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Abstract

Ell3 is a testis-specific RNA polymerase II elongation factor whose cellular function is not clear. The present study shows that
Ell3 is activated during the differentiation of mouse embryonic stem cells (mESCs). Furthermore, Ell3 plays a critical role in
stimulating lineage differentiation of mESCs by promoting epithelial-mesenchymal transition (EMT) and suppressing
apoptosis. Mouse ESCs engineered to stably express Ell3 were rapidly differentiated compared with control cells either
under spontaneous differentiation or neural lineage-specific differentiation conditions. Gene expression profile and
quantitative RT-PCR analysis showed that the expression of EMT markers, such as Zeb1 and Zeb2, two major genes that
regulate EMT, was upregulated in Ell3-overexpressing mESCs. Remarkably, knockdown of Zeb1 attenuated the enhanced
differentiation capacity of Ell3-overexpressing mESCs, which indicates that Ell3 plays a role in the induction of mESC
differentiation by inducing EMT. In contrast to Ell3-overexpressing mESCs, Ell3-knock down mESCs could not differentiate
under differentiation conditions and, instead, underwent caspase-dependent apoptosis. In addition, apoptosis of
differentiating Ell3-knock out mESCs was associated with enhanced expression of p53. The present results suggest that
Ell3 promotes the differentiation of mESCs by activating the expression of EMT-related genes and by suppressing p53
expression.
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Introduction

Pluripotency refers to the capacity of embryonic stem cells

(ESCs) to differentiate into all cell types [1,2]. ESCs possess self-

renewal capacity, which is the ability to proliferate for prolonged

periods while maintaining the undifferentiated state. Recently,

a core set of transcription factors, including Oct4, Sox2, and Nanog

were found to upregulate the expression of genes that control self-

renewal while repressing genes that drive differentiation [3–6].

How ESCs overcome the constraints of their self-renewal

machinery and initiate differentiation is of great interest because

understanding the mechanisms underlying differentiation will

facilitate the therapeutic application of ESCs in promoting

lineage-specific differentiation. The findings of recent studies have

led to major advances in the molecular and biochemical un-

derstanding of the transition of ESCs from the self-renewal state to

early differentiation. A recent report showed that the transcrip-

tional repressor Rest, which is abundantly expressed in ESCs and is

a target of the Oct3/4-Sox2-Nanog regulatory network, is not

required for the maintenance of ES cell pluripotency, but

promotes cell differentiation by suppressing self-renewal genes [7].

Several signaling networks including the leukemia inhibitory

factor (LIF)/Stat3, Bmp/Smad, Ras/MAPK and Calcineurin-

NFAT pathways also regulate the molecular switch between ESC

self-renewal and differentiation [8–12]. For example, Zap70

functions to modulate the balance between LIF/Stat3 and Ras/

MAPK pathways to maintain the pluripotent differentiation

capacity of mouse ESCs (mESCs) [13,14].

In addition to transcription factors and signaling pathways,

epigenetic processes such as DNA methylation and chromatin

remodeling are essential for determining cell fate between self-

renewal and differentiation [15]. However, while recent studies on

the mechanisms underlying the maintenance of the self-renewing

pluripotent state have improved our understanding of ESCs, how

ESCs initially enter into lineage commitment is still only partially

understood.

Epithelial cells form coherent tissue layers because their lateral

membranes are closely attached by intercellular adhesion com-

plexes such as tight junctions, adherens junctions, and gap

junctions, whereas mesenchymal cells can move as individual cells

throughout the extracellular matrix because they are nonpolarized

and lack intercellular junctions [16]. Epithelial-mesenchymal

transition (EMT) is the phenotypic transformation of epithelial

cells into mesenchymal cells and is related to various biological

changes in development and disease. Recently, it was described

that calcineurin-NFAT signaling promotes EMT during the switch

of ESCs from an undifferentiated state to lineage differentiation

[9]. Furthermore, several ESC-specific transcription factors were
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shown to bind promoters of EMT-related genes [17]. Therefore,

EMT appears to be an early and essential step in lineage

specification of ESCs.

Ell is a 621-amino acid protein that functions as a transcription

elongation factor by suppressing the transient pausing of RNA

polymerase II at multiple sites on DNA from both promoter-

dependent and promoter-independent templates [18]. Ell3 is

a testis-specific RNA polymerase II elongation factor, which

increases the catalytic rate of transcription elongation [19]. The C-

terminal domain of Ell3 shares strong similarities to that of Ell,

which acts as a negative regulator of p53 and regulates cell

proliferation and survival [20,21].

Here, we analyzed the role of Ell3 in the differentiation of

mESCs. We show that Ell3-overexpressing mESCs rapidly

differentiated compared with control cells. Furthermore, Ell3-

knock-down mESCs underwent apoptosis under differentiation

conditions. We also demonstrate that Ell3 activates EMT-inducing

genes, including Zeb1, and regulates the expression level of p53.

Collectively, our results identify a unique function for Ell3 during

the initiation of mESC differentiation, and we suggest that Ell3

promotes the differentiation of mESCs by inducing EMT and

suppressing p53.

Materials and Methods

Reagents and cell culture
The mESC line J1 (cat. # SCRC-1010) was purchased from

ATCC (Manassas, VA, http://www.atcc.org). MESCs were

maintained on 0.1% gelatin-coated dishes in Dulbecco’s modified

Eagle’s medium (DMEM, Gibco Invitrogen, Carlsbad, CA,

http://www.invitrogen.com) supplemented with 10% horse serum

(Gibco Invitrogen), 2 mM glutamine, 100 U/mL penicillin,

100 mg/mL streptomycin (Gibco Invitrogen), 16 non-essential

amino acids (Life Technologies), 0.1 mM 2-mercaptoethanol

(Sigma-Aldrich, St Louis, MI, http://www.sigmaaldrich.com),

and 1,000 U/mL LIF (Chemicon, Temecula, CA, http://www.

chemicon.com). To form embryonic bodies (EBs), mESC colonies

were trypsinized to achieve a single-cell suspension and sub-

sequently cultured on uncoated Petri dishes in ESC medium

without LIF. To induce spontaneous differentiation, mESCs were

cultured in LIF-deficient ESC medium (as described above) with

500 nM all-trans retinoic acid (RA).

Genetic modification of mESCs
Ell3-overexpressing (OE) mES cell lines were generated by

chromosomal integration of an Ell3 expression plasmid, which was

constructed by cloning PCR-amplified Ell3 cDNA into modified

pcDNA3.1 vectors (Invitrogen, Carlsbad, CA) in which the CMV

promoter was replaced with an EF1a promoter. ShRNA plasmids

targeting mouse Ell3 were purchased (RMM3981-98494969,

Open Biosystems, Huntsville, AL) and used to generate a stable

Ell3-knock-down (KD) cell line. Three independent mES cell lines

were established for Ell3-OE and Ell3-KD mESCs, respectively,

and all experiments were repeated in each cell line to confirm the

results. Nonspecific control siRNAs were purchased from Bioneer

(Daejoen, Korea), and siRNAs targeting Ell3 were purchased from

Dharmacon (Denver, CO). mESCs were transfected with either

siRNA or plasmids using Lipofectamine 2000 (Invitrogen)

according to the manufacturer’s instructions.

Neural differentiation of mESCs
For monoculture neural differentiation, undifferentiated ESCs

were dissociated and plated onto 0.1% gelatin-coated tissue

culture plates in ESC media. After 24 h, media was exchanged

with neural differentiation medium prepared as a 1:1 mixture of

DMEM/F12 (Gibco) supplemented with modified N2 (25 mg/mL

insulin, 100 mg/mL apotransferrin, 6 ng/mL progesterone,

16 mg/mL putrescine, 30 nM sodium selenite, and 50 mg/mL

bovine serum albumin fraction V) (Gibco) and neurobasal medium

supplemented with B27 (both from Gibco). Medium was replaced

every 2 days.

RNA extraction and real-time RT-PCR
Total RNA was prepared from mESCs using TRIzol (Invitro-

gen) and 2–5 mg of total RNA was reverse-transcribed into cDNA

using the SuperScriptIITM First-Strand Synthesis System (Invitro-

gen) according to the manufacturer’s instructions. Real-time PCR

was performed in triplicate with the Quantitect SYBR Green PCR

kit (Qiagen, Valencia, CA, http://www.qiagen.com) and CFX96

Real-time System (Bio-Rad Laboratories, Richmond, CA http://

www.bio-rad.com). For quantification, target gene expression was

normalized to the glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) gene. The PCR primers used in this study are listed in

Table S1.

Immunoblotting
For protein analysis, cells were washed twice with cold

phosphate buffered saline (PBS) and lysed with tissue lysis buffer

(20 mM Tris-base, pH 7.4, 137 mM NaCl, 2 mM EDTA, 1%

Triton X-100, 25 mM b-glycerophosphate, 2 mM sodium pyro-

phosphate, 10% glycerol, 1 mM sodium orthovanadate, 1 mM

phenylmethysulfonyl fluoride, and 1 mM benzamidine). Lysates

were centrifuged at 20,0006 g for 10 min to remove cellular

debris. Whole-cell extracts were prepared and 50 mg of protein

were resolved by SDS-PAGE and transferred to Immobilon-P

membranes (Millipore, Bedford, MA; http://www.millipore.com)

for detection with anti-p53 (#2524, Cell Signaling, Denver, MA;

http://www.cellsignal.com), Caspase-3 (#9665, Cell Signaling),

Caspase-9 (#9504, Cell Signaling), c-Myc (sc-764, Santa Cruz),

Oct4 (sc-5279, Santa Cruz), Sox2 (sc-20088, Santa Cruz), Nanog

(sc-30328, Santa Cruz), phosphor-Stat3 (#9131, Cell Signaling),

Stat3 (sc-482, Santa Cruz), Lamin B (sc-6216, Santa Cruz) and b-
actin (sc-47778, Santa Cruz) antibodies. The membranes were

blocked with blocking solution (5% skim milk in TBS; 50 mM

Tris-base, pH 7.4, 0.15 M NaCl, and 0.1% Tween-20) for 1 h,

and incubated with primary antibodies in blocking solution for

16 h. The membranes were washed three times for 10 min in TBS

and then incubated with HRP-conjugated anti-mouse or anti-

rabbit antibodies (0.1 Ag/ml) for 1 h. Immunoreactivity was

detected by enhanced chemiluminescence (ECL; Amersham,

Piscataway, NJ; http://www.amersham biosciences.com).

Immunofluorescence staining
MESCs were cultured on gelatin-coated cover slips. After

washing twice with PBS, cells were fixed with 4% paraformalde-

hyde for 15 min. The cover slips were washed three times with

PBS and the cells were permeabilized with 0.1% Tween-20 in PBS

for 20 min followed by blocking for 30 min using blocking buffer

(5% bovine serum albumin in PBS). After overnight incubation

with the primary antibodies, the cover slips were washed three

times with PBS and treated with Alexa Fluor 488 donkey anti-

mouse IgG (Cat No: A21202, Invitrogen) or Alexa Flour 594

donkey anti-rabbit IgG (Cat No: A21207, Invitrogen) for 1 h in

the dark. The cover slips were then washed three times in PBS and

mounted with VECTASHIELD Mounting Medium with DAPI

(Cat No: H-1200, Vector Laboratories, Burlingame, CA, USA;

http://www.vectorlabs.com). Images were captured using an

inverted microscopy system (ECLIPSE E600; Nikon, Kanagawa,
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Japan; http://www.nikon.com) and the analysis was performed

using INFINITY2-1C software (Innerview 2.0, Lumenera, Ca-

nada; http://www.LUMENERA.com).

Teratoma formation
For the teratoma formation assay, mESCs were trypsinized, and

16106 cells were suspended in PBS. The cell/PBS suspension was

injected subcutaneously into Balb/c nude mice (Orient, Korea;

http://www.orient.ac.kr). After teratoma formation, xenotrans-

plantation masses were harvested, fixed in 10% phosphate-

buffered formalin, and subsequently embedded in paraffin using

a Tissue-Tek VIP embedding machine (Miles Scientific, Naper-

ville, IL) and a Thermo Shandon Histocenter 2 (Thermo Fisher

Scientific, Waltham, MA; http://www.thermofisher.com). Ten-

micrometer sections were cut using a Leica RN2065 (Leica,

Wetzlar, Germany; http://www.leica.com.), stained with hema-

toxylin and eosin (H&E), and analyzed by a trained pathologist.

The experiments were reviewed and approved by the Institutional

Animal Care and Use Committee of CHA University. All

procedures were performed in accordance with the Guidelines

for the Care and Use of Laboratory Animals published by the US

National Institutes of Health (NIH publication no. 85-23, revised

1996).

Statistical analysis
Graphical data are presented as the mean 6 SD. Each

experiment was performed at least three times and subjected to

statistical analysis. Statistical significance between two groups was

determined using the Student’s t-test, and a p value,0.05 was

considered significant. All statistical analyses were performed using

the SAS statistical package, v.9.13 (SAS Inc., Cary, NC; http://

www.sas.com/).

Results

Expression of Ell3 in mouse ESCs
In a previous study, we reported that comparing the gene

expression profiles of oocytes and ESCs with those of differentiated

cells is a valuable approach to identifying novel factors involved in

the regulation of self-renewal or pluripotency of ESCs [13].

Comparison of the immature oocyte specific transcriptome, which

was previously obtained using the annealing control primer-

polymerase chain reaction (ACP-PCR) technique [22], with that of

mESCs revealed that both oocytes and mESCs express Ell3,

a testis-specific RNA polymerase II elongation factor. As shown in

Fig. 1A, Ell3 is actively expressed in mESCs, but the transcripts

are weakly detected in differentiated cells such as mouse

embryonic fibroblasts (MEFs) and NIH3T3 cells. These results

suggest that Ell3 may be confined to the undifferentiated state of

mESCs. To test this idea, the expression level of Ell3 was analyzed

in mESCs treated with retinoic acid (RA) to induce differentiation.

Surprisingly, expression of Ell3 transiently increased during EB

formation and in the early stages of spontaneous differentiation (up

to 4 days), but subsequently decreased as differentiation pro-

gressed (Fig. 1B), suggesting that Ell3 may play a role in the early

differentiation of mESCs. To investigate the function of Ell3 in

mESCs, stable Ell3-OE or KD mES cell lines were generated.

Analysis of Ell3 mRNA in the OE or KD cell lines confirmed that

the expression level of Ell3 was stably maintained (Fig. 1C).

LIF and its cognate signaling pathway through Jak/Stat3 are

crucial for self-renewal and pluripotency in mESCs [13,14].

Phospho-Stat3 levels were therefore examined in Ell3-OE and KD

cell lines. As shown in Fig. 1D, the phospho-Stat3 levels in Ell3-

OE or KD cell lines were similar to those of control cells. In

addition, the level of Oct4, a self-renewal marker of ESCs, was not

affected by the change in Ell3 expression. These results indicate

that changes in Ell3 levels do not affect the expression of major

factors governing self-renewal of mESCs.

The efficiency of secondary EB formation, which reflects the

capacity of ESCs to maintain an undifferentiated state and self-

renewal capacity [23], was examined next. Surprisingly, the

efficiency of secondary EB formation in Ell3-OE cells was 50%

higher than that in control cells, while in Ell3-KD cells the

secondary EB formation efficiency was lower than that in control

cells when measured 10 days after EB formation (Fig. 1E). This

result correlates with the finding that Ell3 expression increases

during EB formation (Fig. 1B) and strongly suggests that the

expression level of Ell3 affects the efficiency of EB formation, even

though it does not regulate Stat3 signaling or the expression of self-

renewal markers.

Ell3 regulates pluripotent differentiation of mESCs
The morphology of Ell3-OE and KD mESCs was indistinguish-

able from that of control cells under self-renewal or EB forming

conditions (Fig. 2A). As in control cells, Ell3 expression levels in

Ell3-OE and KD cells increased as mESCs differentiated into EB

or underwent RA-induced differentiation (Fig. S1). However, Ell3-

OE cells differentiated more rapidly than control cells, while Ell3-

KD cells were resistant to differentiation and showed a cell death

phenotype when exposed to RA (Fig. 2A). The expression of

lineage markers such as nestin, gata4, and brachyury-T was markedly

increased in EBs or differentiated Ell3-OE cells compared to

control cells, whereas the decrease of self-renewal marker

expression was similar between Ell3-OE and control cells (Fig. S2).

We then examined whether suppression of Ell3 expression could

inhibit the enhanced differentiating capacity of Ell3-OE cells.

Indeed, transfection of siRNA targeting Ell3 attenuated the

enhanced differentiation capacity of Ell3-OE cells (Fig. 2B).

Despite the enhanced differentiation potential of Ell3-OE cells,

the expression of self-renewal factors such as Oct4, Sox2 and

Nanog during differentiation decreased in similar levels in control

and Ell3-OE cells (Fig. 2C). In addition, Stat3 and p-Stat3 were

also decreased to a similar extent in the differentiating control and

Ell3-OE cells (Fig. 2D). These results suggest that the enhanced

differentiation of Ell3-OE cells is not associated with alterations in

the self-renewal capacity of mESCs.

To confirm that Ell3 plays a role in pluripotent differentiation in

vivo, Ell3-OE or KD mESCs were injected into Balb/c nude mice,

and teratoma formation was monitored. As shown in Fig. 2E,

teratoma development occurred more rapidly in Ell3-OE cell-

injected animals than in controls, while Ell3-KD cell-injected mice

did not develop teratomas until 7 weeks following transplantation.

When examined by histological staining, teratomas harvested 4

weeks after transplantation of Ell3-OE cells showed well developed

differentiated tissues consisting of all three germ layers: respiratory

epithelium (endoderm), muscle (mesoderm), and epidermis (ecto-

derm) (Fig. 2F, left panel). By contrast, teratomas from Ell3-KD

cells did not show the typical staining of specific lineage cell types

(Fig. 2F, right panel). Taken together, these results indicate that

Ell3 regulates the pluripotent differentiation of mESCs.

The effect of Ell3 expression on the neural differentiation
of mESCs
To further investigate the effect of Ell3 on lineage specific

differentiation, we compared the neural differentiation of Ell3-OE

cells to that of control cells. Compared with control cells, Ell3-OE

cells rapidly lost ESC morphology within 3 days in neural

induction media and showed significantly enhanced differentiated

Function of Ell3 in the Embryonic Stem Cells
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morphology during differentiation (Fig. 3A). Ell3 expression

increased during neural differentiation both in control and Ell3-

OE cells (Fig. S3). Quantitative analysis of nestin mRNA

supported the notion that Ell3-OE cells differentiated into neural

cells more rapidly than control cells (Fig. 3B). Immunocytochem-

ical staining showed that nestin-expressing cells were abundant

among the differentiating Ell3-OE cells than among the control

cells (Fig. 3C). This result was further confirmed by flow cytometry

analysis of nestin+ cells sorted using a fluorescence activated cell

sorting (FACS) assay. Ell3-OE cells contained a significantly

higher proportion of nestin+ cells than control cells when 16104

differentiating cells were analyzed by FACS, indicating that Ell3

expression promotes the neural differentiation of mESCs (Fig. 3D).

Furthermore, we compared the number of differentiating cells

between Ell3-OE and control cells. When 16104 mESCs were

cultured in neural differentiating medium for 4 days, the number

of Ell3-OE cells was approximately 4 times higher than that of

control cells (Fig. 3E). Taken together, these data suggest that Ell3

facilitates the proliferation of differentiating cells and promotes the

neural differentiation of mESCs.

Activation of Zeb1 expression is the major cause of
enhanced differentiation of Ell3-overexpressing mESCs
Recently, it was shown that EMT is an early and essential step

in lineage specification of ESCs [9]. To investigate the underlying

mechanism of Ell3 promotion of mESC differentiation, we

compared the gene expression patterns of Zeb1 and Zeb2, core

transcription factors that induce EMT, between Ell3-OE and

control cells. As expected, the expression of Zeb1 and Zeb2 was

significantly higher in Ell3-OE cells than in control cells, both in

self-renewal and differentiating states (Fig. 4A). Since Zeb factors

are core transcriptional repressors that suppress the expression of

epithelial genes, including E-cadherin, as well as stemness-inhibiting

microRNAs [24,25], we analyzed the expression of E-cadherin to

examine whether EMT was increased during the differentiation of

Ell3-OE cells. As expected, immunoblot analysis showed that E-

cadherin expression in differentiating Ell3-OE cells was lower than

that in control cells (Fig. 4B). In contrast to E-cadherin, N-cadherin

induces invasion, migration, and EMT of multiple cancer cell lines

[26,27]. Consistently, N-cadherin and other EMT markers such as

Mmp9 and Mmp25 were significantly expressed during the

differentiation of Ell3-OE cells (Fig. 4C). These results suggest

that the enhanced differentiation capacity of Ell3-OE cells may be

due to the rapid induction of EMT.

Figure 1. Ell3 is specifically expressed in mESCs. (A) RT-PCR and real-time RT-PCR analysis shows that Ell3 is expressed in mESCs but not in MEF
and NIH3T3 cells. (B) Quantitative RT-PCR analysis of Ell3 in ESCs, EBs, and differentiated cell stages (RA-D4, RA-D8, RA-D12 and RA-D16). Ell3
transcripts increased at the EB and RA-D4 stages, and subsequently decreased as differentiation progressed (RA-D8, RA-D12 and RA-D16). (C) Ell3
transcript levels in Ell3-OE and KD cells at passage 10 were compared with those in control cells. Passage was counted after Ell3-OE and KD stable cell
lines were established. (D) Expression of Stat3, p-Stat3, and Oct4 in Ell3-OE and KD cells was compared with that in control mESCs. b-actin was used as
a loading control for immunoblot analysis. (E) Primary EBs of Ell3-OE, Ell3-KD, and control mESCs were dissociated into single cells and re-seeded at
a density of 16106 cells/mL in the same medium. The number of secondary EBs was counted under a bright microscope (n.3). All experiments were
performed at least in triplicate, and all values represent the mean 6 s.d. from at least triplicate experiments. *Indicates significant (P,0.05) results
(Student’s t-test).
doi:10.1371/journal.pone.0040293.g001
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Next, we analyzed whether Zeb1 and Zeb2 are downstream

targets of Ell3 in mESCs. MESCs were transfected with siRNAs

targeting Zeb1 or Zeb2 and examined for phenotypic changes.

Interestingly, the enhanced differentiation capacity of Ell3-OE

cells was compromised by the transfection of Zeb1 siRNA, whereas

suppression of Zeb2 did not affect the differentiation of mESCs

(Fig. 4D). Consistently, the expression of Nestin, which was

enhanced during the differentiation of Ell3-OE cells (Fig. 3B),

was also suppressed by the knockdown of Zeb1 (Fig. 4E). However,

knockdown of Zeb2 in Ell3-OE cells did not suppress the enhanced

expression of Nestin. Taken together, these results suggest that

Zeb1, but not Zeb2, is a downstream target of Ell3 that induces

EMT during the differentiation of mESCs.

Apoptosis of differentiating Ell3 KD is associated with
enhanced p53 expression and caspase pathway
activation
As shown in Fig. 2A, differentiating Ell3-KD cells showed a cell

death phenotype. When we analyzed the cell cycle, we found that

the sub-G1 population in differentiating Ell3-KD cells was

significantly increased compared with that of the control cells

(Fig. 5A). In addition, Annexin V/PI staining showed increased

cell death in differentiating Ell3-KD cells compared with control

cells (Fig. 5B). As caspases are key molecules in apoptosis, the

possible relationship between caspase activation and cell death of

Ell3-KD cells was estimated by analyzing the amount of Lamin B,

a proteolysis substrate for activated caspase-3 and -6 [28,29].

Immunoblotting results showed complete degradation of Lamin B

protein in differentiating Ell3-KD cells, confirming increased

activity of the caspase pathway in Ell3-KD cells compared with

control cells during differentiation (Fig. 5C). To confirm that

apoptosis in differentiating Ell3-KD was indeed caused by Ell3

Figure 2. Ell3 expression level in mESCs affects the differentiation capacity of the cells both in vitro and in vivo. (A) Five-day-old EBs
(EB-D5) or differentiated Ell3-OE, Ell3-KD, and control mESCs were examined under a bright microscope. Differentiation was induced for 3 days (RA-
D3) by removing LIF and adding retinoic acid (RA) to the mESCs culture media. (B) Nonspecific siRNA (siNS) or siRNAs targeting Ell3 (siEll3) were
transfected into Ell3-OE cells in the ESCs state, and transfected cells were spontaneously differentiated for 2 days. Differentiating cells were examined
under the microscope. (C) Expression of Oct4, Sox2, and Nanog in Ell3-OE cells was compared with that in control cells both in the ESC and
differentiated states (RA-D3). b-actin was used as the loading control for immunoblot analysis. (D) Expression levels of Stat3 and phospho-Stat3 were
compared between Ell3-OE and control cells as differentiation progressed. b-actin was used as the loading control for immunoblot analysis. (E) Ell3-
OE, Ell3-KD, and control mESCs were injected into Balb/c nude mice and teratoma development was monitored. Teratomas of Ell3-OE and KD cell-
injected mice were compared with those of control animals at 4 and 7 weeks after injection, respectively. (F) Morphology of mESCs teratomas
obtained from Balb/c nude mice injected with either control, Ell3-OE, or Ell3-KD cells. MESC-induced teratomas were stained with H&E. Respiratory
epithelium, muscle, cartilage, and epidermis were examined. All experiments were performed at least in triplicate.
doi:10.1371/journal.pone.0040293.g002

Function of Ell3 in the Embryonic Stem Cells
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suppression, we ectopically transfected an Ell3-expressing plasmid

into Ell3-KD cells and induced differentiation. Expectedly,

introduction of an Ell3-expressing plasmid into Ell3-KD cells

prevented apoptotic cell death and induced differentiation

comparable to that of control cells in differentiation media

(Fig. 5D). Apoptosis of Ell3-KD cells under differentiation

conditions significantly decreased with the re-expression of Ell3

(Figure 5E). To confirm that activation of the caspase pathway

during the differentiation of mESCs depends on Ell3 expression,

the amounts of Lamin B, procaspase-3, and procaspase-9 were

analyzed after the forced expression of Ell3 in Ell3-KD cells. As

shown in Fig. 5F, Ell3-KD cells transfected with an Ell3-expressing

plasmid expressed higher amounts of Lamin B, procaspase-3, and

procaspase-9 3 days after RA-induced differentiation, which

indicates that forced expression of Ell3 in Ell3-KD inhibited

activation of the caspase pathway in differentiated mESCs. These

results indicate that Ell3 regulates caspase-dependent apoptosis in

mESCs during differentiation.

Since the C-terminal domain of Ell3 shows strong similarities to

that of Ell, which acts as a negative regulator of p53 [20,21] (a

major mediator of apoptosis in mammalian cells), we investigated

whether Ell3 expression affects the amount of p53 in differenti-

ating mESCs. Indeed, the p53 protein level, which was

significantly higher in differentiating Ell3-KD cells compared with

control cells, returned to the control cell level when Ell3-KD cells

were transfected with an Ell3-expressing plasmid (Fig. 5G). These

results suggest that Ell3 functions as a negative regulator of p53 in

differentiating mESCs. Consistently, p53 expression in differenti-

ating Ell3-OE cells was significantly lower than that in control

cells, and depletion of Ell3 by siRNA resulted in an increase in p53

protein levels (Fig. 5H, Fig. S4A). Furthermore, Ell3 siRNA-

mediated depletion of Ell3 enhanced apoptosis in Ell3-OE cells

during differentiation (Fig. S4B). These results show that changes

in p53 protein expression in differentiating Ell3-OE or KD

mESCs depend on the expression level of Ell3.

Discussion

Our data establish a model whereby Ell3 promotes EMT and

suppresses p53 levels, which leads to the initiation of differentiation

of mESCs. We showed that Ell3 overexpression promotes

differentiation of mESCs with the concomitant activation of

EMT marker genes. In addition, Ell3-knock-down mESCs un-

dergo apoptosis along with an accumulation of p53. Interestingly,

we found that the activation of Zeb1, which is known to link EMT-

activation and stemness maintenance in mESCs [24], is an

essential event for Ell3 to promote differentiation of mESCs, as

shown by the finding that suppression of Zeb1 in Ell3-OE cells

compromises the differentiation-promoting effect of Ell3. Based on

Figure 3. Ell3 expression promotes neural differentiation of mESCs. (A) Ell3-OE and control mESCs were differentiated into neural lineage,
and differentiating cells were examined under a bright microscope 3 days (ND-D3) and 5 days (ND-D5) after differentiation. (B) Nestin expression in
Ell3-OE cells was compared with that in control cells by qRT-PCR 0, 3, 5, and 7 days after neural differentiation (ND0, ND3, ND5, and ND7,
respectively). (C) Nestin expression in Ell3-OE cells was compared with that of control cells by immunostaining 7 days after neural differentiation. (D)
Nestin+ cells in differentiating Ell3-OE and control cells were analyzed by FACS. MESCs were cultured in neural differentiation media for 7 days and
16104 cells were analyzed for nestin expression by FACS. (E) The number of adherent cells was counted at the indicated days after 16104 cells of Ell3-
OE and control mESCs were differentiated into the neural lineage. All experiments were performed at least in triplicate and all values represent the
mean 6 s.d. from at least triplicate experiments. * Indicates significant (P,0.05) results (Student’s t-test).
doi:10.1371/journal.pone.0040293.g003
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these results, we propose that the promotion of EMT may account

for the role of Ell3 in ESC differentiation, which is in line with

a previous study demonstrating that EMT is an early and essential

step in the differentiation of ESCs [9]. Since Ell3 is known as

a transcription elongation factor, it would be important to

elucidate whether Ell3 directly regulates the expression of Zeb1

and Zeb2. The mechanism by which Ell3 activates EMT marker

genes, including Zeb1 and Zeb2, is currently under investigation in

our laboratory.

Another important advance of this study is the discovery that

p53 protein stability is enhanced, and the caspase pathway is

activated, when Ell3 expression is suppressed in differentiating

mESCs. P53 functions as a decision maker in mESCs, inducing

differentiation by repressing Nanog expression, [30] or inhibiting

differentiation by inducing expression of several WNT ligands

[31]. In vitro differentiation of mESCs results in decreased levels of

p53 and shifts p53 conformational status to the mutant form,

allowing differentiating cells to evade apoptosis [32]. Our study

indicates that Ell3 may function to safeguard differentiating ES

cells by escaping apoptosis via suppression of p53.

Ell3 overexpression or suppression did not affect the protein or

transcript levels of p53 in the self-renewal state of mESCs,

indicating that Ell3-mediated regulation of p53 was active only

under differentiation conditions (Fig. S5). One possible hypothesis

is that other factors induced during mESC differentiation may

cooperate with Ell3 to activate the p53 degradation pathway when

mESCs transition from self-renewal to differentiation. Additional

studies are needed to elucidate how Ell3 only affects p53

expression in differentiating mESCs, but not in self-renewing

mESCs.

Activation of caspase-3 induces differentiation of ESCs by

inducing the cleavage of Nanog [33]. However, the enhanced

activity of caspase-3 in Ell3-KD cells induced apoptosis instead of

promoting differentiation. This result indicates that a more

complex mechanism may underlie the involvement of caspase

activity in the differentiation of ESCs. One possibility is that

caspase levels may be regulated to balance the rates of

differentiation and apoptosis in ESCs during differentiation.

The regulatory mechanism underlying how Ell3 regulates p53

expression remains elusive. Ell3 did not have an affect on p53

transcription, suggesting that Ell3 controlled p53 levels by

modulating p53 protein stability (data not shown). Since Mdm2-

mediated ubiquitination-dependent degradation is one of the main

pathways negatively regulating p53 levels, future studies should

Figure 4. Suppression of Zeb1 attenuates the enhanced differentiation of Ell3-OE cells. (A) The expression of Zeb1 and Zeb2 in the ESC
state or RA-induced differentiating state of control or Ell3-OE cells was analyzed by real-time RT-PCR. (B) The expression of E-cadherin in the ESC state
or RA-induced differentiating state of ESC or Ell3-OE cells was analyzed by immunoblot analysis. b-actin was used as a loading control. (C) The
expression of EMT markers during RA-induced differentiation of mESCs was compared between control and Ell3-OE cells by real-time RT-PCR. (D)
Control or Ell3-OE cells were transfected with siRNAs targeting Zeb1 or Zeb2 and spontaneously differentiated 1 day after transfection. Cell
morphology was examined 3 days after RA-induced differentiation (RA-D3). Nonspecific siRNA was transfected as a control. (E) The expression of
Nestin was analyzed by real-time RT-PCR 3 days after RA-induced differentiation of siZeb1- or siZeb2-transfected control or Ell3-OE cells. All
experiments were performed at least in triplicate and all values represent the mean 6 s.d. from at least triplicate experiments. * Indicates significant
(P,0.05) and ** highly significant (p,0.01) results (Student’s t-test).
doi:10.1371/journal.pone.0040293.g004
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examine whether Ell3 regulates the level of p53 by the Mdm2-

mediated ubiquitination pathway.

It remains unclear whether there is a link between the

regulation of EMT and that of p53 expression by Ell3. Indeed,

p53 loss of function or mutations was recently found to promote

cancer cell EMT by de-repressing Snail 1 protein expression and

activity [34]. Therefore, it would be interesting to study the link

between p53 and EMT in the initiation of ESC differentiation.

Supporting Information

Figure S1 Ell3 transcripts in Ell3-OE and KD cells
during EB formation or RA-induced differentiation were
quantitatively compared with those in control cells. Five-
day-old EBs (EB-D5) or cells differentiated for 3 days (RA-D3)

were used for the analysis.

(TIF)

Figure S2 (A) Oct4, Sox2, and Nanog expression in Ell3-
OE and control mESCs was analyzed by real-time RT-
PCR 0, 3, 5, and 7 days after RA-induced spontaneous
differentiation. (B) Nestin, Gata4, and Brachyury-T expression

in Ell3-OE and control mESCs was analyzed by real-time RT-

PCR in 5 days old EBs (EB-D5) or in RA-induced differentiated

cells (RA-D3).

(TIF)

Figure S3 Expression level of Ell3 during the neural
differentiation of Ell3-OE or control mESCs was ana-
lyzed by real-time RT-PCR.

(TIF)

Figure S4 Ell3-OE cells were transfected with non-
specific siRNA (siNS) or Ell3-targeting siRNA (siEll3)
for 48 h. Ell3 transcript levels were compared with those in

Figure 5. Differentiating Ell3-KD cells undergo apoptosis, which is associated with enhanced p53 expression and activated caspase
pathway. (A) Cell cycle distribution of control and Ell3-KD cells stained with propidium iodide (PI). Cells in the ESC state or differentiated for 3 days
(RA-D3) by removing LIF and adding retinoic acid (RA) were analyzed by flow cytometry. (B) Apoptosis of control and Ell3-KD cells was quantitatively
analyzed either in the ESC or differentiated state by determining the number of Annexin V-positive cells. Cells were spontaneously differentiated for
3 days (RA-D3). (C) The amounts of Lamin B in control or Ell3-KD cells were determined either in the ESC state or in spontaneously differentiated cells
for 3 days (RA-D3) by immunoblot analysis. b-actin was used as a loading control. Control (V) or Ell3-expressing vectors (Ell3) were transfected into
Ell3-KD cells in the ESC state, and transfected cells were spontaneously differentiated for 3 days. Cells were examined under the microscope (D) and
apoptosis was quantitatively analyzed by determining the number of Annexin V-positive cells (E). (F) The amounts of Lamin B, procaspase-3, and
procaspase-9 in Ell3-KD cells transfected with control or Ell3-expressing plasmids were determined either in the ESC state or in spontaneously
differentiated cells after 3 days by immunoblot analysis. b-actin was used as a loading control. (G) Ell3-KD cells were transfected with control (V) or
Ell3-expressing plasmids (Ell3). Transfected cells were spontaneously differentiated for 3 days, and p53 levels were examined by immunoblot analysis.
b-actin was used as a loading control. (H) p53 in control or Ell3-OE cells was determined after 3 days of spontaneous differentiation by immunoblot
analysis (left panel). Ell3-OE cells were transfected with nonspecific siRNA (siNS) or Ell3-targeting siRNA (siEll3). Transfected cells were spontaneously
differentiated for 3 days, and p53 was examined by immunoblot analysis (right panel). b-actin was used as a loading control. All experiments were
performed at least in triplicate and all values represent the mean 6 s.d. from at least triplicate experiments. * Indicates significant (P,0.05) and **
highly significant (p,0.01) results (Student’s t-test).
doi:10.1371/journal.pone.0040293.g005
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control cells transfected with siNS (A), and apoptosis was

quantitatively analyzed by determining the number of Annexin

V-positive cells (B). All values represent the mean 6 s.d. from at

least triplicate experiments. ** Indicates highly significant

(P,0.01) results (Student’s t-test).

(TIF)

Figure S5 RNA or protein levels of p53 in Ell3-OE or
control mESCs were analyzed by real-time RT-PCR or
immunoblot analysis.
(TIF)

Table S1 Real time PCR primer sequences used in this
study.

(TIF)
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