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The advent of transformation optics and metamaterials has made
possible devices producing extreme effects on wave propagation.
Here we describe a class of invisible reservoirs and amplifiers for
waves, which we refer to as Schrödinger hats. The unifying math-
ematical principle onwhich these are based admits such devices for
any time harmonic waves modeled by either the Helmholtz or
Schrödinger equation, e.g., polarized waves in electromagnetism,
acoustical waves and matter waves in quantum mechanics. Schrö-
dinger hats occupy one part of a parameter-space continuum of
wave-manipulating structures which also contains standard trans-
formation optics based cloaks, resonant cloaks and cloaked sen-
sors. Possible applications include near-field quantum microscopy.

field amplifiers ∣ invisibility cloaking ∣ improved cloaking ∣ imaging

Transformation optics and metamaterials have made possible
designs and devices producing effects on wave propagation

not seen in nature, including invisibility cloaks for electrostatics
(1, 2), electromagnetism (EM) (3–5), acoustics (6–8) and quan-
tum mechanics (QM) (9); devices inspired by general relativity
(10, 11) and non-Euclidian geometry (12); field rotators (13);
EM wormholes (14); and illusion optics (15), among many others.
See (16) for an overview. At nonzero frequencies, ideal (i.e., per-
fect) cloaking produces a decoupling between the parts of the
wave in the cloaked region and its exterior, and one has both
cloaking (the undetectability of the object within the cloak) and
shielding (the inability of the wave to penetrate into the cloaked
region) (17). In more realistic approximate cloaking, there is gen-
erically only a weak coupling between the regions; however, if the
frequency (for acoustic or EM cloaks) or energy (for QM cloaks)
is an eigenvalue for the interior region, then there exist resonant
(or trapped) states which simultaneously destroy both cloaking
and shielding (18, 19, 20). Near such a resonance, it is possible
to design the cloak parameters so that the flow of the wave from
the exterior into the cloak and vice versa are precisely balanced.
This restores and even improves cloaking, while allowing a mod-
erate penetration of the cloaked region by the incident wave (21),
leading to the possibility of transformation optics-based cloaked
sensors. A different approach previously led to sensors in plasmo-
nic cloaking (22).

Purpose of Paper
We show here that it is possible to go beyond the limited coupling
allowed by cloaked sensors and give designs, based on an over-
arching mathematical principle, for devices which we call Schrö-
dinger hats, acting as invisible reservoirs and amplifiers for waves
and particles. Schrödinger hats (SH) exist for any wave phenom-
enon modeled by either the Helmholtz or Schrödinger equation.
They are specified by either a mass density/bulk modulus pair (for
Helmholtz) or a potential (for Schrödinger), and come in families
which increasingly exhibit their characteristic properties as the
parameters ϵ and ρ go to zero.

A SH seizes a large fraction of a time harmonic incident wave,
holding and amplifying it while contributing only a negligible
amount to scattering; see Fig. 1. In quantum mechanics, despite

the localization of the resulting matter waves, SH are neverthe-
less consistent with the Heisenberg uncertainty principle. We
briefly describe possible implementations of Schrödinger hats.
Highly oscillatory potentials are needed for QM Schrödinger
hats, and we propose several realizations; one possible applica-
tion is for a near-field scanning quantum microscope. The less
demanding acoustic and EM hats offer similar effects, but exist-
ing metamaterials (23–26) should make these Schrödinger hats
more immediately realizable, allowing physical verification and
further exploration of the concept.

Outline of the Construction
Schrödinger hats are formed from approximate cloaks surround-
ing layers of barriers and wells. These can be implemented as
follows, starting from the ideal 3D spherical transformation
optics EM invisibility cloak (4). One subjects homogeneous,
isotropic permittivity ε0 and permeability μ0 to the ‘blowing up
a point’ coordinate transformation (1, 2, 4), x ≔ FðyÞ ¼
ð1þ jyj∕2Þy∕jyj; for 0 < jyj ≤ 2,

x ¼ FðyÞ ¼
�
1þ jyj

2

�
y
jyj ; for 0 < jyj ≤ 2; [1]

used to cloak the ball B1 of radius 1 centered at origin. This
works equally well in acoustics (7, 8, 27), and we now use the
terminology from that setting. The resulting cloak consists of
a spherically symmetric, anisotropic mass density M and bulk
modulus λ , both singular as r ≔ jxj → 1. For any 0 < ρ < 1,
the ideal cloak can then be approximated by replacing M by
the identity matrix I and the bulk modulus by 1 in the shell
BR − B1 ¼ fx ∈ R3 : R > jxj ≥ 1g, where R ¼ 1þ ρ∕2. This re-
sults in a nonsingular (but still anisotropic) mass density Mρ and
bulk modulus λρ, which converge to the ideal cloak parameters as
ρ → 0. Via homogenization theory, Mρ is (roughly speaking)
approximable by isotropic mass densitiesmρ;ε, consisting of shells
of small thickness having alternating large and small densities,
yielding a family of approximate cloaks (19), modeled by the
Helmholtz equation ð∇ · mρ;ε∇þ λρω2Þu ¼ 0. One then obtains
an approximate QM cloak by applying the Liouville-gauge trans-
formation, substituting ψðxÞ ¼ m−1∕2

ρ;ε ðxÞuðxÞ. Indeed, when u
solves the Helmholtz equation, ψ satisfies the time independent
Schrödinger equation, ð−∇2 þ Vc − EÞψ ¼ 0, where E ¼ ω2 is
the energy and Vc ¼ ð1 −mρ;ελ−1

ρ ÞEþm1∕2
ε ∇2ðm−1∕2

ρ;ε Þ is the
cloaking potential for the energy level E.
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For acoustic or EM cloaks constructed using positive index ma-
terials, resonances can allow large amounts of energy to be stored
inside the ‘cloaked’ region, but at the price of destroying the cloak-
ing effect (18, 19), particularly strongly in the near field. However,
here we show that inserting materials with negative bulk modulus
or permittivity within the cloaked region allows for the cloaked
storage of arbitrarily large amounts of energy. A similar effect was
described in two-dimensional superlenses, where nonradiating
(i.e., cloaked) high-energy concentrations can appear due to anom-
alous resonance (28, 29); see discussion in (SI Text). For brevity,
we describe Schrödinger hats primarily in the context of QM cloak-
ing, where the analogous effect is concentration of probability
density. When the cloaking potential is augmented by a layered
internal potential consisting of N shells, alternating positive bar-
riers and negative wells with appropriately chosen parameters, the
probability of the particle being inside the cloaked region can be
made as close to 1 as desired. For simplicity, we restrict ourselves
to N ¼ 2 for some of the discussion and simulations, but larger
values of N allow for central excitations, or quasmons, with arbi-
trarily many sign crossings. More precisely, insert into B1 a piece-
wise constant potentialQðxÞ, consisting of two layers with values τ1
inBs1 , τ2 inBs2 − Bs1 , and zero elsewhere. For suitable parameters
ρ, ϵ, sj and τj of the potentialQ, we obtain (SI Text) a Schrödinger
hat potential, V SH ¼ Vc þQ. Matter waves with energy E that
are incident on the SH are modeled by Schrödinger’s equa-
tion, ð−∇2 þ V SH −EÞψ ¼ 0.

The key feature of V SH is that the resulting matter waves can
be made to concentrate inside the cloaked region as much as de-
sired, while nevertheless maintaining the cloaking effect, quanti-
fied as follows. Assume that we have two balls of radius L > 2,
Bem

L andBsh
L , containing empty space and a Schrödinger hat, resp.

Let B ·
1; B

·
2 denote the balls of radii 1 and 2, resp., centered at 0,

for ·¼ em or sh, and assume that matter waves ψ em and ψ sh on
Bem

L , Bsh
L , resp., have the same boundary values on the sphere of

radius L, corresponding to identical incident waves. Define the
strength of the Schrödinger hat to be the dimensionless ratio

S ¼ 1

volðB1Þjψ emð0Þj2
Z
BSH

1

jψ shðxÞj2dx; [2]

where ψ em and ψ sh are solutions which coincide in jxj > 2. We
show that, by appropriate choice of the design parameters, S
may be made to take any prescribed positive value. For large
values of S, the probability density of ψ sh is almost completely
concentrated in the cloaked region.

Properties. Schrödinger hats have some remarkable effects on
wave propagation.

• They act as reservoirs, capturing, amplifying and storing energy
from incident time harmonic acoustic or EM waves, or prob-
ability density from incident matter waves in QM. We remark
that potentials which, for some incident wave, produce a scat-
tered wave which is exactly zero outside a bounded set, are said
to have a transmission eigenvalue (30). In contrast, the scat-
tered wave caused by a Schrödinger hat potential is approxi-
mately zero for all incident fields.

• The amplification and concentration of a matter wave in the
cloaked region can be used to create probabilistic illusions.
For any L > 2, consider (nonnormalized) wave functions
ψ em and ψ sh on BL, for empty space and a SH in B2, resp.,
which coincide in the shell BL − B2. Then for any region
R ⊂ BL − B2 the conditional probability that the particle is ob-
served to be in R, given that it is observed in BL − B2, is the
same for ψ em and ψ sh. However, by choosing the parameters of
the SH appropriately, the probability that the particle ψ sh is in
the cloaked region B1 can be made as close to 1 as wished. The
particle ψ sh is like a trapped ghost of the particle ψ em in that it
is located in the exterior of the SH structure with far lower
probability than ψ em is, but when ψ sh is observed in BL − B2,
all of its time harmonic measurements coincide with those of
ψ em (see Fig. S3).

• The highly concentrated part of the wave function inside the
cloaked region of a QM Schrödinger hat is, as mentioned
above, a localized excitation which we refer to as a quasmon.
The strong concentration of the wave function in B1, without
change to the wave function outside the ball B2 where the SH
potential is supported, is nevertheless consistent with the un-
certainty principle: although the particle is spatially localized
within B1, the variation of its momentum is large, due to
the large gradient of ψ sh on a spherical shell about the central
peak; cf. Figs. 1 and 2 (red), and Fig. S3.

• A quasmon excited within a QM Schrödinger hat has a well-
defined electric charge and variance of momentum, depending
on the parameters of the hat. The Schrödinger hat produces
vanishingly small changes in the matter wave outside of the
cloak, while simultaneously making the particle concentrate in-
side the cloaked region. Thus, if the matter wave is charged, it
may couple via Coulomb interaction with other particles or
measurement devices external to the cloak. When a time har-
monic incident field ψ in is scattered by the SH, the field is only
perturbed negligibly outside of the support of the hat potential,
V SH; there is essentially no scattering. However, the Schrödin-
ger hat concentrates the charge inside the cloaked region, pro-
portional to jψ inð0Þj2, the square of the modulus of the value
which the incident field would have had at the center of BL in
the absence of the SH. Due to the long range nature of the
Coulomb potential, this charge causes an electric field which
can be measured even far away from the SH. If the result is
zero, this indicates that ψ inð0Þ ¼ 0; without disturbing the
field, one determines whether the incident field vanishes at
0 (see SI Text). Generically, the nodal set for a complex-valued
wave function in 3D is a curve; however, if an electric potential
is real and there is no magnetic field, then the real and ima-
ginary parts of the wave can be linearly dependent and the
nodal set is a surface. In either case, a measuring device within
a Schrödinger hat can act as a non–interacting sensor, detect-
ing, for an ensemble of quantum systems, the nodal set on
which the incident matter wave vanishes, allowing for possible

Fig. 1. A quasmon inside a Schrödinger hat. The real part of the effective
wave function ψ sh

effðx; y; zÞ at the plane z ¼ 0 when a plane wave is incident
to a SH potential. By varying the design parameters, the concentration of
the wave inside the cloaked region can be made arbitrarily strong and
the scattered field arbitrarily small. The matter wave is spatially localized,
but conforms to the uncertainty principle, with the large gradient, visible
as the steep slope of the central peak, concentrating the momentum in a
spherical shell in p-space. For definition of ψ sh

eff and a video of time harmonic
wave, see (SI Text and Movie S1). For comparison with non-Schrödinger hat
cloaks, see Fig. 2 and Fig. S1. The wave function with another incident wave is
shown in Fig. S2.
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near-field scanning quantum microscopy, analogous to cloaked
acoustic and EM sensors (21, 22) and near-field optical micro-
scopes (31).

Details of the Construction. The two main ingredients of Schrödin-
ger hats are approximate cloaks and barrier/well layers. We start
by recalling some facts concerning nonsingular approximations to
ideal 3D spherical cloaks (18, 19, 20, 32, 33). For 0 ≤ ρ < 2, set
R ¼ 1þ 1

2
ρ, so that R → 1 as ρ → 0; as above, our asymptotics

will be in terms of ρ. Let BR ¼ fjxj < Rg, B̄R ¼ fjxj ≤ Rg and
SR ¼ fjxj ¼ Rg be the open ball, closed ball and sphere centered
at the origin 0 and of radius R, resp. Introduce the coordinate
transformation Fρ∶BL − Bρ → BL − BR,

x ≔ FρðyÞ ¼
( y; for 2 < jyj < L;�

1þ jyj
2

�
y
jyj ; for ρ < jyj ≤ 2.

[3]

For ρ ¼ 0 (that is, R ¼ 1), this is the singular transformation [1],
leading to the ideal cloak, while for ρ > 0 (that is, R > 1), Fρ is
nonsingular and leads to a class of approximate cloaks (18, 19, 20,
32, 34). If we set I ¼ ðδjkÞ denotes the identity matrix, then, for
ρ ¼ 0, this pushes forward into an anisotropic singular mass ten-
sor, ðM0ÞjkðxÞ, on BL − B1, defined in terms of its inverse,

ðM−1
0 ÞjkðxÞ ¼ ððF0Þ�IÞjkðyÞ

≔
1

det
�
∂F0

∂x ðxÞ
� ∑

3

p;q¼1

∂ðF0Þj
∂xp

ðxÞ ∂ðF0Þk
∂xq

ðxÞδpqðxÞ
����
x¼F−1

0
ðyÞ
:

M0ðxÞ is the matrix-valued function on B2 − B1 with elements

ðM0ÞjkðxÞ ¼
1

2
ðδjk − PjkðxÞÞ þ

1

2
ðjxj − 1Þ−2jxj2PjkðxÞ;

where the matrix PðxÞ, having elements PjkðxÞ ¼ jxj−2xjxk, is the
projection to the radial direction. On the other hand, when ρ > 0,
we obtain an anisotropic but nonsingular mass tensor, MρðxÞ, on
BL − BR, given by

ðM−1
ρ ÞjkðxÞ ¼ ððFρÞ�IÞjkðyÞ

≔
1

det
�
∂Fρ

∂x ðxÞ
� ∑

3

p;q¼1

∂ðFρÞj
∂xp

ðxÞ ∂ðFρÞk
∂xq

ðxÞδpqðxÞ
����
x¼F−1

ρ ðyÞ
; [4]

and MρðxÞ ¼ I on BR ∪ ðBL − B2Þ. For each ρ > 0, the eigenva-
lues of Mρ are bounded from above and below; however, one of
them tend to∞ as ρ → 0. Fixing an R0 < 1, we also define a sca-
lar bulk modulus function λρðxÞ on BL,

λρðxÞ ¼
8<:

ηðxÞ; x ∈ BR0
;

1
8
jxj2ðjxj − 1Þ−2; x ∈ B2 − BR;

1; x ∈ ðBR − BR0
Þ ∪ ðBL − B2Þ

[5]

where η is a layered combination of barriers and wells,

ηðxÞ ¼ ηðx; τÞ ¼ ∑
N

j¼1

1

τj
χðsj−1;sjÞðjxjÞ: [6]

Here τ ¼ ðτ1; τ2;…; τNÞ, τj ∈ R are parameters which one can
vary, 0 ¼ s0 < sj < sN ¼ R0 are some fixed numbers, and
χðsj−1;sjÞðrÞ ¼ 1 on the interval ðsj−1; sjÞ and vanishes elsewhere.
Thus, we have a homogeneous ball Bs0 coated with concentric
homogeneous shells, sometimes writing λρðxÞ ¼ λρðx; τÞ. While
in acoustics λρ denotes the bulk modulus, in quantum mechanics
later, λ−1

ρ will give rise to the potential.
Next, consider in the domain BL the solutions of the boundary

value problem,

ð−∇ · M−1
ρ ∇ − ω2λ−1

ρ Þuρ ¼ 0 in BL; uρjSL
¼ h: [7]

Since the matrix Mρ is nonsingular everywhere, across the inter-
nal interface SR we have the standard transmission conditions,

uρjSRþ ¼ uρjSR− ; er · ðM−1
ρ ∇uρÞjSRþ ¼ er · ðM−1

ρ ∇uρÞjSR− ;

[8]

where er is the radial unit vector and the � indicates the the
boundary value on SR as r → R�. In the physical space / virtual
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Fig. 2. The cloak–resonance–sensor–Schrödinger hat continuum. Scattering
by potentials with different parameters, demonstrating four modes: cloak,
resonance, sensor and Schrödinger hat. Graphs show the real parts of ~u (de-
fined in Thm. 1) for 0 ≤ r ≤ 4; note different vertical scales. Upper: Cloak
(black) allows little penetration of incident wave into cloaked region, B1. Re-
sonant curve (blue) shows blowup (to off-chart values, see Fig. S1) within B1,
and large near-field deviation from incident wave, indicating failure of cloak-
ing. Sensor (purple) combines cloaking effect with moderate penetration
into B1. Schrödinger hat (red) obtains large value within B1, allowing for very
sensitive cloakedmeasurement of incident waves. Note that the cloak, sensor
and SH solutions are essentially identical with the incident wave outside of
the cloaked region, while the resonant solution diverges, destroying cloaking
(18, 19). Lower: Continuous parameter variation from sensor to Schrödinger
hat modes. Height of central excitation (quasmon) can be made arbitrarily
large, and width of peak made arbitrarily small. For parameters used, see
(SI Text).
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space paradigm of transformation optics, here the physical space
is BL, and the virtual space is a disjoint union, ðBL − BρÞ ∪ BR.
On the ball BL in physical space, one has

uρðxÞ ¼
� vþρ ðF−1

ρ ðxÞÞ; x ∈ BL − BR;

v−ρ ðxÞ; x ∈ BR;
[9]

where v�ρ , on the virtual space, is the solution of

ð−∇2 − ω2Þvþρ ðyÞ ¼ 0; y ∈ BL − Bρ; vþρ jSL
¼ h;

and

ð−∇2 − ω2λ−1
ρ Þv−ρ ðyÞ ¼ 0; y ∈ BR: [10]

With respect to spherical coordinates ðr; θ; φÞ, the transmission
conditions [8] become

vþρ ðρ; θ; ϕÞ ¼ v−ρ ðR; θ; ϕÞ;
ρ2∂rvþρ ðρ; θ; ϕÞ ¼ R2∂rv−ρ ðR; θ; ϕÞ:

[11]

Since Mρ; λρ are spherically symmetric, cf. [4, 5], we can separate
variables in [7], writing uρ as

uρðr; θ; ϕÞ ¼ ∑
∞

n¼0
∑
n

m¼−n

unm
ρ ðrÞYm

n ðθ; ϕÞ; [12]

where Ym
n are the standard spherical harmonics, giving rise to a

family of boundary value problems for the unm
ρ . The most impor-

tant term, which we now analyze, is the lowest harmonic (the s-
mode), u0;0

ρ , i.e., the radial component of uρ.

The Lowest Harmonic. Consider the asymptotics as ρ → 0 of the
Dirichlet problem,

ð−∇ · M−1
ρ ∇ − ω2λ−1

ρ Þuρ ¼ 0 in BL; uρjSL
¼ hðxÞ: [13]

We have shown (19) that for a specific value of the parameter
τ ∈ RN , denoted τ ¼ τ resðρÞ, such that the equation 13 has a non-
zero radial solution with h ¼ 0, there is an interior resonance,
destroying cloaking. The field uρ grows larger inside the cloaked
region as ρ → 0, and this resonance is detectable, both by (near-
field) boundary measurements outside of the cloak and (far-field)
scattering data.

On the other hand, for another value of τ, denoted τ ¼ τshðρÞ,
the cloak acts as an approximate cloak and inside the cloaked
region the solution is proportional to the value which the field
in the empty space would have at the origin. This corresponds
to the equation 13 having a radial solution uρ which satisfies
∂ruρðLÞ ¼ ωj 0

0ðωLÞ and uρðLÞ ¼ j0ðωLÞ, or equivalently,
uρðxÞ ¼ j0ðωjxjÞ for x ∈ BL − BR. Due to the transmission con-
dition [8] we see that the values τ resðρÞ and τshðρÞ are close,
with limρ→0τ shðρÞ − τ resðρÞ ¼ 0.

We now explain how to find τ ¼ τshðρÞ; note that τshðρÞ de-
pends on ω, ρ > 0, and 0 < R0 < 1, but these parameters are
omitted in the notation below. For simplicity, we work with
N ¼ 2. Consider the ODE corresponding to the radial solutions
uðrÞ of the equation 13, i.e.,

−
1

r2
d
dr

�
r2σρðrÞ

d
dr

uðrÞ
�
− ω2λ−1

ρ ðrÞuðrÞ ¼ 0; [14]

and pose the Cauchy data (i.e., initial data) at r ¼ L,
uðLÞ ¼ j0ðLωÞ, ∂ruðLÞ ¼ ωj 0

0ðLωÞ. Here, σρðrÞ is the rr-compo-

nent of the matrix M−1
ρ , that is, σρðrÞ ¼ 2ðr − 1Þ2, for R < r < 2

and σρðrÞ ¼ 1 elsewhere. We solve the initial value problem for
[14] for r on the interval ½R0; L�, and find the Cauchy data
ðuðR0Þ; u 0ðR0ÞÞ at r ¼ R0, where u 0 ≔ du

dr . Note that on the inter-
val ½R0; L�, λρ does not depend on τ. Consider the case when s1 ¼
R0∕2; s2 ¼ R0 and τ ¼ ðτ1; τ2Þ, where τ1 and τ2 are constructed
as follows: First, choose τ2 to be a negative number with a large
absolute value. Then solve the initial value problem for [14] on
½s1; R0� with initial data ðuðR0Þ; u 0ðR0ÞÞ at r ¼ R0. In particular,
this determines the Cauchy data ðuðs1Þ; u 0ðs1ÞÞ at r ¼ s1. Sec-
ondly, consider τ1; τ2, as well as ρ; R0, to be parameters, and
solve the initial value problem for [14] on interval ½0; s1� with in-
itial data ðuðs1Þ; u 0ðs1ÞÞ at r ¼ s1. Denote the solution by
uðr; τ1; ρ; R0; τ2Þ and find the value du

dr ðr; τ1; ρ; R0; τ2Þjr¼0. For
ρ; R0, and τ2 given, find τ1 > 0 satisfying

du
dr

ðr; τ1; ρ; R0; τ2Þ
����
r¼0

¼ 0. [15]

We choose τ1 to be a value for which [15] holds, and denote this
solution by τ1ðρ; R0; τ2Þ; choosing higher values for τ1 leads to
quasmons with larger numbers of sign changes. Set τshðρÞ ≔
ðτ1ðρ; R0; τ2Þ; τ2Þ. Summarizing the above computations, we have
obtained a cloak at frequency ω, that is, for the energy E0 ¼ ω2,
with radial solution uðxÞ satisfing uðxÞ ¼ j0ðωjxjÞ for jxj ∈ ½2; L�.
Moreover, when τ2 is large, this solution uρðrÞ grows exponen-
tially fast on the interval ½s1; s2�, as r becomes smaller, while
on the interval ½0; s1� it satisfies u 0ð0Þ ¼ 0, so that uðrÞ defines
a smooth spherically symmetric solution of [13].

In the context of QM cloaks below, the construction above can
be considered as follows: Inside the cloak there is a potential well
of depth −τ1, enclosed by a potential barrier of height τ2. The
parameters τ1 and τ2 are chosen so that the solution is large in-
side the cloak due to the resonance there. The cloaked region is
thus well–hidden even though the solution may be very large in-
side the cloaked region. In a fixed-energy scattering experiment,
with high probability the potential captures the incoming particle,
but due to the chosen parameters of the cloak, external measure-
ments cannot detect this.

Using the implicit function theorem, one can show that for
generic values of τ2 and R0, limρ→0τ1ðρ; R0; τ2Þ ≔ τ1ðR0; τ2Þ
exists. We note that the solution uρðrÞ ≔ uðr; τ1ðρ; R0; τ2Þ; ρ; τ2Þ
of [14] has limit limρ→0uðr;τ1ðρ; R0; τ2Þ; ρ; τ2ÞÞ ¼ cΦðrÞ; r< 1,
where c ∈ C and ΦðrÞ≢0 is an eigenfunction of the boundary
value problem,

ð∇2 þ ω2λ−1
0 ðy; τÞÞΦðjyjÞ ¼ 0; ∂rΦðjyjÞjr¼1 ¼ 0; [16]

where τ ¼ ðτ1ðR0; τ2Þ; τ2Þ and Φ is normalized so that
‖Φ‖L2ðB1Þ ¼ 1. This finishes the analysis of the lowest harmonic;
for the higher order harmonics, see (SI Text).

In summary: As ρ → 0, in the region BL − B2 the solutions
uρðxÞ converge to the solution u corresponding to the homoge-
neous virtual space boundary problem,

ð−∇2 − ω2Þu ¼ 0 in BL; ujSL
¼ hðxÞ [17]

and, in the cloaked region B1, to the solution in empty space,

lim
ρ→0

uρðxÞ ¼ βuð0ÞΦðxÞ [18]

where ΦðyÞ ¼ ΦðrÞ is the radial solution of the equation 16,
β ¼ 1

Φð1Þ and uð0Þ is the value of the solution of [17] at the origin.
One can replace the ball BL with an arbitrary domain Ω ⊂ R3

containing BL, and show that adding the bulk modulus [6] inside
the cloaked region improves the cloaking effect (see SI Text)
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Via homogenization, the waves in such a Schrödinger hat with
anisotropic Mρ are well-approximated by waves governed by the
Helmholtz equation with isotropic mass densities mρ;ε as ε → 0.
One can then use the classical Liouville gauge transformation to
obtain potentials V ρ;ε such that, at energy E ¼ ω2, the solutions
of the Schrödinger equations ð−∇2 þ V ρ;ε þQρÞψ ¼ Eψ, admit
solutions with similar behavior. See the theorems below and
(SI Text).

Scattering by a Schrödinger Hat. Now consider the effect of Schrö-
dinger hats on scattering experiments in R3. In free space, a wave
function Ψ satisfies

ð−∇2 − EÞΨ ¼ 0; in R3; [19]

and we choose ΨðxÞ¼Ψ inðxÞ≔ eiωe·x; jej ¼ 1; ω2 ¼E, a plane
wave in the direction e. We compare these with the wave func-
tions in R3 scattered by the SH potential,

ð−∇2 þ V ρ;ε þQρ −EÞΨρ;ε ¼ 0; in R3;

Ψρ;ε ¼ Ψ in þ Ψsc
ρ;ε;

[20]

where Ψsc
ρ;ε satisfies the Sommerfeld radiation condition. (Note

that the SH potential is of compact support, since it vanishes out-
side B2).

Since scattering data for these problems is equivalent to
Dirichlet-to-Neumann operators on ∂BL (35), one can use the
results above to analyze scattering by a SH potential. We see,
using [S16], [S21], and [S24] from (SI Text), that when ρ and ε
are small enough the solutionΨρ;ε is close toΨ in outsideB2, close
to m−1∕2

ρ;ε ðxÞΨ inðF−1ðxÞÞ in B2 − BR, and close to Ψ inð0ÞΦðxÞ in
the cloaked region. Thus, we see that scattering observations,
i.e., observables depending on the far field patterns of the solu-
tions, are almost the same for the Schrödinger hat (when ρ and ε
are small) as for empty space.

Theorems. The effects of Schrödinger hats on incident time
harmonic waves are encapsulated in the following statements.
Assume that E ¼ ω2 is not a Dirichlet eigenvalue in BL and
h ∈ H

1
2ðSLÞ. Let w be the unique solution of ð∇2 þ ω2Þw ¼ 0;

wjSL
¼ h. We assume that the radially symmetric, isotropic mass

density mρ;ε can be written as mρ;εðxÞ ¼ mðjxj; 1ε jxjÞ where m is
periodic function in the second variable with period 1. Below, ν
and θ are the limits of mρ;εðxÞ−1∕2 and mρ;εðxÞ−1, resp., in the
sense of distributions, as ε → 0, ρ → 0. This means that θðxÞ is
the average of r 0 ↦ mðjxj; r 0Þ and νðxÞ is the average of
r 0 ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðjxj; r 0Þp

over the interval 0 ≤ r 0 ≤ 1. Below, Φ is the
L2-normalized eigenfunction satisfying [16].

Theorem 1. For any R0; R1 and τ2 there are parameters τ1ðnÞ, n ∈
Zþ and sequences ρn; ρ 0

n, εn → 0 as n → ∞, such that the solutions
un of the acoustic equation 7 corresponding to coefficients mρn;εn
and λρ 0

n
converge weakly in L2ðBLÞ, with

eu ≔ lim
n→∞

un ¼

8>><>>:
wðxÞ; in BL − B2;

wðF−1ðxÞÞ; in B2 − B1;

wð0ÞΦðxÞ; in B1:

Let V sh
n be the SH potential corresponding to coefficientsmρn;εn and

λρ 0
n
and energy E.

Theorem 2. The solutions ψn of the Schrödinger equation in BL with
the SH potentials V sh

n , the energy E and the Dirichlet boundary
value ψnjSL

¼ h satisfy

lim
n→∞

ψn ¼

8>><>>:
wðxÞ; in BL − B2;

νðxÞwðF−1ðxÞÞ; in B2 − B1;

wð0ÞΦðxÞ; in B1;

lim
n→∞

jψnj2 ¼

8>><>>:
jwðxÞj2; in BL − B2;

θðxÞjwðF−1ðxÞÞj2; in B2 − B1;

jwð0ÞΦðxÞj2; in B1;

weakly in L2ðBLÞ and in the sense of distributions, resp.,
We note that θðxÞ above is not equal to ηðxÞ2. Due to these the-

orems, it is natural to define ψ sh
effðxÞ ≔ θðxÞ1∕2 ~uðxÞ, whose absolute

value squared equals limn→∞jψnðxÞj2.

Implementations.We briefly describe possible physical realizations
of Schrödinger hats for a variety of wave phenomena, first for
acoustics and EM using materials with negative bulk modulus
or permittivity, and then for QM via highly oscillatory potentials.
(The lossy nature of presently available metamaterials will make
effective implementations of Schrödinger hats technically chal-
lenging.) Details will appear elsewhere.

i. Equation S23 with isotropic massmρ;ε and bulk modulus λρ in
(SI Text) describes an approximate acoustic cloak. The nega-
tive values of τ2 required for the potentialQρ correspond to a
material with negative bulk modulus; such materials have al-
ready been proposed (36). There are many designs and reali-
zations for acoustic cloaks (6–8, 17, 37); acoustic Schrödinger
hats could be implemented by placing layered negative bulk
modulus material inside such a cloak. Possible implementa-
tions of acoustic cloaks, as well as potential difficulties, are
discussed in (SI Text). Similarly, for electromagnetic waves,
one can consider a cylindrical EM cloak (5) and insert in it
material with negative permittivity to implement a structure
similar to the SH potential. The analysis related to such cylind-
rical cloaks with parameters suitably chosen to create a SH
potential for incident time harmonic TM-polarized waves is
similar to the arguments here for the 3D spherical cloak,
although with different asymptotics for [S9].

ii. Invisible plasmons. Surface plasmons are localized electro-
magnetic waves that can exist at the boundaries between ma-
terials with positive and negative electric permittivity such as
dielectrics and metals (38). The localized wave inside the SH
resembles a surface plasmon; however, in contrast to ordin-
ary surface plasmons, it is hidden. These cloaked plasmons
could be produced using techniques to those in 2D plasmonic
cloaking (39), where the electromagnetic wave of the plas-
mon propagates on a glass surface covered by a gold layer
with concentric rings of polymer on top. The widths and
the radii of the rings can be chosen so that the structure im-
plements an invisibility cloak for a wave localized on the sur-
face plane. In 2D plasmonic cloaking (39), such a structure
has been used to implement a nonmagnetic optical cloak
(40), an approximate cloak for which the light rays are trans-
formed according to the transformation [3]. Including two
additional metal-dielectric rings in the interior of the cloak-
ing structure, we can then implement a SH potential (see SI
Text and Fig. S4). In this case the plasmon is not only con-
fined to the surface but becomes strongly localized in the SH,
while remaining invisible.

iii. Hidden matter waves. It is also possible that a SH can be pro-
duced for matter wave cloaks (9). Here one can exploit the
fact that the normal roles of light and matter can be reversed:
light acts like a refractive index for matter waves, see e.g., (41).
Light fields can thus be used to generate the effective index
distributions required for the implementation of a SH, see
(42). For cold atoms confined in 2D by a light sheet, one could
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produce the SH potentials by illuminating the sample ortho-
gonally to the light sheet with a light beam, generated by a
hologram, that carries the intensity distribution required for
the SH. The result would be a highly localized matter wave
that nevertheless remains hidden.

iv. Another possible path towards a solid state realization of a
quantum Schrödinger hat utilizes a sufficiently large hetero-
structure of semiconducting materials. By homogenization
theory, the SH potential can be approximated using layered
potential well shells of depth −V− and barrier shells of height
Vþ. By rescaling the x coordinate we can make the values V�
smaller; in such scaling the size of the support of the SH po-
tential grows and E becomes smaller. This layered family of

concentric potential wells and barriers can be implemented
with a heterostructure of semiconducting materials. In such
a structure the wave functions of electrons with energy close
to the bottom of the conduction bands can be approximated
using Bastard’s envelope function method (43). Choosing the
materials and thickness of the spherical layers suitably, the en-
velope functions satisfy a Schrödinger equation whose solu-
tions are close to those for a SH potential.
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