated by the NPC, which is made up of approximately 30
nucleoporin genes. Coregulation analysis of nucleoporin homo-
logues represented in the transcriptome set revealed higher average
correlation and generally lower modularity compared with the
synaptic or epithelial networks in the same species (Fig. 3 F andG).
Most of the NPC networks showed consistently greater R and lower
Q compared with permuted or random size-matched data, sug-
gesting that the components of the NPC act as a single functional
unit (Table S1). In contrast, greater modularity of the synaptic and
epithelial polarity networks suggests a requirement for some mod-
ularity in the operation of these machines, perhaps as a result of the
presence of ancient submachines, such as the vATPase community.
The 26S proteasome is a well conserved protein degradation

machine composed of products from more than 31 genes (25).
Coregulation analysis of homologues of proteasomal genes
revealed that, like the NPC, the proteasome has higher average
correlation and lower modularity compared with the synaptic or
epithelial networks within each species (Fig. 3 H and I). All
eumetazoans showed significantly higher correlation when com-
pared pairwise vs. sponge (P < 1 × 10−52, two-tailed t test; Table
S2). Coregulation and modularity of proteasomal genes differed
significantly from permuted or random data, except in the sponge
(Table S1). Nevertheless, in all species tested, including the
sponge, the proteasome gene set emerged as a distinct community
when analyzed together with NPC genes (Fig. 5) and is therefore
likely to represent a functionally significant module.
In a unicellular eukaryote, like the yeast, Saccharomyces cer-

evisiae, the NPC and proteasome gene networks exhibit high cor-
relation and low modularity that is quite similar to the average
values observed for the metazoans (Table S1). These findings
further support the hypothesis that gene networks that establish
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their modern function long before the origin of metazoa exhibit
significantly higher correlation and lower modularity, consistent
with a greater andmore homogeneous connectivity between genes.
These results show that data-driven detection of transcrip-

tional expression patterns can reliably reveal a reorganization of
gene networks in association with the emergence of their modern
collective function from the unknown functions of these same
gene sets in the common animal ancestor. This reorganization
appears as increased connectivity and a change in the network
structure with functional complexes clustering into coregulated
modules. In contrast, more ancient machines, such as the pro-
teasome and the NPC, show a cohesiveness of expression as far
back as the eukaryotic ancestor.

Discussion
Synaptic proteins must be available in concentrations that drive
self-assembly by mass action according to the affinities among their
various interaction domains. Among the core features of synapses
are scaffolding proteins that position receptors and ion channels in
register with synaptic vesicles across the synaptic cleft and link the
pre- and postsynaptic elements to intracellular signaling cascades.
Coordinated expression of these proteins, as well as the affinity of
the interactions, are among the drivers of synapse assembly. Posi-
tive selection at specific sites in PDZ scaffolds appear to have roles
in determining the binding partners of these highly connected
proteins (3), an observation consistent with network growth by link
dynamics, i.e., link detachment and attachment (26). Just as
mutations in coding sequences can change link dynamics and en-
able new protein–protein interactions, mutations in cis regulatory
sequences can lead to the evolution of new transcriptional linkages
and coexpression of gene batteries that were not previously asso-
ciated. In fact, the sponge already possesses homologues of genes
that function in bilaterian neurogenesis, although it is yet to be
determined if these factors were responsible for a biological unit
originating in the sponge ancestor that was selected for an unknown
function and later exapted to assemble the synapse (27). These
conserved bilaterian developmental and neurogenic genes are

associated with spatial patterning of the cnidarian nerve net (28,
29). Further modification of gene regulatory mechanisms in ver-
tebrates placed many synaptic genes under the control of the
transcriptional repressor, REST, thus ensuring exclusive and co-
ordinated expression in neurons (30–32).
The hierarchical structure of gene regulatory signaling networks

that control the body plan are thought to evolve by changes in cis
regulatory regions resulting in changes in timing, level, and location
of gene expression (33). In contrast, the network edges of cellular
machines represent physical interactions rather than a cascade of
signaling events (34). Nevertheless, the resolution of a signaling or
interaction network depends on the extent of coregulatory data
available to inform the graph edges. Our analysis required that we
compare the coregulation and modularity of the same set of genes;
however, inclusion of genes linked to the synaptic network that are
not shared between the comparison groups would likely improve
the coregulation signal as gene innovation and duplication can af-
fect network structure through dynamic interactome rewiring (35).
Although these limitations increase the likelihood of detecting bi-
ologically spurious correlations andmay contribute to the apparent
modularity observed in some random gene sets, the ability of the
community detection algorithm to partition genes into their re-
spective cellular machines indicates a functional correlate of the
structural communities derived simply from transcriptional cor-
egulation (Fig. 5). The generation of more transcriptomes at finer
temporal and spatial resolution and the sequencing of genomes
from other basal metazoans, as well as improved homologue de-
tection, may strengthen or weaken an alternative explanation that
the gene expression patterns inA. queenslandica represent a loss of
more ancient gene regulatory patterns.
Evolutionary growth of gene interaction networks is a key facet

of organismal complexity. Several publications have claimed that
gene expression networks are scale-free (4), and although no rig-
orous proof of the claim exists, many gene expression networks do
display a tail in their degree distributions, indicating the presence
of large hubs. Interestingly, one particular model of scale-free
network growth suggests that (i) networks expand continuously by
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the addition of new nodes, and (ii) new nodes attach preferentially
to sites that are already well-connected (36). Gene number has not
increased by much over the course of metazoan evolution. Thus,
the expansion of gene interaction networks, which is required to
functionalize metazoan cellular machines, places an exceptionally
high premium on enhancing coregulatory patterns between
existing genes.

Conclusions
By using genome-wide transcriptome data, we tracked the expres-
sion of a common set of synaptic genes in a representative sampling
of the animal kingdom. In bilaterians, the expression of synaptic
genes is strikingly well coordinated, with smaller coregulation
modules detectable within the expression matrix. A particularly

prominent module is the vATPase complex found within the pre-
synaptic gene set. Interestingly, synaptic genes in the earliest
branching metazoan phyla (Porifera) exhibit a lack of global co-
regulation compared with eumetazoans with functional nervous
systems. Protosynaptic gene expression modules from the sponge,
A. queenslandica, which lacks synapses and a nervous system, but
possesses a nearly complete complement of synaptic genes, are
organized into independent communities. These findings suggest
that functional synapses evolved through the exaptation of preex-
isting genes and smaller cellular machines, presumably by modifi-
cation of regulatory circuitries resulting in coordinated neuronal
expression. This work demonstrates that the modularity approach
based on network theory provides a very simple and data-driven
method for the identification of gene communities, linking this
study to a larger array of network diagnostics that could be used in
subsequent investigations of the topological organization of gene
coexpression networks across species.

Materials and Methods
Expression Data. Genes in the synaptic, epithelial, NPC, and 26S proteasome
networks were compiled from the literature (1, 23–25). Protein interaction
networks were based on the human interactome annotated in STRING (37)
and visualized by using Cytoscape (38). Homologues for genes in these
networks were determined by reciprocal best-hit BLAST alignments of hu-
man gene sequences to the genome of each species of interest. Expression
data for gene homologues was extracted from transcriptomes obtained by
RNA sequencing of four developmental stages in sponge, A. queenslandica
(SI Materials and Methods); six experimental treatments of coral larvae,
A. millepora (16); four developmental stages in worm, C. elegans (15); and
15 developmental stages in fly, D. melanogaster (14). Microarray data for 70
developmental stages in zebrafish, D. rerio (13); and 14 developmental
stages in frog, X. tropicalis (17), were also included. Microarray expression
data for the yeast, S. cerevisiae, was obtained from cultures grown to sta-
tionary phase (39). To compare expression patterns in transcriptomes
obtained by using different methods, the expression for every gene within
each dataset was normalized to its maximum value across development
(Dataset S1).

Coregulation and Modularity Analysis. For each organism, the strength of
genetic coregulation of any two genes throughout development was esti-
mated by computing the Pearson correlation coefficient of expression for
those two genes over development. By estimating the coregulation strength
for all possible pairs of genes, we constructed organism-specific N×N co-
regulation networks in which genes were represented by nodes and con-
nections between genes were weighted by the correlation between their
expression levels over development. These coregulation networks were
characterized by two diagnostic variables: the average correlation, R, and
the modularity, Q, as defined in the following paragraphs.

The first diagnostic, the average correlation R, provides a measure of
within-network connectivity which can be interpreted as a measure of co-
regulation. Significant differences in network coregulation between species
were identified using pairwise two-tailed t tests of the correlation matrix
elements. For these tests, correlation matrices were computed only for the
sets of genes that were common between the two species being compared.
These union gene sets for pairwise comparisons were constructed without
duplicates by using only genes with the best BLAST score to the human
protein sequence.

The second diagnostic, the modularity Q, provides a measure of com-
munity structure in the coregulation matrix. Importantly, the correlation
matrix we used to examine the amount of coregulation (R) can equivalently
be viewed as a complex network in which gene–gene edges are signed (i.e.,
positive or negative correlations) and weighted (correlations range from −1
to 1). In each organism’s coregulation network, we tested for the presence
of uniquely coregulated groups of genes by using the community detection
approach (20) of optimizing modularity (18) by using the Louvain method
(19) [note that a second heuristic, spectral optimization (40), gave nearly
identical results: r = 0.9960, P < 0.01; Table S3]. We define the correlation
matrix A and then define wij

+ to be an N×N matrix containing the positive
elements of Aij and wij

− to be an N×N matrix containing only the negative
elements of Aij. The quality function to be maximized is then given by the
following equation:
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Fig. 5. Modularity optimization detects biologically relevant gene com-
munities. (A) Heat maps represent the N×N Pearson correlation matrices for
union networks of NPC and proteasome genes (red, positive correlation;
blue, negative correlation). Average partition similarities (ave. part. sim.)
computed from permutation testing with 1,000 iterations showed that,
compared with the randomly scrambled gene set, genes in the union net-
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partition between networks (P < 0.05). Color bars to the right of the heat
maps indicate the boundaries of detected coregulation modules (Modules)
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velopmental expression patterns of genes within the NPC (Left) and pro-
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where gi is the community to which node i is assigned, gj is the community to
which node j is assigned, γ+ and γ− are resolution parameters, and the fol-
lowing equation applies (41):

wþ
i ¼ Σjw

þ
ij ;w

−
i ¼ Σjw

−
ij : [2]

As evident from Eq. 1, two free parameters in the optimization of modu-
larity for such a signed, weighted network exist (42): the resolution
parameters γ+ and γ− (43). For simplicity in the present analysis, we chose the
traditional value of γ+ of 1.0 and set γ− as 0.1 to dampen the effect of
negative correlations. Particular emphasis was placed on the positive cor-
relations in the coregulation matrix for two reasons. First, we noted that
most gene sets had significantly more positive correlations, and in fact some
gene sets had no negative correlations at all (e.g., worm NPC). To ensure
that our analysis was consistent across both organisms and machines, we
dulled the influence of negative correlations by setting γ− to be an order of
magnitude smaller than γ+. Secondly, we noted that the positive correlations
showed considerably more topological organization than the negative cor-
relations (Fig. S2). Further details are provided in SI Materials and Methods.

We further examined the dependence of our results on the choice of γ+.
We varied γ+ from 0 to 2 in intervals of 0.1. We find that, for values of γ+

higher than 1, the network disintegrates into a large number of communi-
ties (Fig. S3). Our results therefore focus on the smallest yet still coherent
modular structures present in these systems.

Robustness and Statistical Validity. To examine the robustness and statistical
validity of our findings, we assessed the reliability of the group partitions and
tested our results against three separate postmodularity-optimization null
models as described in the following paragraphs.

The problem of optimizing the modularity quality function is non-
deterministic polynomial-time–hard. It is therefore important to demon-
strate that the heuristics that we used produce robust results, i.e., that the
partitions found by iterative optimizations are highly similar. For each or-
ganism and each machine, we calculated the partition similarity (44) (which
is bounded in [0,1]) between 100 separate optimizations. We found that the
average partition similarity was >0.8 for most organisms and machines, with
the mean over organisms and networks being even higher (Table S1).

In addition to quantifying the reliability of our findings, we examined the
statistical validity of our results by comparing the diagnostic variables (R andQ)
derived from the true network to those derived from networks constructed
from three separate random null models: true random (random number ma-
trix), time-permuted, and random gene set. The true random null-model net-
work is constructed by generating uniformly distributed random numbers for
the samenumber ofgenes anddevelopmental stages found in the true data set
(100 instantiations). A coregulationmatrix is then constructed andR′ andQ′ are

calculated. The time-permuted null-model network is constructed by randomly
scrambling the order of expression for each gene within the network (1,000
instantiations), recomputing the coregulationmatrix, and calculating R′ andQ′.
The random gene set null-model network was constructed by extracting the
expression data for an identically sized randomly chosen set of genes from the
whole transcriptome (100 instantiations). Further details are provided in SI
Materials and Methods. The statistical significance of the true R and Q values
was examined by using a one-sample t test in comparison with the R′ and Q′
values, respectively, for each random null model (Table S1). We noted that the
level of background correlation andmodularity observedwithin sets ofN genes
randomly selected from each of the transcriptomes is variable (Fig. S4). One
possible explanation for these differences is that the transcriptome data sets
were obtained by using different methods.

Biological Relevance of Detected Modules. We asked whether the modules
detected from the coregulation matrix could represent functional entities.
We began by calculating the correlation matrix R2 between the combined
gene set of the proteasome and NPC for each species. We optimized the
modularity quality function to partition this combined matrix into groups in
a data-driven manner. We next asked whether this data-driven partition was
statistically similar to the true partition of the genes into the two groups of
proteasome genes and NPC genes. To answer this question, we computed
the partition similarity between the data-driven partition and the true
partition and used permutation testing to determine whether this similarity
was statistically significant. The permutation test was implemented by ran-
domly reassigning genes to the two groups of “proteasome” and “NPC,”
recomputing the correlation matrix R2′, partitioning the genes in the cor-
relation matrix into modules, and computing the similarity between this
partition and the true partition. This process was repeated 1,000 times to
construct a distribution of similarity values expected under the null hy-
pothesis that the coregulation patterns between proteasome and NPC genes
do not differ. For each species, the P value to reject this null hypothesis was
computed as follows: the number of similarity values derived from the
permuted data that were greater than the real similarity value, divided by
the number of permutations.

Supporting Information. See SI Text for supporting figures, tables, methods,
discussion, and data.
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