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Abstract

Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a
neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with
impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in
ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations
potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and
G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the
proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R
mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum.
Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but
instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the
microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not
compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of
wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical
neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression
sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional
interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this
sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and
heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.
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Introduction

In recent years, a number of genes have been identified that are

associated with autosomal recessive forms of parkinsonism

including parkin (PARK2), DJ-1 (PARK7), PINK1 (PARK6) and

ATP13A2 (PARK9) [1,2,3]. Mutations in the ATP13A2 gene cause

Kufor-Rakeb syndrome (KRS), a juvenile-onset pallido-pyramidal

neurodegenerative disorder characterized by slowly progressive

levodopa-responsive parkinsonism often with additional features

including supranuclear gaze palsy, pyramidal dysfunction, dysto-

nia and dementia [4,5,6]. KRS subjects normally exhibit

generalized brain atrophy with evidence of impaired nigrostriatal

dopaminergic function [7,8,9,10]. Homozygous or compound

heterozygous mutations have been identified in KRS subjects of

families from Jordan, Chile, Afghanistan, Pakistan and China that

produce frameshift or splicing variants resulting in truncated forms

of ATP13A2 protein that are predicted to lead to a loss-of-function

[5,8,11,12]. Recent studies have shown that such truncating

mutations promote the mislocalization of ATP13A2 to the

endoplasmic reticulum (ER) in mammalian cells where they are

degraded by the proteasome via the ER-associated degradation

(ERAD) pathway [5,11,13]. A number of homozygous (F182L

[Japan] [14], G504R [Brazil] [10] and G877R [Italy] [9]) and

heterozygous (T12M [Italy] [10], G533R [Italy] [10] and A746T

[Taiwan/Singapore] [15]) missense mutations have recently been

identified in subjects with early-onset forms of familial or sporadic

parkinsonism or Parkinson’s disease (PD) suggesting that ATP13A2

mutations may also contribute to early-onset PD. Of interest,

homozygous mutations (F182L, G504R and G877R) typically

cause juvenile-onset parkinsonism (10 to 22 years) whereas

heterozygous mutations (T12M, G533R and A746T) are associ-

ated with early-onset parkinsonism (,50 years) [9,10,14,15],

potentially suggesting a gene dosage or graded effect of mutations.

In contrast to truncating KRS mutations, the mechanism by which
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missense mutations cause parkinsonism or PD is unclear at

present.

The human ATP13A2 gene encodes an 1180 amino acid

protein of ,130 kDa belonging to the P5 subfamily of P-type

transport ATPases that are predicted to contain ten transmem-

brane-spanning domains [16]. Disease-associated missense muta-

tions are located within the intracellular and extracellular regions

of the protein with a particular cluster in the second intracellular

loop region containing the catalytic ATPase domain. The

physiological function of ATP13A2 in mammalian cells is

unknown. ATP13A2 is highly expressed in the mammalian brain

with particular enrichment in the substantia nigra [5]. In PD

brains, ATP13A2 expression is up-regulated in surviving substan-

tia nigra dopaminergic neurons [5,17]. ATP13A2 is localized at

least in part to lysosomal membranes in mammalian cells where it

is predicted to participate in the active transport of cations across

vesicular membranes in an ATP-dependent manner [5,16].

However, at present, the cation transporting activity or selectivity

of ATP13A2 has not been directly demonstrated. In yeast, deletion

of the ATP13A2 ortholog, ykp9 (YOR291W), confers sensitivity to

growth in the presence of heavy metals, including cadmium

(Cd2+), manganese (Mn2+), nickel (Ni2+) and selenium (Se2+)

[18,19], implicating Ykp9 in sequestering heavy metals. ATP13A2

orthologs have been reported to protect against cellular toxicity

induced by expression of the PD-associated protein a-synuclein in

yeast, nematode worm and primary midbrain dopaminergic

neurons [18]. KRS mutations produce unstable truncated forms

of ATP13A2 but are also directly toxic to cells, induce ER stress

and sensitize cells to ER stress-induced cell death [5,11,13]. Thus,

truncating KRS mutations most likely cause disease through a loss-

of-function mechanism but they may also induce additional

cellular toxicity.

It is not yet clear how homozygous missense mutations (F182L,

G504R and G877R) in ATP13A2 associated with parkinsonism

potentially cause disease as they are likely to have subtle effects

compared to truncations [9,10,14]. At this juncture it is not clear

whether heterozygous mutations in ATP13A2 (T12M, G533R

and A746T) are truly disease-causing since they could represent

rare polymorphic variants, or pathogenic variants that contribute

to disease in combination with unidentified mutations, in a

dominant or haploinsufficient manner, or as risk factors [10,15]. A

complete understanding of the effects of disease-associated

missense mutations on the basic properties of ATP13A2 will help

to clarify their mechanism of action and whether they are likely to

represent authentic pathogenic variants. Here, we comprehen-

sively examine the effects of parkinsonism-associated homozygous

and heterozygous missense mutations on the protein stability,

subcellular localization and ATPase activity of ATP13A2, and

their effects on neuronal integrity. Our data demonstrate that

homozygous mutations commonly impair the protein stability of

ATP13A2 and lead to its enhanced proteasomal degradation,

whereas heterozygous mutations commonly impair the ATPase

activity of ATP13A2. We further demonstrate that overexpression

of wild-type ATP13A2 impairs neurite outgrowth whereas the

majority of heterozygous and homozygous missense mutations lack

this ability. Finally, the overexpression of ATP13A2 sensitizes to

neurite shortening induced by exposure to the heavy metal ions,

cadmium or nickel, and missense mutations influence this effect.

Our data support a common loss-of-function mechanism for

missense mutations associated with early-onset parkinsonism.

Results

Disease-associated missense mutations reduce the
steady-state levels of ATP13A2

To begin to explore the potential pathogenic effects of missense

mutations in ATP13A2 associated with early-onset parkinsonism,

we generated expression constructs for V5-tagged human

ATP13A2 harboring homozygous (F182L, G504R and G877R)

or heterozygous (T12M, G533R and A746T) missense mutations

(Figure 1A). We also introduced a synthetic D513N mutation that

ablates a critical P1 domain phospho-acceptor site required for

ATPase activity that is predicted to be non-functional (Figure 1A)

[16,18]. To initially explore the biochemical properties of

ATP13A2, the solubility of these variants in different extraction

buffers at ambient temperature was determined by Western

blotting from HEK-293T cell extracts transiently expressing V5-

tagged ATP13A2. ATP13A2 is most soluble in 1% Triton X-

100 buffer and Laemmli sample buffer consistent with being a

transmembrane-spanning protein (Figure 1B). We also assessed the

effects of temperature on the solubility of ATP13A2 derived from

HEK-293T cells. Increasing temperature from 60 to 90uC
decreases the solubility of ATP13A2 in 1% Triton X-100 buffer

(Figure 1C). Therefore, for all subsequent experiments we

routinely employed buffer containing 1% Triton X-100 without

heating to efficiently extract ATP13A2 from cells. Frameshift and

splicing mutations in ATP13A2 associated with KRS (i.e.

3057delC, 1632_1653dup22 and 1306+5GRA) produce truncat-

ed proteins that are unstable and degraded by the proteasome

[5,13]. To explore the effects of missense mutations on protein

stability, we examined the steady-state levels of ATP13A2 variants

in HEK-293T cells by Western blotting. The homozygous

mutations, F182L, G504R and G877R, produce a significant

decrease in the steady-state levels of Triton-soluble ATP13A2

compared to WT protein (Figure 1D). The heterozygous T12M,

G533R and A746T mutations or the non-functional variant,

D513N, do not significantly influence the levels of ATP13A2

protein (Figure 1D). Similar observations were made for the

steady-state levels of Triton-insoluble ATP13A2 thereby demon-

strating that missense mutations do not influence the detergent

solubility of ATP13A2 (Figure 1D). The homozygous mutations,

F182L, G504R and G877R, similarly reduce the steady-state

levels of ATP13A2 in the Triton-soluble fraction of human SH-

SY5Y neural cells (Figure 1E). For comparison, we also assessed

the stability of ATP13A2 harboring KRS truncation mutations.

The 3057delC, 1632_1653dup22 and 1306+5GRA mutations

markedly reduce the steady-state levels of ATP13A2 to levels

comparable to the effects of the F182L, G504R and G877R

mutations (Figure 1F). To determine the effects of missense

mutations on the steady-state mRNA expression levels of human

ATP13A2 we conducted quantitative RT-PCR for each

ATP13A2 variant expressed in HEK-293T cells. With the

exception of the G877R variant, WT and mutant ATP13A2

mRNAs are expressed at similar levels (Figure S1). G877R

ATP13A2 exhibits a non-significant reduction in mRNA expres-

sion levels suggesting that this mutation could potentially influence

mRNA transcription and/or stability, which contributes in part to

the markedly reduced steady-state protein levels observed for this

variant (Figure 1D and 1E). Collectively, our data demonstrate

that homozygous missense mutations associated with early-onset

parkinsonism commonly reduce the steady-state levels of

ATP13A2 consistent with reduced protein stability.

Pathogenic Effect of Missense Mutations in ATP13A2
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Figure 1. Disease-associated mutations reduce the steady-state levels of ATP13A2 protein. A, Predicted domain topology model of
human ATP13A2. Wild-type (WT) protein consists of ten transmembrane-spanning domains. The second intracellular loop contains the predicted
catalytic ATPase domain comprising four functional domains (A, actuator domain; P1, catalytic phosphorylation site domain; P2 and N, nucleotide
binding domains). Locations of disease-associated missense mutations are indicated by stars with homozygous variants in bold. KRS frameshift
mutations are indicated by orange and red arrows, with an in-frame exon skipping mutation shown by yellow shading. B, Western blot indicating the
buffer solubility of V5-tagged human ATP13A2 transiently expressed in HEK-293T cells. C, Western blot revealing the effect of increasing temperature
on the solubility of V5-tagged human ATP13A2 in cell extracts obtained by lysis in 1% Triton X-100 buffer. D, Triton-soluble or Triton-insoluble (RIPA-
soluble) fractions derived from HEK-293T cells transiently expressing WT or mutant V5-tagged human ATP13A2 were probed with anti-V5 antibody to

Pathogenic Effect of Missense Mutations in ATP13A2
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Homozygous missense mutations impair the protein
stability of ATP13A2

Since homozygous missense mutations dramatically reduce the

steady-state levels of ATP13A2, we next sought to determine

whether these effects are due to impaired protein stability. HEK-

293T cells transiently expressing human ATP13A2 variants (WT,

F182L, G504R and G877R) were treated with cycloheximide

(CHX) to inhibit new protein synthesis and sampled at 1, 3, 6 and

8 hours post-treatment to estimate the rate of protein turnover by

Western blotting. The levels of WT ATP13A2 are reduced by

,25% following treatment with CHX for 8 hours (Figure 2). In

contrast, the F182L and G504R variants are dramatically reduced

by ,90% after treatment with CHX for 8 hours with an estimated

half-life of ,3 hours, whereas the G877R variant is modestly

reduced by ,60% over 8 hours (Figure 2). The turnover of the

F182L and G504R ATP13A2 variants correlates closely with their

reduced steady-state protein levels (refer to Figure 1D and 1E),

whereas the reduced steady-state protein levels of the G877R

mutant result from a combination of reduced protein stability

(Figure 2) and reduced mRNA expression levels (Figure S1). Our

data demonstrate that homozygous missense mutations markedly

impair the protein stability of ATP13A2 in support of a loss-of-

function mechanism of action for these mutations.

Homozygous missense mutations enhance the
proteasomal degradation of ATP13A2

To understand the mechanism leading to the destabilization of

ATP13A2 due to homozygous missense mutations, we assessed the

degradation of ATP13A2 variants through the proteasomal and

lysosomal pathways. HEK-293T cells transiently expressing

human ATP13A2 variants (WT, F182L, G504R and G877R)

were treated for 24 hours with the proteasomal inhibitor, MG132

(5 mM) or the lysosomal inhibitor, ammonium chloride (50 mM).

The steady-state levels of Triton-soluble and Triton-insoluble

ATP13A2 were monitored by Western blotting. The levels of WT,

F182L, G504R and G877R ATP13A2 in the Triton-soluble

fraction are markedly increased by lysosome inhibition (Figure 3)

suggesting that ATP13A2 is normally degraded by the lysosomal

pathway. Proteasomal inhibition results in an increase of F182L

and G504R ATP13A2 in the Triton-soluble fraction that is more

pronounced in the Triton-insoluble fraction compared to the WT

and G877R proteins (Figure 3). Collectively, our data suggest that

ATP13A2 is normally subjected to lysosomal degradation consis-

tent with the known localization of this protein to lysosomes [5].

Furthermore, the homozygous missense mutations, F182L and

G504R, promote the proteasomal degradation of ATP13A2

consistent with their reduced protein stability.

monitor the steady-state levels of ATP13A2, or with b-tubulin antibody (or Ponceau S stain) to demonstrate equivalent protein loading. Densitometric
analysis indicates dramatically reduced steady-state levels of F182L, G504R and G877R compared with WT ATP13A2 in the Triton-soluble fraction. Bars
represent ATP13A2 levels normalized to b-tubulin (mean6SEM; n = 3–4 experiments) expressed in arbitrary units. E, Western blot analysis of the
detergent-soluble fraction from SH-SY5Y cells transiently expressing WT or mutant V5-tagged ATP13A2. Densitometric analysis of ATP13A2 levels
normalized to b-tubulin reveals reduced levels of F182L, G504R and G877R compared with WT ATP13A2 (mean6SEM; n = 3 experiments). F,
Detergent-soluble extracts from HEK-293T cell transiently expressing WT and KRS mutant V5-tagged human ATP13A2 were probed with anti-V5
antibody, or b-tubulin antibody as a loading control. KRS mutants exhibit markedly reduced steady-state levels and produce truncations due to the
loss of three (3057delC) or six (1632_1653dup22) C-terminal transmembrane domains, or the in-frame skipping of exon 13 (1306+5GRA) that
removes half of the third transmembrane domain [5]. Molecular weight markers are indicated in kilodaltons (kDa). *P,0.05, **P,0.01 or non-
significant (ns) compared to WT ATP13A2 by one-way ANOVA with Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pone.0039942.g001

Figure 2. Homozygous missense mutations enhance the protein turnover of ATP13A2. Disease-associated homozygous mutations (F182L,
G504R and G877R) enhance the turnover of ATP13A2. HEK-293T cells transiently expressing V5-tagged human ATP13A2 (WT or mutant) were treated
with cycloheximide (CHX, 200 mg/ml) at 24 h post-transfection, and cells were harvested at 0, 1, 3, 6 and 8 h thereafter. Equivalent detergent-soluble
extracts were probed with anti-V5 antibody to monitor ATP13A2 turnover, or with anti-b-tubulin antibody to demonstrate equal protein loading.
Densitometric analysis indicates the markedly increased turnover of F182L, G504R and G877R variants compared to WT ATP13A2. The levels of
ATP13A2 were normalized to b-tubulin. Bars represent ATP13A2 levels normalized to b-tubulin (mean6SEM; n = 3–4 experiments) expressed as a
percent of time point 909 for each variant. *P,0.05 or **P,0.01 compared to WT ATP13A2 within each time interval by one-way ANOVA with
Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pone.0039942.g002

Pathogenic Effect of Missense Mutations in ATP13A2
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Localization of ATP13A2 to endosomal and lysosomal
vesicles in neurons

ATP13A2 has been shown to localize to lysosomal membranes

in mammalian cells [5,11,13,17]. To explore the subcellular

localization of ATP13A2 in neurons, we assessed the co-

localization of exogenous ATP13A2 with various vesicular

markers in rat primary cortical neurons by confocal fluorescence

microscopy. Cortical neurons were co-transfected with V5-tagged

human ATP13A2 and fluorescent fusion proteins (LAMP1-RFP,

RFP-Rab5A, GFP-Rab7A, GFP-Rab9A, GFP-Rab11A and GFP-

LC3) at a 10:1 DNA molar ratio, and subjected to immunocy-

tochemistry. Human ATP13A2 adopts a punctate distribution

pattern within the soma and processes of cortical neurons

consistent with an intracellular vesicular localization (Figure 4).

ATP13A2 co-localizes to a large extent with LAMP1-RFP, a

marker of lysosomal membranes, predominantly within the

neuronal soma (Figure 4). We also explored the co-localization

of ATP13A2 with additional vesicular compartments related to the

lysosomal pathway. Human ATP13A2 markedly co-localizes with

GFP-Rab7A- and GFP-Rab9A-positive late endosomal compart-

ments and RFP-Rab5A-positive early endosomes but fails to

appreciably co-localize with GFP-Rab11A-positive recycling

endosomes or GFP-LC3-positive autophagosomes in cortical

neurons (Figure 4). Our data demonstrate that ATP13A2 normally

co-localizes with intracellular vesicular compartments in neurons,

including lysosomes and early and late endosomes.

Homozygous missense mutations disrupt the vesicular
localization of ATP13A2

KRS mutations which produce truncated forms of ATP13A2

cause the mislocalization of ATP13A2 from intracellular vesicles to

the ER where they are degraded by the ERAD pathway [5,13].

To determine whether disease-associated missense mutations

potentially act through a similar mechanism, we explored the

subcellular localization of human ATP13A2 variants expressed in

rat primary cortical neurons by confocal fluorescence microscopy.

WT and mutant (T12M, G533R D513N, A746T and G877R)

ATP13A2 adopt a similar distribution to large vesicular mem-

branes throughout the cytoplasm of neuronal soma (Figure 5). In

contrast, the F182L and G504R mutants localize to smaller diffuse

punctate structures similar to the truncated KRS mutants,

3057delC, 1632_1653dup22 and 1306+5GRA, consistent with

mislocalization to the ER (Figure 5). To further explore the

mislocalization of ATP13A2 missense mutants, we examined the

co-localization of V5-tagged ATP13A2 variants with the exoge-

nous lysosomal marker, LAMP1-RFP, or the endogenous ER

marker, calreticulin, in human SH-SY5Y neural cells (Figure 6).

WT and mutant (T12M, G533R D513N, A746T and G877R)

ATP13A2 markedly co-localize with LAMP1, whereas in com-

parison, the F182L and G504R mutants reveal markedly reduced

co-localization with LAMP1 and increased co-localization with

calreticulin thereby demonstrating mislocalization of these mutant

proteins at least in part to the ER (Figure 6). Our data reveal that

homozygous missense (F182L and G504R) or KRS mutations

disrupt the normal localization of ATP13A2 to vesicular

membranes in cortical neurons and neural cell lines, whereas

additional heterozygous (T12M, G533R or A746T), homozygous

(G877R) or non-functional (D513N) mutations do not appreciably

influence the vesicular localization of ATP13A2.

Heterozygous missense mutations impair the ATPase
activity of ATP13A2

The majority of missense mutations in ATP13A2 are located

within the second large intracellular loop that contains the ATPase

enzymatic domain (refer to Figure 1A). To explore the effects of

missense mutations on ATPase activity, we first prepared

microsomal fractions containing vesicular membranes including

lysosomes from HEK-293T cells transiently expressing human

ATP13A2 variants, since we anticipate that ATP13A2 would be

fully active within vesicular membranes. Compared to WT

ATP13A2, the F182L, G504R and G877R mutants are not

appreciably detected in microsomes even following combined

proteasome and lysosome inhibition to prevent their degradation

(Figure 7A). Heterozygous mutations (T12M, G533R and A746T)

or the ATPase-deficient D513N mutant were normally enriched in

microsomal fractions together with markers of lysosomal (LAMP1)

and Golgi (giantin) membranes (Figure 7B). As a positive control,

we employed human Secretory Pathway Ca2+-ATPase 1 (SPCA1/

ATP2C1), a related P-type ATPase localized to Golgi membranes

[20,21], which could also be detected in microsomes (Figure 7B).

Figure 3. Homozygous missense mutations enhance the degradation of ATP13A2 by the proteasome. HEK-293T cells transiently
expressing V5-tagged human ATP13A2 (WT, F182L, G504R and G877R) were treated with the proteasome inhibitor, MG132 (5 mM), or the lysosome
inhibitor, ammonium chloride (NH4Cl, 50 mM), for 24 h. Triton-soluble and Triton-insoluble (RIPA-soluble) fractions were probed with anti-V5
antibody to monitor ATP13A2 levels, or with b-tubulin antibody (or Ponceau S stain) to demonstrate equivalent protein loading. Inhibition of the
proteasome leads to the marked recovery of F182L and G504R protein variants compared to WT and G877R ATP13A2 in the Triton-soluble and -
insoluble fractions. Molecular weight markers are indicated in kilodaltons (kDa). Blots are representative of at least four independent experiments.
doi:10.1371/journal.pone.0039942.g003

Pathogenic Effect of Missense Mutations in ATP13A2
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To assess ATPase activity, microsomal fractions were used for in

vitro assays to monitor ATP13A2-mediated ATP hydrolysis by

measuring the release of free c-phosphate produced by hydrolysis

of ATP to ADP. ATPase assays were conducted in the presence of

bafilomycin A1 (5 mM) to specifically inhibit the activity of the

major vacuolar-type H+-ATPase (V-ATPase) that is present in

vesicular membranes [22]. Microsomes expressing WT ATP13A2

markedly enhance ATP hydrolysis compared to control micro-

somes, whereas microsomes containing SPCA1 exhibit substan-

tially increased ATPase activity (Figure 7C), as previously

Figure 4. Co-localization of ATP13A2 with endosomal and lysosomal vesicular membranes in neurons. Confocal fluorescence
microscopy reveals the co-localization of V5-tagged human ATP13A2 with lysosomal membranes (LAMP1-RFP), early (RFP-Rab5A) and late (GFP-
Rab7A and GFP-Rab9A) endosomal compartments but fails to appreciably co-localize with recycling endosomes (GFP-Rab11A) or autophagosomes
(GFP-LC3) within the soma of rat primary cortical neurons. Staining for the neuronal marker, bIII-tubulin, and nuclei (DAPI) are also indicated.
Cytofluorograms and correlation coefficients (Rcoloc) indicate the extent of co-localization between ATP13A2 and vesicular markers. Confocal images
are taken from a single z-plane at 0.15 mm thickness. Images are representative of at least two independent transfection experiments. Scale bar:
10 mm.
doi:10.1371/journal.pone.0039942.g004

Pathogenic Effect of Missense Mutations in ATP13A2
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described [23]. The D513N mutant dramatically impairs the ATP

hydrolysis activity of ATP13A2 (Figure 7C), consistent with

disruption of the phospho-acceptor site in the P1 domain that is

critically required for ATPase activity [16,18]. Importantly,

microsomes expressing the heterozygous T12M, G533R or

A746T mutants display significantly reduced ATPase activity

compared to WT ATP13A2 (Figure 7C). Our data suggest that

heterozygous missense mutations impair the ATPase activity of

ATP13A2.

Missense mutations impair the effects of ATP13A2 on
neurite outgrowth

KRS mutations in ATP13A2 have been shown to induce

cellular toxicity, ER stress and sensitize cells to ER stress-induced

cell death [11,13]. To initially assess the effects of ATP13A2

missense mutants on cell viability, we examined the effects of

overexpressing human ATP13A2 variants on the viability of

human SH-SY5Y neural cells using an MTS proliferation assay.

The expression of WT or missense mutant forms of ATP13A2

does not appreciably influence the basal viability of SH-SY5Y cells

(Figure 8A) demonstrating that ATP13A2 missense mutants are

not intrinsically toxic to mammalian cells unlike truncated KRS

mutants. We next sought to compare the subtle effects of

ATP13A2 variants on neuronal integrity by assessing neurite

outgrowth. Rat primary cortical cultures at DIV 3 were transiently

co-transfected with V5-tagged human ATP13A2 variants (or

empty vector) and EGFP at a 10:1 molar ratio to label transfected

neurons. After 72 hours, cultures were fixed and processed for

immunocytochemistry to identify MAP2-positive cortical neurons.

For each ATP13A2 variant, the length of EGFP+/MAP2+ cortical

neurites was determined (Figure 8B). The overexpression of WT

and F182L mutant ATP13A2 leads to a non-significant reduction

of cortical neurite length compared to control MAP2+ neurons

expressing EGFP alone, whereas expression of the T12M, G504R,

D513N and G533R variants do not differ from EGFP alone

(Figure 8C). Western blot analysis confirmed that the levels of each

human ATP13A2 variant in cortical neurons were similar to those

achieved in HEK-293T cells (data not shown). Taken together,

our data demonstrate that the overexpression of WT ATP13A2

displays a non-significant trend towards impairing neurite

Figure 5. Homozygous missense mutations disrupt the vesicular membrane localization of ATP13A2. Confocal fluorescence microscopy
reveals the cytoplasmic vesicular localization of V5-tagged human ATP13A2 variants transiently expressed in rat primary cortical neurons. WT or
missense mutant (T12M, D513N, G533R, A746T or G877R) forms of ATP13A2 adopt a similar localization to large vesicular membranes, whereas F182L
and G504R missense mutants or KRS mutants (3057delC, 1632_1653dup22 or 1306+5GRA) abnormally localize to small diffuse punctate structures.
Staining for ATP13A2 (anti-V5 antibody, green) and nuclei (DAPI, blue) are indicated. Confocal images are taken from a single z-plane at 0.15 mm
thickness. Images are representative of at least two independent transfection experiments. Scale bar: 10 mm.
doi:10.1371/journal.pone.0039942.g005

Pathogenic Effect of Missense Mutations in ATP13A2
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outgrowth whereas missense mutations in ATP13A2, with the

exception of the F182L variant, disrupt this neurite effect

consistent with a loss-of-function mechanism of action. Our data

further suggest that the F182L variant may act through both a

loss-of-function (i.e. impaired protein stability) and a gain-of-

function (i.e. impaired neurite outgrowth) mechanism similar to

KRS truncation mutations [11,13].

ATP13A2 overexpression sensitizes cortical neurons to
neurite shortening induced by heavy metals

Since the overexpression of human ATP13A2 tends to impair

the neurite outgrowth of primary cortical neurons, we next

assessed the impact of exposure to heavy metals on this neuronal

phenotype to assess the potential functional interaction between

ATP13A2 and metal cations. Primary cortical neurons were co-

transfected with V5-tagged human ATP13A2 variants (or empty

vector) and EGFP plasmids at a 10:1 molar ratio, treated after

48 hours with or without Cd2+ (30 mM) or Ni2+ (50 mM) for

24 hours, and subjected to immunocytochemistry to label MAP-

positive neurons. As before, we determined the length of EGFP+/

MAP2+ neurites for each condition (Figure 9A). In control

neurons expressing EGFP alone, treatment with 30 mM Cd2+

results in a ,33% reduction of neurite length compared to

untreated neurons (Figure 9B). In contrast, Cd2+ treatment

produces a marked ,47% reduction of neurite length in neurons

expressing WT ATP13A2, a ,59% reduction with the F182L

mutant, and a ,39% reduction with the G504R mutant

(Figure 9B). Treatment with 50 mM Ni2+ induces a ,7%

reduction of neurite length of control neurons expressing EGFP

alone, whereas neurons expressing WT, F182L or G504R

ATP13A2 exhibit a ,19%, ,20% or ,3% reduction of neurite

length, respectively, compared to untreated neurons (Figure 9B).

Mn2+ treatment fails to induce neurite shortening in the presence

or absence of ATP13A2 and was not studied further (data not

shown). Collectively, our data demonstrate that the overexpression

of ATP13A2 sensitizes neurons to impairments of neurite

outgrowth induced by exposure to cadmium or nickel ions. The

F182L mutation enhances the effects of cadmium compared to

WT ATP13A2 further suggesting enhanced neuronal toxicity of

this mutant protein, whereas the G504R mutation acts in a loss-of-

Figure 6. Homozygous F182L and G504R mutations induce the mislocalization of ATP13A2 to the endoplasmic reticulum. Confocal
fluorescence microscopy reveals the enhanced co-localization of F182L and G504R mutant ATP13A2 with the endoplasmic reticulum marker,
calreticulin, and reduced co-localization with lysosomes (LAMP1-RFP), compared to WT or missense mutant (T12M, D513N, G533R, A746T or G877R)
ATP13A2 transiently expressed in human SH-SY5Y neural cells. Staining for V5-tagged human ATP13A2 (V5, green), LAMP1-RFP (red), calreticulin
(gray) and nuclei (DAPI, blue) are indicated. Cytofluorograms and correlation coefficients (Rcoloc) indicate the extent of co-localization of ATP13A2
variants with lysosomal (LAMP1) and ER (calreticulin) markers. Confocal images are taken from a single z-plane at 0.15 mm thickness. Images are
representative of at least two independent transfection experiments. Scale bar: 10 mm.
doi:10.1371/journal.pone.0039942.g006

Figure 7. Heterozygous missense mutations impair the ATPase activity of ATP13A2. A, Microsomal fractions prepared by
ultracentrifugation from HEK-293T cells transiently expressing V5-tagged human ATP13A2 variants (or empty vector control) following treatment
for 24 hours with 5 mM MG132 and 50 mM NH4Cl to inhibit proteasomal and lysosomal degradation. Microsomes or total homogenates were probed
with anti-V5 antibody to monitor ATP13A2 levels, or with anti-LAMP1 and anti-Giantin antibodies to detect enrichment of lysosomal and Golgi
membranes, respectively. Homozygous mutants (F182L, G504R and G877R) fail to localize to microsomes. B, Microsomal fractions from HEK-293T cells
expressing WT or mutant V5-tagged ATP13A2 or HA-tagged human SPCA1 were probed with anti-V5 or anti-HA antibodies to monitor each protein
variant, or with anti-LAMP1 and anti-Giantin antibodies to detect membranes. C, ATP hydrolysis activity of ATP13A2 variants or SPCA1 was
determined in microsomal fractions by measuring the concentration of free phosphate (Pi) released from ATP. The levels of ATP13A2 in each
microsomal fraction were assessed by Western blot analysis with anti-V5 antibody, quantified by densitometry, and used for normalization of Pi
release between ATP13A2 variants. ATP hydrolysis activity is expressed as Pi release as a percent of WT ATP13A2 activity. Bars represent the
mean6SEM (n = 4 experiments). **P,0.01 compared to WT ATP13A2 by one-way ANOVA with Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pone.0039942.g007
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Figure 8. Overexpression of ATP13A2 impairs neurite outgrowth of cortical neurons. A, Viability of SH-SY5Y cells transiently expressing
V5-tagged human ATP13A2 variants at 48 h post-transfection assessed by MTS assay. Bars represent mean6SEM (n = 4 experiments). B, Rat primary
cortical neurons co-transfected at DIV 3 with V5-tagged human ATP13A2 variants (or control empty vector) and EGFP plasmids at a DNA molar ratio
of 10:1. Cultures were fixed at DIV 6. Representative fluorescent micrographs reveal the co-labeling of cortical neurons with EGFP and MAP2 for each
condition. EGFP images representing ATP13A2-positive cortical neurons were pseudo-colored with ICA to improve the contrast of neuritic processes
for length measurements. Axonal processes are indicated with arrows. Scale bar: 400 mm. C, Analysis of the length of EGFP+/MAP2+ neurites from rat
primary cortical neurons expressing V5-tagged human ATP13A2 variants (or control empty vector). Expression of WT or F182L ATP13A2 produces a
non-significant shortening of cortical axonal processes compared to control neurons expressing EGFP alone. Bars represent the length of MAP2+
neurites in mm (mean6SEM; n = 67–88 neurons from three independent cultures). Non-significant (ns) compared to control (-) by one-way ANOVA
with Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pone.0039942.g008
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Figure 9. Overexpression of ATP13A2 sensitizes cortical neurons to heavy metal-induced neurite shortening. A, Rat primary cortical
neurons were co-transfected at DIV 3 with V5-tagged human ATP13A2 variants (or control empty vector) and EGFP plasmids at a DNA molar ratio of
10:1. Cultures were treated without or with cadmium (Cd2+, 30 mM) or nickel (Ni2+, 50 mM) for 24 h and then fixed at DIV 6. Representative fluorescent
micrographs reveal the co-labeling of MAP2+ cortical neurons with EGFP for each condition. Axonal processes are indicated with arrows. Scale bar:
400 mm. B, Analysis of the length of EGFP+/MAP2+ neurites reveals that the overexpression of WT or F182L ATP13A2 sensitizes cortical neurons to
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function manner. These data support a functional interaction of

ATP13A2 with heavy metal ions in post-mitotic neurons.

Discussion

Homozygous and heterozygous missense mutations in

ATP13A2 are associated with early-onset forms of parkinsonism

[9,10,14,15]. The pathogenic mechanism(s) by which these

mutations may cause disease have not been elucidated. For

heterozygous mutations, it unclear whether they represent rare

benign polymorphic variants or authentic disease-causing variants.

Here, we demonstrate that homozygous missense mutations

(F182L and G504R) commonly exhibit reduced steady-state

levels, increased turnover, and enhanced proteasomal degradation

of ATP13A2 consistent with impaired protein stability. The

homozygous G877R mutation exhibits a combination of reduced

protein stability and reduced mRNA expression levels. In contrast,

heterozygous mutations, T12M, G533R and A746T, have small

or minimal effects on protein stability. We further demonstrate

that ATP13A2 is normally localized to cytoplasmic acidic vesicular

membranes in mammalian neurons, including lysosomes and early

and late endosomes. Similar to truncating KRS mutations [5,11],

the highly unstable F182L and G504R mutations disrupt the

cytoplasmic vesicular localization of ATP13A2 and promote its

mislocalization to the ER. Heterozygous mutations (T12M,

G533R and A746T) impair the ATPase activity of microsome-

localized ATP13A2 whereas the homozygous F182L, G504R and

G877R mutations fail to appreciably localize within microsomes.

In contrast to KRS mutations in ATP13A2 [11,13], missense

mutants are not intrinsically toxic to human cell lines. However, in

primary cortical neurons, the overexpression of wild-type

ATP13A2 compromises neuronal integrity by impairing neurite

outgrowth whereas missense mutations (with the exception of

F182L) lack this toxic effect consistent with a loss-of-function

mechanism for these mutations. ATP13A2 overexpression further

sensitizes neurons to neurite shortening induced by exposure to the

heavy metal ions, cadmium and nickel, with the F182L or G504R

mutations enhancing or reducing this sensitizing effect, respec-

tively. Collectively, our study reveals differential pathogenic effects

of missense mutations on ATP13A2 protein stability, subcellular

localization, ATPase activity and neuronal phenotypes consistent

with a common loss-of-function mechanism for the actions of

homozygous and heterozygous mutations.

Homozygous missense mutations (i.e. F182L and G504R)

markedly impair the protein stability of ATP13A2. Similar to

truncating KRS mutations (i.e. 1632_1653dup22, 3057delC,

1306+5GRA and 3253delC) that mislocalize to the ER [5,13],

the F182L and G504R mutations impair the normal localization

of ATP13A2 to vesicular membranes and facilitate mislocalization

to the ER suggesting that these mutant proteins are potentially

misfolded and may be subjected to degradation by the ERAD

pathway. The G877R mutation, although partly unstable, can

normally localize to vesicular membranes suggesting that it may

not be a major substrate of the ERAD pathway. The F182L and

G504R mutations appear to enhance the turnover of ATP13A2 by

promoting its proteasomal degradation. The F182L, G504R and

G877R mutations are localized to the first extracellular (F182L)

and second intracellular loop (G504R and G877R) regions of

ATP13A2 and most likely cause conformational alterations to

these loops that destabilize the protein. Two of these mutations

result in the non-conservative substitution of a neutral glycine

residue for a positively charged arginine residue perhaps

suggesting that simply altering the charge of this loop or increasing

the side chain length has a destabilizing conformational effect that

varies in magnitude depending on the location of this residue

within the loop i.e. G504R.G877R. The effect of substituting a

hydrophobic phenylalanine residue for a similarly hydrophobic

leucine residue at position 182 is less obvious but may relate to the

reduced bulk of the side chain due to the absence of an aromatic

benzene ring. Potentially, disease-associated missense mutations

may produce a non-functional protein that is selectively targeted

for degradation. Of note, the G504R variant is located adjacent to

the P1 domain whereas the G877R variant occupies the P2

domain, with both domains implicated to play a role in the

ATPase activity of ATP13A2 and may therefore produce a non-

functional protein. Three heterozygous mutations localized to the

intracellular N-terminal tail (T12M) and the intracellular catalytic

loop (G533R and A746T) fail to have obvious effects on protein

stability or subcellular localization suggesting that they may act

through an alternate mechanism. Accordingly, heterozygous

mutations (T12M, G533R and A746T) commonly impair the

ATPase activity of microsomal-localized ATP13A2 whereas the

homozygous F182L, G504R and G877R mutants fail to appre-

ciably localize to microsomes and were thus refractory to analysis

of ATPase activity. Missense mutations therefore appear to

commonly act through a loss-of-function mechanism by exerting

differential effects on the protein stability, subcellular localization

or ATPase activity of ATP13A2.

A potential caveat of the present study is that it relies on the

transient overexpression of human ATP13A2 variants in human

cell lines and cultured primary neurons at non-physiological

expression levels. Consistent with our study, recent studies of KRS

truncation mutants using similar overexpression approaches in a

range of mammalian cells have revealed a destabilizing effect on

the ATP13A2 protein resulting from its mislocalization to the ER

and enhanced proteasomal degradation [5,11,13,24]. Collectively,

there is strong agreement that PD-associated missense mutations

and KRS mutations act through similar mechanisms to produce a

loss-of-function effect. It will be important to confirm the

destabilizing effects of missense mutations and truncating KRS

mutations on the ATP13A2 protein in physiologically-relevant

systems such as patient-derived cells or tissues, or knockin mouse

models. Along these lines, cultured olfactory neurospheres

harboring compound heterozygous ATP13A2 mutations (i.e.

3253delC frameshift and L1059R missense mutations) reveal a

reduction in endogenous ATP13A2 mRNA levels primarily due to

nonsense-mediated decay of the 3523delC mutant mRNA

although ATP13A2 protein levels were not assessed in this model

[11]. The impact of disease-associated mutations on the stability of

the endogenous ATP13A2 protein awaits confirmation in future

studies pending the availability of appropriate cellular models or

tissues. PD-associated and KRS mutations share similar biochem-

ical effects suggesting that ATP13A2 loss-of-function is primarily

responsible for precipitating neurodegeneration. Recent studies

have employed ATP13A2 knockdown in cultured cell lines or

primary neurons, or patient-derived fibroblasts bearing ATP13A2

neurite shortening induced by treatment with 30 mM Cd2+ or 50mM Ni2+ for 24 h, compared to neurons expressing G504R ATP13A2 or EGFP alone
(control). Data represent neurite length (mean6SEM; control, n = 73–156 neurons; cadmium, n = 39–119 neurons; nickel, n = 32–72 neurons; from
three independent cultures) expressed as a % of untreated neurons (control or ATP13A2 overexpression). *P,0.05 or ***P,0.001 as indicated by one-
way ANOVA with Newman-Keuls post-hoc analysis.
doi:10.1371/journal.pone.0039942.g009
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mutations, to model the cellular consequences of disease-associ-

ated ATP13A2 mutations [17,25,26,27]. ATP13A2 knockdown

has been suggested to impair neuronal integrity and/or induce

neuronal cell death through a number of potential mechanisms,

including abnormal cation homeostasis [17], decreased macro-

autophagy [26], lysosomal dysfunction [27], a-synuclein accumu-

lation [27], and/or alterations in mitochondrial quality control

[17,25,26]. Which of these cellular abnormalities are directly

responsible for mediating neuronal damage is not yet clear but

they most likely result as a consequence of impaired lysosomal

activity. Therefore, lysosomal dysfunction potentially underlies the

pathogenic effects of ATP13A2 loss-of-function in neurons.

We find that the overexpression of ATP13A2 missense mutants

in human SH-SY5Y neural cells does not influence cell viability

suggesting that they are not intrinsically toxic. KRS mutants have

been shown to induce cell death in HeLa cells where they also

sensitize to ER stress-induced cell death [13]. However, another

study reports the lack of cell death induced by the same KRS

mutants overexpressed in rat hippocampal neurons [24]. Further-

more, in the context of Mn2+-induced cell death in cell lines and

hippocampal neurons, WT ATP13A2 protects from cell death

whereas KRS mutants lack this ability [24]. Additional toxicity

induced by KRS mutants may not therefore play a major role in

disease and could relate to overexpression at non-physiological

levels, especially given that such mutations lead to a dramatic

destabilization and degradation of ATP13A2 [5,13]. It will be

important to determine whether the expression of KRS mutants at

physiological levels in patient-derived cells and tissues similarly

induces cellular toxicity. A recent study has shown that human

olfactory neurospheres harboring compound heterozygous muta-

tions in ATP13A2 (3253delC and L1059R) exhibit signs of ER

stress although neuronal viability was not assessed [11]. In primary

cortical neurons, we find that the overexpression of WT ATP13A2

tends to impair neurite outgrowth. Consistent with a loss-of-

function effect for missense mutations, the disease-associated

T12M, G504R and G533R variants fail to influence neurite

outgrowth compared to WT ATP13A2. These effects were similar

to the effects of an ATPase-deficient D513N variant further

supporting a loss-of-function mechanism. Similar to certain

unstable KRS truncation mutants [13], the F182L variant appears

to induce additional toxicity when overexpressed since it causes a

trend of reduced neurite outgrowth of cortical neurons similar to

WT ATP13A2 despite its markedly impaired protein stability. It is

likely that these effects are exacerbated by overexpression at non-

physiological levels in neurons with the primary pathogenic effect

of the F182L mutation at physiological expression levels being a

loss-of-function due to reduced protein stability. Of note, the

heterozygous T12M and G533R variants which have no obvious

effects on protein stability or subcellular localization, have no

effect on neurite outgrowth suggesting that they may also act as a

pathogenic loss-of-function mutations albeit through an alternative

mechanism such as via reduced ATPase activity.

In support of a role for ATP13A2 in regulating the transport of

Cd2+ and Ni2+, we find that the overexpression of WT ATP13A2

sensitizes cortical neurons to neurite shortening induced by

exposure to these heavy metal ions. This finding was somewhat

unexpected as we would anticipate that ATP13A2 might protect

against Cd2+ and Ni2+-induced neuronal toxicity similar to the

reported neuroprotective effects of ATP13A2 against Mn2+ and a-

synuclein toxicity [18,24]. Consistent with a loss-of-function effect

for the G504R mutation, the overexpression of this mutant

exhibited a reduced sensitizing effect on neurite length following

Cd2+ and Ni2+ exposure compared to WT ATP13A2. In contrast,

the F182L mutation enhanced the sensitizing effect of ATP13A2

following Cd2+ exposure consistent with the enhanced neuronal

toxicity of this unstable protein following its overexpression. The

significance of neurite shortening induced by ATP13A2 is unclear

at present and could indicate impaired neuronal integrity due to

toxicity or a physiological effect of ATP13A2 in regulating

neuronal process morphology similar to the PD-associated protein

LRRK2 [28]. Nevertheless, our data support a specific functional

interaction of human ATP13A2 with Cd2+ and Ni2+ suggesting a

potential role in the transport of these metal cations in post-mitotic

mammalian neurons. Previous studies demonstrate that deletion of

the ATP13A2 ortholog, ykp9, impairs yeast cell growth in the

presence of Cd2+, Ni2+, Mn2+ and Se2+ [18,19]. Furthermore, the

expression of WT but not KRS mutant ATP13A2 in mammalian

cell lines or rat hippocampal neurons may protect from Mn2+-

induced apoptotic cell death [24]. Our recent studies have shown

that the overexpression of human ATP13A2 in primary cortical

neurons delays mitochondrial fragmentation induced by acute

exposure to cadmium [17]. Collectively, these studies support a

functional interaction between ATP13A2 and heavy metal cations,

particularly cadmium. Our future studies will continue to clarify

whether ATP13A2 can directly transport heavy metal cations

across vesicular membranes, the substrate selectivity of ATP13A2,

and the functional significance of cation transport [17].

Collectively, the present study demonstrates that disease-

associated homozygous and heterozygous missense mutations in

ATP13A2 exhibit differential pathogenic effects on protein

stability, subcellular localization, ATPase activity and neuronal

phenotypes, thereby providing support for a pathogenic loss-of-

function mechanism for these mutations in precipitating early-

onset parkinsonism.

Materials and Methods

Animals
All animal experiments were approved by the SCAV (Service de

la consommation et des affaires veterinaires) in the Canton de

Vaud (Animal authorization No. 2293), and conducted in strict

accordance with the European Union directive (2010/63/EU) for

the care and use of laboratory animals. Animals were maintained

in a pathogen-free barrier facility and exposed to a 12 h light/dark

cycle with food and water provided ad libitum. Pregnant female

Sprague-Dawley rats were obtained from Charles River Labora-

tories (L’Arbresle Cedex, France) and resulting P0 rats were used

for preparation of post-natal primary cortical cultures.

Expression plasmids and antibodies
Mammalian expression plasmids containing full-length V5-

tagged human ATP13A2 (WT, 1306+5GRA, 1632_1653dup22

and 3057delC) were kindly provided by Dr. Christian Kubisch

(University of Cologne, Germany) [5]. Disease-associated or

functional missense mutations (T12M, F182L, G504R, D513N,

G533R, A467T and G788R) were introduced into V5-tagged WT

ATP13A2 by site-directed mutagenesis using the Stratagene

QuickChange II XL kit (Agilent Technologies, La Jolla, CA,

USA) according to manufacturer’s instructions. The integrity of all

constructs was confirmed by DNA sequence analysis. As plasmid

controls, a pEGFP-N1 plasmid was obtained from Clontech

(Mountain View, CA, USA) and a pcDNA3.1 plasmid was

obtained from Invitrogen (Basel, Switzerland). A plasmid express-

ing HA-tagged human SPCA1 was kindly provided by Dr. Adam

Linstedt (Carnegie Mellon University, Pittsburgh, PA) [29].

Expression plasmids containing human EGFP-LC3B (plasmid

#11546; [30]), rat LAMP1-RFP (plasmid #1817, [31]), human

RFP-Rab5A (plasmid #14437, [32]), human GFP-Rab7A (plas-
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mid #12605; [33]), human GFP-Rab9A (plasmid #12663; [33])

and human GFP-Rab11A (plasmid #12674; [33]) were obtained

from Addgene. The following antibodies were employed: mouse

monoclonal anti-V5 and anti-V5-peroxidase (Invitrogen); mouse

monoclonal anti-MAP2 (clone HM-2) and anti-b-tubulin (clone

TUB 2.1), and rabbit polyclonal anti-bIII-tubulin (Sigma-Aldrich,

Buchs, Switzerland); mouse monoclonal anti-HA-peroxidase

(Roche Applied Science, Basel, Switzerland); mouse monoclonal

anti-LAMP1 (clone LY1C6) and rabbit monoclonal anti-calreti-

culin (clone EPR3924) (EMD Millipore, Billerica, MA, USA);

rabbit polyclonal anti-Giantin (ab24586; Abcam, Cambridge,

UK); peroxidase-coupled anti-mouse and anti-rabbit IgG, light

chain-specific secondary antibodies (Jackson ImmunoResearch,

Inc., West Grove, PA, USA); anti-rabbit IgG and anti-mouse IgG

coupled to AlexaFluor-488, -546 and -633 (Invitrogen).

Cell culture and transient transfection
Human SH-SY5Y neuroblastoma cells (CRL-2266; ATCC,

Manassas, VA, USA [34,35]) or HEK-293T cells (Invitrogen) were

maintained in Dulbeccòs modified Eagle’s Medium (Invitrogen)

supplemented with 10% foetal bovine serum (FBS) and 1X

penicillin/streptomycin at 37uC in a 5% CO2 atmosphere. Cells

were transfected with plasmid DNAs using FuGENE HD reagent

(Roche Applied Science) according to manufacturer’s recommen-

dations. For biochemical assays cells were routinely harvested at

48–72 h post-transfection.

Primary neuronal cultures
Primary cortical neurons were prepared from rats as previously

described [17,36]. Whole brains were dissected from Sprague-

Dawley P0 rats and the cerebral cortices were isolated stereo-

scopically and dissociated by digestion in media containing papain

(20U/ml, Sigma-Aldrich) and mechanical trituration. Cells were

plated in 35 mm dishes on glass coverslips coated with poly-D-

lysine (20 ng/ml; BD Biosciences, Allschwil, Switzerland) and

mouse laminin (33 mg/ml; Invitrogen) and cultured in Neurobasal

media containing B27 supplement (2% w/v), L-glutamine

(500 mM) and penicillin/streptomycin (100 U/ml) (Invitrogen).

At days-in-vitro (DIV) 3, cortical cultures were treated with cytosine

b-D-arabinofuranoside (AraC, 10 mM) to inhibit glial cell division.

Primary cortical neurons were transfected with plasmid DNAs

using Lipofectamine 2000 reagent (Invitrogen) according to

manufacturer’s instructions to a maximum of 5 mg total DNA

per 35 mm dish of cells.

Cell fractionation and western blotting
For western blotting, HEK-293T or SH-SY5Y cells maintained

in growth medium in 6 well plates (250,000 cells/well) were

transiently transfected with 2 mg of each plasmid DNA. After 48 h,

cells were harvested in media, resuspended in lysis buffer (1X PBS

pH 7.4, 1% Triton-X-100, Complete Mini protease inhibitor

cocktail [Roche Applied Sciences]) and rotated at 4uC for 1 h.

Lysates were centrifuged at 17,500 g for 10 min at 4uC, and the

resulting pellet and supernatant (Triton-soluble) fractions were

collected. The pellet was further solubilized by sonication in RIPA

buffer (10 mM Tris-HCl pH 7.4, 150 mM NaCl, 5 mM EDTA,

1% Triton-X-100, 2.5% sodium deoxycholate, 1% SDS, Com-

plete Mini protease inhibitor cocktail [Roche Applied Sciences]) to

produce the Triton-insoluble fraction (RIPA-soluble). Triton-

soluble and Triton-insoluble fractions were combined 1:1 with

2X Laemmli sample buffer (Bio-Rad AG, Reinach, Switzerland)

containing 5% 2-mercaptoethanol and resolved by SDS-PAGE

(7.5%), transferred to Protran nitrocellulose (0.2 mm; Perkin

Elmer, Schwerzenbach, Switzerland) and subjected to Western

blot analysis. Nitrocellulose membranes were probed with mouse

monoclonal anti-V5-peroxidase antibody (Invitrogen), or with

mouse monoclonal anti-b-tubulin (Sigma-Aldrich) and peroxidase-

coupled anti-mouse IgG (Jackson ImmunoResearch) antibodies to

control for protein loading. Ponceau S stain was used to assess

protein loading of the Triton-insoluble fraction. Proteins were

visualized by enhanced chemiluminescence (ECL; GE Healthcare,

Glattbrugg, Switzerland) on a FujiFilm LAS-4000 Luminescent

Image Analysis system. Quantitation of protein levels by

densitometry was conducted on acquired non-saturated images

using LabImage 1D software (Kapelan Bio-Imaging Solutions,

Leipzig, Germany).

Where indicated, HEK-293T cells were treated with 5 mM

MG132 (Enzo Life Sciences AG, Lausen, Switzerland) or 50 mM

ammonium chloride (AppliChem GmbH, Darmstadt, Germany)

for 24 h prior to harvesting. For cycloheximide (CHX) assays,

CHX (200 mg/ml; Sigma-Aldrich) was added to transfected cells

at 24 h post-transfection, and cells were harvested at 0, 1, 3, 6 and

8 h post-treatment.

Quantitative RT-PCR
Total RNA was purified from HEK-293T cells transiently

expressing human ATP13A2 variants using the RNeasy Plus kit

(Qiagen, Valencia, CA, USA) and 200 ng of total RNA was

subjected to cDNA synthesis using the High Capacity cDNA RT

kit (Applied Biosystems, Carlsbad, CA, USA). Quantitative real-

time PCR was performed on a 7900HT Real-Time PCR System

with SDS 2.3 software (Applied Biosystems) using Power SYBR

Green PCR Mastermix (Applied Biosystems). Relative expression

was calculated by normalization of plasmid-derived human

ATP13A2 expression to b-actin expression. RT minus control

samples run in parallel demonstrated negligible contamination

from ATP13A2 plasmid DNA. All Q-PCR reactions were

performed in triplicate. Primer sequences were as follows: human

b-actin, forward 59-ACCGCGAGAAGATGACCCAGA-39 and

reverse 59CAGGGATAGCACAGCCTGGATAGCA-39; plas-

mid-derived human ATP13A2, forward 59-GCAGATATCCAG-

CACAGTGG-39 and reverse 59-AGACCGAGGAGAGGGT-

TAGG-39.

ATP hydrolysis assay
ATP hydrolysis activity was measured on microsomal fractions

by monitoring the release of free c-phosphate (Pi) from ATP.

Microsomal fractions were prepared from HEK-293T cells

transiently expressing V5-tagged ATP13A2 variants or HA-tagged

SPCA1 as previously described [23]. Briefly, HEK-293T cells in

6-well plates were harvested in 600 ml hypotonic buffer (10 mM

Tris-HCl pH 7.5, 0.5 mM MgCl2, 1 mM EDTA, 1X Complete

protease inhibitor cocktail [Roche Applied Science]) and kept on

ice for 10 min. Cells were homogenized by 40 strokes in a glass

Dounce homogenizer, followed by addition of 600 ml solution M

(10 mM Tris-HCl pH 7.5, 0.5 M Sucrose, 0.3 M KCl, 6 mM b-

mercaptoethanol, 40 mM CaCl2) and a further 20 Dounce strokes.

Lysates were centrifuged at 8,000 g for 20 min at 4uC and the

resulting supernatant fraction was centrifuged at 100,000 g for

45 min. The resulting microsomal pellet was resuspended in

100 ml solution M1 (10 mM Tris-HCl pH 7.5, 0.25 M Sucrose,

0.15 M KCl, 3 mM b-mercaptoethanol, 20 mM CaCl2). Micro-

somal fractions were quantified by BCA assay (Pierce Biotechnol-

ogy, Rockford, IL) and 4 mg of microsomal proteins were used for

each ATPase assay. ATP hydrolysis activity was measured by

monitoring the release of free c-phosphate (Pi) from ATP in 96-

well plates using a high-sensitivity colorimetric ATPase Assay kit

(Innova Biosciences, Cambridge, UK) as per manufacturer’s
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recommendations. Activity of the V-ATPase was inhibited by

addition of 5 mM Bafilomycin A1 (Sigma-Aldrich) to each

microsomal fraction during the reaction. In parallel, replicate

microsomal samples without ATP were used to determine non-

specific background absorbance. Microsomal fractions from non-

transfected cells were used to determine non-specific ATPase

activity. Assay samples were incubated with 0.5 mM ATP for

30 min at room temperature, reactions were terminated, and

absorbance at 650 nm was measured. Absorbance from replicate

samples without ATP was removed from the equivalent sample

containing ATP, and the absorbance from non-transfected

microsomes was also subtracted from each sample. Microsomal

samples were subjected to Western blotting with anti-V5

antibodies and ATP13A2-V5 protein levels were determined by

densitometry and used to normalize ATPase activity in each

sample. Data represent Pi release from ATP expressed as a percent

of WT ATP13A2 activity.

Immunocytochemistry and confocal microscopy
Immunocytochemical staining was conducted as previously

described [36]. Briefly, cells grown on glass coverslips were fixed

with 4% paraformaldehyde (PFA) and incubated with primary

antibodies for 1–2 h and anti-rabbit or mouse IgG-AlexaFluor-

488, -546 or -633 secondary antibodies (Invitrogen) for 1 h. Nuclei

were stained with 49,6-diamidino-2-phenylindole (DAPI; Vector

Laboratories, Peterborough, UK). Coverslips were mounted with

Mowiol 4–88 mounting medium (Sigma-Aldrich). Transiently

transfected primary cortical neurons or SH-SY5Y cells were

immunostained with combinations of rabbit polyclonal anti-bIII-

tubulin antibody (Sigma-Aldrich), mouse monoclonal anti-V5

antibody (Invitrogen), or rabbit monoclonal anti-calreticulin

antibody (EMD Millipore). Confocal images were acquired on a

Zeiss LSM 700 confocal microscope using Zeiss ZEN confocal

software (2009; Carl Zeiss AG, Feldbach, Switzerland) and a Plan-

Apochromat 63x/1.40 oil objective in x, y and z planes. Image

analysis was performed using Fiji software (Image Processing and

Analysis in Java) or Imaris software (Bitplane AG, Zurich,

Switzerland). Images were subjected to deconvolution using

HuygensPro software (Scientific Volume Imaging, Hilversum,

Netherlands). Pearson’s correlation coefficients (Rcoloc) were

calculated in Fiji between the indicated fluorescent channels.

Representative images are taken from a single z-plane at a

thickness of 0.15 mm.

Cell viability assays
SH-SY5Y cells were seeded in growth medium in 96-well plates

(25,000 cells/well) and transiently transfected with plasmid DNA.

After 48 h, cellular viability was assessed by MTS reduction assay

(CellTiter 96 Cell Proliferation Assay; Promega, Madison, WI,

USA) according to manufacturer’s instructions. Absorbance was

measured on an Apollo-1 LB 911 microplate photometer

(Berthold Technologies GmbH, Regensdorf, Switzerland) and

background absorbance from media alone was subtracted.

Viability was expressed as a percent of control (empty plasmid).

Neurite outgrowth assays
Primary cortical cultures at DIV 3 were co-transfected with V5-

ATP13A2 or empty vector and EGFP plasmids at a 10:1 DNA

molar ratio. At DIV 6, cultures were fixed with 4% PFA and

subjected to immunocytochemistry with mouse anti-MAP2

antibody (Sigma-Aldrich) and anti-mouse IgG-AlexaFluor-633

antibody (Invitrogen). Where indicated primary cortical neurons

were treated with cadmium (30 mM) or nickel (50 mM) for 24 h

prior to fixation. Fluorescent images were acquired using an

EVOS inverted fluorescence digital microscope (Advanced

Microscopy Group, Bothell, WA, USA) with a 10x objective.

EGFP images were pseudo-colored using ICA1 in NIH ImageJ

software to improve the contrast of neuritic processes, and used for

neurite length measurements. The length of EGFP+ neurites from

MAP2+ cortical neurons were measured using the line tool

function of NIH ImageJ software by an investigator blinded to

each condition. Only neurons that had extended neurites were

measured whereas neurons without processes were excluded from

the analysis. The longest EGFP+ neurite (i.e. axon) was measured

and used for comparison amongst groups. In each experiment,

cortical neuronal processes from EGFP+/MAP+ neurons (n = 67–

88) randomly sampled across five coverslips from at least three

independent experiments were measured. For neurons treated

with heavy metals, EGFP+/MAP+ neurites from control (n = 73–

156), cadmium (n = 39–119) or nickel (n = 32–72) treatment groups

were measured.

Statistics
Data were analyzed by one-way ANOVA with Newman-Keuls

post-hoc analysis as indicated. P,0.05 was considered significant.

Supporting Information

Figure S1 Analysis of human ATP13A2 variant mRNA
expression levels. A, Agarose gel electrophoresis indicates

similar DNA quantity and integrity for each ATP13A2 expression

plasmid (500 ng DNA). Equivalent quantities of each plasmid

were employed for transient transfection of HEK-293T cells. B,

Quantitative RT-PCR was conducted on mRNA-derived cDNAs

from HEK-293T cells transiently expressing V5-tagged human

ATP13A2 variants. PCR primers specific for plasmid-derived

human ATP13A2 were employed that amplify the 39 end of

ATP13A2 incorporating the V5 epitope tag sequence. Bars

represent the relative levels of plasmid-derived human ATP13A2

mRNA normalized to endogenous b-actin mRNA levels expressed

in arbitrary units (mean6SEM, n = 4 independent experiments).

Non-significant (ns) compared to WT ATP13A2 by one-way

ANOVA with Newman-Keuls post-hoc analysis.

(TIF)
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