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Abstract

Purpose: To investigate the biological function of HOXB5 in human bladder cancer and explore whether the HOXB5 39-UTR
SNP (1010A/G), which is located within the microRNA-7 binding site, was correlated with clinical features of bladder cancer.

Methods: Expression of HOXB5 in 35 human bladder cancer tissues and 8 cell lines were examined using real-time PCR and
immunohistochemistry. Next, we explored the biological function of HOXB5 in vitro using cell proliferation, migration and
colony formation assays. Using bioinformatics, a SNP (1010A/G) was found located within the microRNA-7 binding site in
the 39-UTR of HOXB5. Real-time PCR was used to test HOXB5 expression affected by different alleles. Finally, multivariate
logistic regression analysis was used to determine the relationship between SNP (1010A/G) frequency and clinical features in
391 cases.

Results: HOXB5 was frequently over-expressed both in bladder cancer tissues and cell lines. Inhibition of HOXB5 suppressed
the oncogenic function of cancer cells. Next, we demonstrated that a SNP (1010A/G), located within the microRNA-7
binding site in the 39-UTR of HOXB5, could affect HOXB5 expression in bladder cancer mainly by differential binding activity
of microRNA-7 and SNP-related mRNA stability. Finally, we also showed the frequency of 1010G genotype was higher in
cancer group compared to normal controls and correlated with the risk of high grade and high stage.

Conclusion: HOXB5 is overexpressed in bladder cancer. A miRNA-binding SNP (1010A/G) located within 39-UTR of HOXB5 is
associated with gene expression and may be a promising prognostic factor for bladder cancer.
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Introduction

Urinary bladder cancer is the most common urological tumor in

China [1]; however, the mechanisms of bladder cancer tumori-

genesis have not been well illustrated. Data show that most of the

bladder cancers are induced by carcinogens that damage the

DNA. The sensitivity of the transitional epithelium’s microenvi-

ronment may be another important factor during tumorigenesis

[2]. Oncogenes and tumor suppressors have also been reported to

play important roles in bladder cancer [3]. Recently, genetic

changes including SNPs, deletions, insertions, and changes of

DNA copy number have been found to be involved in bladder

carcinogenesis.

A homeobox (HOX) is a sequence of about 180 nucleotides

within genes that code for a protein domain called home-

odomain. Studies showed that HOX genes constitute as much as

0.1–0.2% of the whole vertebrate genome [4]. HOX genes are

highly conserved across vast evolutionary distances and encode

nuclear proteins that act as transcription factors (TF) during

normal organ development [5]. In recent years, the HOX gene

family has also been associated with human diseases especially

cancers. For instance, loss of HOXA5 in breast cancer [6], over-

expression of HOXA10 in acute myeloid leukemia (AML) [7],

gene mutations of HOXD4 in renal and colon cancer [8] and

overexpression of HOXC4 in human bladder cancer [9] have

been reported. HOXB5 (NM_002147.3), located on human

chromosome 17, is a member of the HOX gene family that is

involved in normal lung and gut development in mouse and

human [10]. HOXB5 has been reported to be related to human

diseases including AML [11], congenital cystic adenomatoid

malformation (CCAM) [12] and bronchopulmonary sequestra-

tion (BPS) [13]. Also, the HOXB5 gene was found to be highly

PLoS ONE | www.plosone.org 1 June 2012 | Volume 7 | Issue 6 | e40127



expressed in ovarian cancer and was considered to be an

important potential targets in the treatment of ovarian cancer

[14]. The biological function of HOXB5 in urological carcino-

mas have not been reported. In a pilot study, we found that

HOXB5 was frequently over-expressed in human bladder cancer

tissues and cell lines, suggesting that it may be a candidate

oncogene in bladder cancer.

In the past ten years, the involvement of microRNAs (miRNAs)

in human cancers has been widely studied. MiRNAs repress the

expression of the target mRNA by binding to the 39 untranslated

region (3’-UTR) of the mRNA. In human bladder cancer,

miRNAs had been shown to be important factors during

tumorigenesis. In a previous study, we reported that miRNA-

143 and miRNA-125b acted as tumor suppressors in human

bladder cancer [15,16]. In another study it was reported that miR-

7 was down-regulated in bladder cancer and may suppress tumor

growth by inhibiting growth factor receptor expression and by

impairing the anti-apoptotic Akt pathway [17].

Single-nucleotide polymorphisms (SNPs), the most common

form of genetic variations in the human genome, contribute to

different human phenotypes. SNPs have been associated with

many human diseases, especially cancers. In recent years, SNPs

located within the miRNA-binding site of a miRNA target (also

called miRNA-binding SNP) have been found to be important

during tumorigenesis. In a previous study, our group suggested

that SNP (1805C/T) in the miR-181a binding site of the Mel-18

gene was related to some clinical features of prostate cancer [18].

In a pilot study, we found a possible miRNA-binding SNP

(1010A/G) in the 39-UTR of the HOXB5 gene using the NCBI

SNP database (http://www.ncbi.nlm.nih.gov/snp/) and miRbase

(http://www.mirbase.org/).

In this study, we showed that the HOXB5 gene was over-

expressed and acted as an oncogene in human bladder cancer. We

also found a SNP (1010 A/G) in the 39-UTR of the HOXB5 gene

which is within the miRNA-7 binding site. We have shown that

this SNP could affect the expression of HOXB5 mainly by

interfering with the function of miRNA-7 and SNP-related mRNA

stability; Furthermore, the frequency of 1010G genotype was

higher in cancer group compared to normal controls, and was

found to be correlated with the risk of high grade and high stage.

To our knowledge, this is the first study of the involvement of

polymorphisms in the miRNA binding site of HOXB5 in human

bladder cancer.

Materials and Methods

Patients and Tissues
391 bladder cancer patients were enrolled in our study. This

study was approved by the Institute Research Ethics, Sun Yat-

sen University, China. Informed consent was written and

obtained from all the subjects in our study. All the patients

had primary bladder cancers; no previous treatment had been

conducted before the operation. The cancer samples were

obtained from patients who underwent resection of bladder

cancer. The samples were collected between 2007 and 2010 at

the Department of Urology, Sun Yat-sen Memorial Hospital,

Sun Yat-sen University, Guangzhou, China and Department of

Urology, Southwest Hospital, Chongqing, China. All bladder

specimens were immediately snap frozen in liquid nitrogen and

stored at 280uC. Histology of the tissues was independently

evaluated by two pathologists, and the clinical stage of bladder

cancer was determined using the 2002 tumor-node-metastasis

(TNM) classification system.

Cell Lines and Cell Culture
Cell lines used in our study were obtained from American

Tissue Type Culture Collection (ATCC, Manassas, VA, USA);

they include T24, 5637, TCCSUP, HT-1376, UM-UC-3, J82,

RT4, EJ and the SV40-transformed kidney cell line 293T. The

cells were cultured in a humidified air atmosphere of 5% CO2 at

37uC, and all media were supplemented with 10% fetal bovine

serum (Hyclone, Logan, UT, USA). T24 was cultured in McCoy’s

5a medium (modified); 5637 was cultured in RPMI 1640 medium;

J82, UM-UC-3, TCCSUP and HT-1376 were cultured in Eagle’s

minimum essential medium (EMEM) (Hyclone); and RT4, EJ and

SV40-transformed kidney cell line 293T were cultured in

Dulbecco’s modified Eagle’s medium (DMEM) (Hyclone).

RNA Extraction and Quantitative Real-time PCR
Total RNA was extracted from the patients’ bladder samples

or cell lines using TRIzol reagent (Invitrogen, Carlsbad,

California, USA) according to the manufacturer’s protocol.

Quantitative real-time PCR (qPCR) was done using the SYBR

green assay (TaKaRa Biotechnology, Dalian, China) on a Roche

LightCycler 480 machine (Roche Applied Science, Mannheim,

Germany). qPCR was performed as followed: an initial

predenaturation step for 30 seconds at 95uC, followed by

amplification of 40 cycles at 95uC for 5 seconds and at 60uC
for 20 seconds, melting curve analysis was performed at the end.

All reactions were done in a 20 mL reaction volume in triplicate.

The expression level of HOXB5 was evaluated using the

comparative Ct method. GAPDH was used as an internal

control. The primers used for HOXB5 were: sense, 59-

TGAAGCACAGGGTTATAACGACCA-39, antisense, 59-

GCAGCGGGATCCCTGTAAGA-39; and for GAPDH the

primers were: sense, 59- GAAGGTGAAGGTCGGAGTC-39,

antisense, 59- GAAGATGGTGATGGGATTTC-39.

Immunohistochemistry
Paraffin-embedded, formalin-fixed tissues were cut into 5-mm

section, placed on a polylysine-coated slide, deparaffinized in

xylene, rehydrated using graded ethanol, quenched for endoge-

nous peroxidase activity in 0.3% hydrogen peroxide and processed

for antigen retrieval by microwave heating in 10 mM citrate buffer

(pH 6.0). Sections were incubated at 4uC overnight with HOXB5

rabbit polyclonal antibody (1:100, AbCam, Cambridge, MA,

USA). Immunostaining was performed using the ChemMateTM

DAKO EnVisionTM Detection Kit (DakoCytomation, Glostrup,

Denmark), which resulted in a brown precipitate at the antigen

site. Subsequently, sections were counterstained with hematoxylin

(Zymed Laboratories, South San Francisco, CA, USA) and

mounted in nonaqueous mounting medium. The primary

antibody was omitted for the negative controls.

Western Blot
Protein was extracted from bladder cancer tissues and cell lines

as described [19]. Briefly, 30 mg of protein from each sample was

separated by electrophoresis in a sodium dodecyl sulfate poly-

acrylamide gel before being transferred to polyvinylidene fluoride

membranes (Millipore, Billerica, MA, USA) for 2 hours. Then

the membranes were blocked for 1 hour at room temperature

using 5% bovine serum albumin (BSA), and incubated in TBST

(Tris buffered saline with 0.05% tween) containing rabbit

polyclonal IgG2a anti-HOXB5 (1:1000, AbCam) or GAPDH

(1:1000, Cell Signaling Technology, Beverly, MA, USA) over-

night at 4uC. The membranes were incubated with peroxidase-

conjugated goat anti-rabbit immunoglobulin (1:5000, Cell
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Signaling Technology) as secondary antibody and then visualized

using a commercial ECL kit (Pierce, Rockford, IL, USA).

Cell Transfection with si-HOXB5 and miRNA-7
siRNAs designed to HOXB5 and miRNA-7 mimics were

transfected into the bladder cancer cells T24, 5637 and TCCSUP

using Lipofectamine-RNAiMAX (Invitrogen). The sequences used

for si-HOXB5 were, sense: 59-GGAUGGACCUCAGCGU-

CAATT-39, antisense: 59-UUGACGCUGAGGUCCAUCCTT-

39; for miR-7 mimics, sense: 59-CAACAAAUCACAGUCUGC-

CAUA-39, antisense: 59-UAUGGCAGACUGUGAUUUGUUG-

39; and for the negative control, sense: 59-UUCUCCGAACGU-

GUCACGUTT-39, antisense: 59-ACGUGACACGUUCGGA-

GAATT-39. All the RNA oligoribonucleotides were purchased

from Genepharma (Shanghai, China). One day before trans-

fection, 26105 cells were seeded onto a six-well plate. The next

day, when the cells reached 70–80% confluence, they were

transfected with RNA at a final concentration of 100 nM

according to Lipofectamine-RNAiMAX’s protocol. The trans-

fection efficiency measured by qPCR, was 70% for T24, 72% for

5637 and 75% for TCCSUP (data not shown).

Cell Proliferation Assay
Human bladder cancer cell lines T24, 5637 and TCCSUP were

plated onto 6-well plates and incubated at 37uC in a 5% CO2

incubator one day before transfection. After transfection with

siRNAs (100 nM) or a negative control for 24 hours, the cells were

collected and plated onto 96-well plates for cell viability evaluation

using a CCK8 assay (Cell Counting Kit-8) (Dojindo Laboratories,

Japan) according to the protocol [20].

In vitro Cell Migration Assay
After the bladder cancer cell lines T24, 5637 and TCCSUP

were transfected with si-HOXB5 (100 nM) or nonspecific control

(NC) siRNA for 24 hours, the cells were harvested and

suspended in 100 mL serum-free medium and then plated

(16104 cells) in the upper compartment of Transwell plates

(Corning, NY, USA). The Transwell inserts were then placed

into the lower compartment of a 24-well plate containing 600 mL
of the medium with 20% FBS as the chemo-attractant. After a 24

hour incubation period, the cells remaining on the top surface of

the membrane were removed and the cells on the lower surface

were fixed in 100% methanol for 30 minutes, followed by

staining with 0.1% crystal violet solution for 30 minutes. Cells

that stained purple were defined as positive and the images were

captured using a microscope (106) (Olympus, Center Valley, PA,

USA).

Colony Formation Assay
After transfection with si-HOXB5 (100 nM) or NC siRNA for

24 hours, the human bladder cancer cells T24, 5637 and

TCCSUP were collected and placed onto a fresh six-well plate

(500 cells for T24, and 1,000 cells for 5637 and TCCSUP). The

cells were cultured for about 2 weeks to form colonies. Colonies

were fixed with 100% methanol and stained with 0.1% crystal

violet in 20% methanol for 15 min. Colony-forming efficiency was

calculated as colonies/plated cells6100%.

Bioinformatics
The NCBI SNP database (http://www.ncbi.nlm.nih.gov/snp/)

was used to find SNPs located within the 39-UTR of the HOXB5

gene. Four publicly available algorithms, PicTar (http://pictar.

mdc-berlin.de/), TargetScan (http://www.targetscan.org/), mi-

Randa (http://www.microrna.org/) and DIANA microT (http://

diana.pcbi.upenn.edu/) were used to predict which of the human

miRNAs in miRbase (http://www.mirbase.org/) may bind to the

39-UTR of HOXB5. The miRNAs that were predicted by at least

2 of the algorithms to bind were accepted as candidates for further

study. The mRNA secondary structure prediction tool MFOLD

(http://mfold.rna.albany.edu/) was used to predict the secondary

structure of the HOXB5 mRNA. Small minimal free energy

(MFE) indicates high stability of the predicted mRNA secondary

structure.

Luciferase Reporter Assay
We construct luciferase reporter plasmids with the HOXB5 39-

UTR fragment that contained the putative binding sites for the

candidate miRNA and subcloned them into the psiCHECK-2

Vector (Promega, Madison, WI, USA) to produce the psi-

CHECK-2-39-UTR-WT plasmid. The mutant HOXB5 39-UTR

was generated using the fusion PCR method and then it also

subcloned into the psiCHECK-2 Vector to produce the

psiCHECK-2-39-UTR-MUT plasmid. DNA sequencing analysis

was used to confirm the sequence of the constructed plasmids.

For the luciferase reporter assay, HEK-293T cells (26104) were

placed onto a 24-well plate one day before transfection. The next

day 0.5 mg of either the psiCHECK-2-39-UTR-WT or the

psiCHECK-2-39-UTR-MUT, and either the miRNA or the

negative control were cotransfected into the HEK-293T cells

using Lipofectamine2000 (Invitrogen). Assays were performed 48

hours after transfection using the Dual-Luciferase Reporter Assay

System (Promega). Luciferase activity was detected using the

GloMax-Multi Detection System (Promega). The Renilla lucifer-

ase signals were normalized to the internal firefly luciferase

transfection control. Transfections were done in triplicate in

independent experiments.

DNA Extraction and HOXB5 Genotyping Analysis
Total DNA was extracted from the patients’ bladder cancer

samples and cell lines using QIAamp reagent (QIAGEN,

Germantown, MD, USA) according to the manufacturer’s pro-

tocol. HOXB5 genotyping was performed using a DNA sequenc-

ing assay. A 334 bp DNA fragment containing the SNP in the 39-

UTR of HOXB5 gene was amplified from genomic DNA. The

PCR primers used were, forward 59-GCGCATGAAGTGGAA-

GAAGG-39, reverse 59-TTGGGACAAGCAGAAGGGAG-39.

The amplified DNA fragment was sequenced using GENESCAN

software (Applied Biosystems, Foster City, CA, USA).

Measurement of the Expression of HOXB5 mRNA
The HOXB5 mRNA level was measured in 3 bladder cancer

cell lines (5637, J82 and RT4) and 13 bladder cancer tissues.

Region-specific Taqman probes were designed to detect the SNP

in the 39-UTR of the HOXB5 mRNA. The cDNA from the cell

lines and cancer tissues were subjected to qPCR and the

fluorescence (VIC for 1010A, FAM for 1010G) was measured

using LightCycler 480 Probes Master (Roche Applied Science,

Mannheim, Germany).

Genomic DNA was also extracted from cell lines and cancer

tissues as mentioned. As an internal control, qPCR was performed

to determine the genomic DNA levels of HOXB5 using the same

region-specific Taqman probes.

HOXB5 mRNA Half-life
qPCR was also used to measure the half-life of the HOXB5

mRNA. 16106 T24 and TCCSUP bladder cancer cells were

MicroRNA-7 Binding SNP of HOXB5 in Bladder Cancer
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plated onto a 10-cm dish one day before actinomycin D (5 mg/
ml), which inhibits genetic transcription, was added to the cells.

After treated with actinomycin D, the cells were lysed using

TRIzol at different time points, 0 h, 4 h, 8 h, 12 h, 24 h and

48 h. Total RNA was extracted and the HOXB5 mRNA level

was quantified by qPCR using the Taqman assay as previously

described above.

Figure 1. HOXB5 is over-expressed in human bladder tumors. A. Expression of HOXB5 in 35 bladder cancer tissues relative to normal adjacent
tissues (NAT). Columns above the X-axis indicate overexpression of HOXB5; those below the X-axis indicate down-expression of HOXB5 relative to
NAT. B. Expression of HOXB5 in eight bladder cancer cell lines relative to normal bladder cells. Columns above the X-axis indicate overexpression of
HOXB5; those below the X-axis indicate down-expression of HOXB5 relative to normal cells. Fold changes .1 was considered to be positive.
C. HOXB5 expression in primary transitional cell bladder cancer tissues detected by immunohistochemistry. C1 and C2, Bladder cancer tissues, G2
grade. C3, Bladder cancer tissue, G3 grade. C4, Normal bladder tissue. All images are6100. Staining: brown, HOXB5.
doi:10.1371/journal.pone.0040127.g001

Figure 2. si-HOXB5 inhibited the biological function of bladder cancer cells in vitro. A. Proliferation of bladder cancer cell lines T24, 5637
and TCCSUP. A CCK8 assay was used to examine cell growth of bladder cancer cells. B. Migration of bladder cancer cell lines. Left column, si-HOXB5
transfected group; right column, NC siRNA transfected group. All images are 610. Staining: purple, migration cells. C. Colony formation (C1) and
colony-forming efficiency (C2) of bladder cancer cells after transfection with si-HOXB5 or NC siRNA. Colony-forming efficiency = colonies/plated cells
6100%. *p,0.05, **p,0.01. NC, nonspecific control. MOCK, Lipofectamine only.
doi:10.1371/journal.pone.0040127.g002
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Statistic
All data are expressed as the mean 6 SEM from at least three

separate experiments. The differences between groups were

analyzed using Student’s t test when only two groups were

compared, or, by one-way analysis of variance (ANOVA) when

more than two groups were compared. The age-adjusted odds

ratio (aOR) and 95% confidence interval (CI) for the relationship

between the HOXB5 39-UTR genotype frequencies and clinical

or histological features were determined by multivariate logistic

regression analysis using SPSS 17.0 with age considered as a factor.

All statistical tests were two-sided. Differences were considered

statistically significant at p,0.05.

Results

HOXB5 was Over-expressed in Human Bladder Cancer
Tissues and Cell Lines
RNA was extracted from 35 bladder cancer patients and 8

bladder cancer cell lines and the expression of HOXB5 was

measured using qPCR. As shown in Figure 1A, of 35 samples, 23

(,70%) exhibited higher expression of HOXB5 compared with

normal adjacent tissue (NAT). The expression of HOXB5 was also

higher in 6 of 8 bladder cancer cell lines (TCCSUP, 5637, T24,

RT4, HT-1376, and J82) than in normal bladder cells (Figure 1B).

Immunohistochemical studies using the HOXB5-specific antibody

confirmed that the expression of HOXB5 is higher in bladder

cancer tissues than normal bladder tissues (Figure 1C). However,

there was no correlation between the expression of HOXB5 and

the tumor grade or stage (data not shown). These results suggested

that the overexpression of HOXB5 may be common in some

bladder cancer tissues and in cell lines.

HOXB5 Promotes Cell Proliferation and Migration of
Bladder Cancer Cells
We found that HOXB5 was over-expressed in bladder cancer

tissues and in cell lines, indicating that HOXB5 may act as an

oncogene. To investigate the oncogenic function of HOXB5, we

transfected si-HOXB5 and NC siRNA into T24, 5637 and

TCCSUP cells. 48 hours after transfection, a CCK8 assay showed

that cell growth was significantly decreased in si-HOXB5

transfected groups compared with the NC group or mock group

(Lipofectamine only) (Figure 2A, p,0.05). We also found that the

migration ability of si-HOXB5 transfected cells was significantly

inhibited compared with the NC group or mock group (Figure 2B).

These results indicated that HOXB5 may promote cell pro-

liferation and the migration of bladder cancer cells, consistent with

a role of an oncogene.

Figure 3. HOXB5 is a target of miR-7. A. HOXB5 was predicted as a direct target of miR-7 by miRanda, PicTar and TargetScan. B. Luciferase
analysis in HEK-293T cells. WT, wild type. MUT, mutant type. C. Effect of miR-7 overexpression on the expression levels of endogenous HOXB5 in T24,
5637 and TCCSUP cells. Endogenous HOXB5 mRNA and protein levels were assayed by qPCR (C1) and Western blot (C2) respectively. b-actin, internal
control. **p,0.01, compared with NC transfectants. NC, nonspecific control.
doi:10.1371/journal.pone.0040127.g003
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si-HOXB5 Suppresses Clonogenicity in vitro
To further explore the potential role of HOXB5 in tumorigen-

esis, we investigated the effect of HOXB5 on colony formation of

cancer cells in vitro. Three bladder cancer cell lines (T24, 5637 and

TCCSUP) were transfected with an si-HOXB5 or NC duplex, and

allowed to grow at very low density (500 cells for T24, 1,000 cells

for 5637 and TCCSUP) for about 14 days. Notably, si-HOXB5

inhibited, both in size and number, the ability of bladder cancer

cells to form colonies (Figure 2 C1). Further, the si-HOXB5

transfected cells showed lower colony-forming efficiency than the

NC-transfected cells (Figure 2 C2, p,0.01). These data further

supported the oncogenic effect of HOXB5 in bladder cancer cells.

SNP-1010A/G is Located within miRNA-7 Binding Site in
HOXB5 39-UTR
We found SNP rs9299 (1010 A/G) is located within the 39-UTR

of the HOXB5 gene using the NCBI SNP database. HOXB5 was

also predicted to be one of the target genes of miRNA-7 according

to 3 of the different systemic bioinformatics software that we used,

and the SNP (1010 A/G) was located within the miRNA-7 binding

site (Figure 3A).

To validate HOXB5 as a bona fide target of miR-7, a human

HOXB5 39-UTR fragment containing either the wild-type or

mutant miR-7-binding sequence was subcloned downstream of the

Renilla luciferase reporter gene as described in the Materials and

Methods section. The relative luciferase activity of the reporter

containing the wild-type HOXB5 39-UTR was significantly

suppressed when miR-7 was co-transfected (p,0.01). In contrast,

the luciferase activity of the reporter containing the mutant miR-7-

binding site was almost unaffected (p.0.05) (Figure 3B).

To further explore the regulation of HOXB5 expression by

miR-7, we transfected miR-7 mimics and NC into the cell lines

T24, 5637 and TCCSUP. After 48 hours, we examined the

HOXB5 mRNA and protein levels using qPCR and western blot.

We found that the HOXB5 mRNA and protein levels were down-

regulated in the miR-7 transfected groups compared with the NC

groups (Figure 3 C1 & C2).

These results indicated that miR-7 may regulate HOXB5

expression at both the post-transcription and mRNA levels.

SNP 1010A/G affects HOXB5 Expression
To investigate the affect of SNP 1010A/G on the expression of

HOXB5, we examined the mRNA levels of HOXB5 for the

1010A and 1010G alleles in the heterozygous GA genotype

bladder cancer tissues (13 cases) and cell lines (5637, RT4 and

J82), using the Taqman assay as described above. We found that

Figure 4. Expression of HOXB5 mRNA for each allele in heterozygous bladder cancer tissues and cell lines. A1. Expression of mRNA for
each allele in the heterozygous GA genotype cell lines (5637, RT4 and J82) and tissues (13 cases). A2. Expression of mRNA (Mean) for each allele in
heterozygous GA genotype cell lines and tissues. Y-axis, expression of HOXB5 mRNA. Ct: cycle threshold, calculated from Realtime-PCR machine. B1.
Expression of the heterozygous genomic DNA as an internal control. B2. Expression of the heterozygous genomic DNA (Mean) as an internal control.
Y-axis, expression in genomic DNA. ***p,0.001.
doi:10.1371/journal.pone.0040127.g004
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the expression of the HOXB5 mRNA with the 1010G allele was

significantly higher than the mRNA with the 1010A allele in both

cancer tissues and cell lines (Figure 4A1 and A2). However, the

expression ratio of 1010G to 1010A in the genomic DNA from

these heterozygous cancer tissues and cell lines were similar

(Figure 4B1 and B2). These results showed that the 1010A/G SNP

in the HOXB5 39-UTR affected the expression of HOXB5

mRNA.

The Different Alleles Affect mRNA Stability and HOXB5
Expression Levels
To predict possible mechanisms how the 1010A/G SNP

results in differential HOXB5 expression levels, we used the

mRNA secondary structure prediction tool MFOLD to predict

the secondary structure of the mRNAs with the A and G alleles.

We found that the predicted minimal free energy (MFE) of the

secondary structure of the mRNA with the G allele was lower

than that of the mRNA with the A allele (25.4 vs 23.0). This

result indicated that the structure of the mRNA with the G allele

may be more stable than that for the mRNA with the A allele

(Figure 5A).

To further explore which allele (A or G) conferred more

stability, we measured the mRNA half-life because it has been

shown that the steady state of mRNA is closely related to the

mRNA half-life [21]. We examined the half-life of HOXB5

mRNA in the homozygous T24 and TCCSUP bladder cancer

cells (GG for T24 and AA for TCCSUP) after treatment with

actinomycin D, using qPCR. The results showed that the half-life

Figure 5. Different alleles affect HOXB5 mRNA stability and the activity of miR-7 binding. A. Secondary structures of HOXB5 mRNA
predicted by MFOLD. Minimal free energy (MFE) may reflect mRNA stability. B. Half-life of HOXB5 mRNA in T24 (GG genotype) and TCCSUP (AA
genotype) cells. The half-life for the mRNA with the G allele was about 11 hours, and about 3.7 hours with the A allele. C. HOXB5 expression level after
transfection with miR-7 relative to NC in 5637 cells (GA genotype). Both A and G alleles of the mRNA transfected with miR-7 exhibited down-
regulation relative to the NC group. The level of HOXB5 mRNA with the A allele decreased more than mRNA with the G allele. D. Luciferase analysis in
HEK-293T cells of miR-7 activity. Vector, psiCHECK-2 Vector. *p,0.05, **p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0040127.g005

Table 1. Genotype frequencies of the HOXB5 polymorphism in bladder cancer subgroups (G1 and G2–G3 groups).

HOXB5 1010A/G genotype G1 G2–G3 aORa (95%CIb) p

Nc (%) N (%)

AA 51 (37.8%) 32 (12.5%) Ref

AG 68 (50.4%) 163 (63.7%) 3.82 (2.26–6.48) 0.001

GG 16 (11.9%) 61 (23.8%) 6.07 (2.99–12.31) 0.001

AG+GG (against AA) 84 (62.2%) 224 (87.5%) 4.25 (2.58–7.07) ,0.001

AG+AA (against GG) 119 (88.1%) 195 (76.2%) 0.40 (0.22–0.73) 0.003

aage-adjusted odds ratio,
b95% confidence interval,
cNumbers of people.
doi:10.1371/journal.pone.0040127.t001
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of HOXB5 mRNA in the cells with the GG genotype was 3.5

fold (11 h) than the mRNA half-life (3.4 h) in the cells with the

AA genotype (Figure 5B), indicating that the mRNA with the G

allele was more stable than the mRNA with the A allele. This

different stability on the two mRNAs may be the possible

mechanism that explains the different effect of the SNP on

HOXB5 expression.

The Binding Activity of miR-7 for Different Alleles of
mRNA affects HOXB5 Expression Level
We transfected miR-7 to a bladder cancer cell line (5637) with

the heterozygous GA genotype for 48 hours and measured the

HOXB5 mRNA level using the Taqman assay. We observed that

the overexpression of miR-7 could significantly inhibit the

expression level of HOXB5 mRNA compared with the NC

group? Interestingly, the expression level of the HOXB5 mRNA

with the A allele decreased much more than the level of the

mRNA with the G allele (Figure 5C), indicating that the binding of

miR-7 to the HOXB5 mRNA with the A allele was greater than

the mRNA with the G allele.

To validate our hypothesis, we carried out a luciferase assay.

The relative luciferase activity was suppressed much more in the

reporter containing the 1010A transfected with miR-7 than that

containing the 1010G allele (Figure 5D). These results showed that

the binding activity of miR-7 with either the 1010A or 1010G

allele may be another important mechanism involved in the

different HOXB5 expression levels affected by the SNP.

The Association between the 1010A/G HOXB5 Genotype
Frequency and Bladder Cancer
Next, we examined the association between 1010A/G HOXB5

genotype frequency and the clinical features of bladder cancer.

DNA was extracted from 391 patients with bladder cancer that

was confirmed by pathologists, and from 391 normal controls, and

the SNP (1010A/G) genotypes for each sample were analyzed. We

found that G allele (AG+GG) genotypes were associated with the

risk of high grade (Grade 2 and 3, aOR=4.25, p,0.001, Table 1)

and high stage (T2–T4, muscle invasive type, aOR=2.25,

p = 0.003, Table 2) cancers as against low grade (Grade1) and

low stage (T1, non-muscle invasive type) cancers. We also showed

that the frequency of G genotypes (AG+GG) was higher in bladder

cancer group compared with the normal controls (aOR=1.48,

p = 0.017) (Table 3).

Discussion

The HOX gene family has recently been identified as one of the

main factors in the normal development of the human organs. The

HOXB5 gene, which was found to be involved in lung and gut

development, was reported to be an important factor in human

disease, including cancers [14]. Here, we showed that the HOXB5

gene was frequently over-expressed in human bladder cancer

tissues and in cancer cell lines. In vitro experiments showed that

HOXB5 may act as an oncogene in human bladder cancer. We

found a SNP (1010 A/G) in the 39-UTR of the HOXB5 gene,

which was also within a miRNA-7 binding site. We observed that

this SNP could affect the expression of the HOXB5 gene.

Table 2. Genotype frequencies of the HOXB5 polymorphism in bladder cancer subgroups (Non-muscle invasive and Muscle-
invasive groups).

HOXB5 1010A/G genotype Non-muscle invasive Muscle-invasive aORa (95%CIb) p

Nc (%) N (%)

AA 59 (26.8%) 24 (14%) Ref

AG 119 (54.1%) 112 (65.5%) 2.31 (1.35–3.47) 0.002

GG 42 (19.1%) 35 (20.5%) 2.05 (1.06–3.94) 0.031

AG+GG (against AA) 161 (73.2%) 147 (85.9%) 2.25 (1.33–3.79) 0.003

AG+AA (against GG) 178 (80.9%) 136 (79.5%) 0.91 (0.56–1.51) 0.917

aage-adjusted odds ratio,
b95% confidence interval,
cNumbers of people.
doi:10.1371/journal.pone.0040127.t002

Table 3. Genotype frequencies of the HOXB5 polymorphism in controls and bladder cancer groups.

HOXB5 1010A/G genotype Controls Bladder cancer aORa (95%CIb) p

Nc (%) N (%)

AA 113 (28.6%) 83 (21.2%) Ref

AG 195 (50.4%) 231 (59.1%) 1.58 (1.12–2.22) 0.009

GG 83 (21%) 77 (19.7%) 1.263 (0.83–1.92) 0.276

AG+GG (against AA) 278 (71.4%) 308 (78.8%) 1.487 (1.07–2.06) 0.017

AG+AA (against GG) 308 (79%) 314 (80.3%) 0.922 (0.65–1.31) 0.646

aage-adjusted odds ratio,
b95% confidence interval,
cNumbers of people.
doi:10.1371/journal.pone.0040127.t003
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Accordingly, we proposed that miR-7 binding activity and mRNA

stability which can be affected by SNP may be involved in the

differential expression of HOXB5. Finally, the frequency of

1010G genotype was higher in bladder cancer group compared to

normal controls, and was related to the risk of high grade and high

stage bladder cancers.

Homeobox genes code for transcription factors that are

primarily involved in embryonic development. Several homeobox

gene families, including HOX, EMX, PAX, MSX and many

isolated divergent homeobox genes have been identified. The

HOX gene family is the one that has most often been found to

play a role in regulating network structure organization [22]. Over

10 years ago, the HOX genes were found to control embryonic

organ-specific patterning. During embryogenesis, these genes were

shown to code for transcription factors that regulate the expression

of subordinate genes [23]. The HOX gene family was also found

to be involved in human tumorigenesis [6,7,8,9]. Among HOX

gene family, HOXB5 gene has been found to play a role in the

patterning of airway branches during mouse lung morphogenesis

in Volpe et al’s study [10]. Later, they found HOXB5 gene was

also related to human lung morphogenesis and may play a role in

controlling airway patterning [19]. The HOXB5 gene was found

to related with vasculogenesis by its interaction with vascular

endothelial growth factor receptor-2 (VEGFR-2) and angiopoie-

tin-2 (Ang2) [24,25], indicating that HOXB5 may be involved in

tumorigenesis. Until now, the biological function of HOXB5 in

human bladder cancer has not been reported. In the present study,

we found that HOXB5 was over-expressed in human bladder

cancer and our in vitro experiment showed that HOXB5 may act as

an oncogene in bladder cancer.

In recent years, genome-wide association studies (GWAS) have

given us a deeper insight into the mechanisms related to genomic

changes in various cancers. Chang et al. identified several

susceptibility loci in human bladder cancer, including rs9642880

(nearest gene: MYC), rs710521 (nearest gene: TP63), and

rs2294008 (nearest gene: PSCA) among others [26].

The involvement of miRNAs in human cancer has been

discovered recently. In a previous study, we reported that

miRNA-143 and miRNA-125b act as tumor suppressors in human

bladder cancer by binding to the oncogenes RAS and E2F3

respectively [15,16]. 39-UTR polymorphisms in certain genes have

been reported to related with human disease, including hereditary

thrombophilia [27], urolithiasis [28], and increased sensitivity to 5-

fluorouracil chemotherapy [29]. SNPs inmiRNA-binding sites have

recently been discovered. Yu et al. conducted a genome-wide

analysis of SNPs located in the miRNA-binding sites of the 39-UTR

of various human genes associated with human cancers. They found

1,265 SNPs that were located within the miRNA-binding sites, and

suggested that these SNPs may affect expression of the miRNA

binding target [30]. Mishra et al. showed that SNP 829C/T located

within themiRNA-24 binding site of the 39-UTRof theDHFRgene

led to overexpression of its target gene and resulted in resistance to

methotrexate [21]. In a previous study from our group, we reported

that the Mel-18 gene functioned as a tumor suppressor in prostate

cancer, and a SNP (1805A/G) in the miRNA-181a binding site

correlated with Mel-18 expression and clinical features in prostate

cancer [18].

Until now, no SNPs in miRNA-binding sites have been reported

in human bladder cancer. MiR-7 was shown to be down-regulated

in human glioblastoma and bladder cancer and a further study

showed that miR-7 may suppress tumor growth in human bladder

cancer by inhibiting growth factor receptor expression and by

impairing the antiapoptotic Akt-pathway [17]. Bioinformatics

analyses predicted a miR-7-binding SNP (1010A/G) within the 39-

UTR of the HOXB5 gene. Here, we reported a SNP (1010A/G)

that was located within the miR-7 binding site of the 39-UTR of

the HOXB5 gene, and found that the different SNP (A or G)

genotype could affect HOXB5 mRNA expression. Many 39-UTR

polymorphisms had been shown related with altered gene

expression, but the possible mechanisms were not fully understood

[21]. We propose that the SNP (1010A/G) may affect the

expression of HOXB5 in bladder cancer by differential mRNA

stability and binding activity of miR-7. Furthermore, multivariate

logistic regression analysis showed that genotypes with the G allele

(GG and AG) were associated with the risk of high grade (Grade 2

and 3, aOR=4.25, p,0.001) and high stage (T2–T4, muscle

invasive type, aOR=2.25, p = 0.003) cancers. We also showed

that compared with normal controls, the genotypes with the G

allele were associated with the risk of bladder cancer (aOR=1.48,

p = 0.017). These results suggested that the SNP located within the

miR-7 binding sites may affect HOXB5 expression, which in turn

may affect bladder tumorigenesis. In addition, this SNP may have

the potential to become a prognostic factor for bladder cancer.

miRNA binding site polymorphisms have only recently been

investigated. These polymorphisms may not only affect gene

expression, but could also have a relationship with clinical features

of cancer or even with the prognosis of cancer. In future studies,

we intend to source many more bladder cancer cases and use them

to carry out a longer-term study to discover whether or not this

SNP (rs9299) could be a good prognostic and prognosis factor for

bladder cancer.

In summary, in this study we showed for the first time that the

HOXB5 gene may act as an oncogene in human bladder cancer.

We found that a SNP (1010A/G) within the miR-7 binding site of

HOXB5 39-UTR affects HOXB5 expression and this SNP may be

correlated with bladder tumorigenesis and the risk of high grade

and high stage human bladder cancers. These results suggested

a possible mechanism for the effects of the miRNA binding site

polymorphism during bladder tumorigenesis and revealed a pos-

sible prognostic and prognosis factor for bladder cancer.
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