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Nature offers exciting examples for functional wetting properties
based on superhydrophobicity, such as the self-cleaning surfaces
on plant leaves and trapped air on immersed insect surfaces allow-
ing underwater breathing. They inspire biomimetic approaches in
science and technology. Superhydrophobicity relies on the Cassie
wetting state where air is trapped within the surface topography.
Pressure can trigger an irreversible transition from the Cassie state
to the Wenzel state with no trapped air—this transition is usually
detrimental for nonwetting functionality and is to be avoided.
Here we present a new type of reversible, localized and instanta-
neous transition between two Cassie wetting states, enabled by
two-level (dual-scale) topography of a superhydrophobic surface,
that allows writing, erasing, rewriting and storing of optically dis-
played information in plastrons related to different length scales.

micropillars ∣ silicone nanofilaments ∣ optical data storage ∣ bistable ∣
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The lotus plant has become famous by its ability to always keep
its leaves clean and dry (1), making superhydrophobic wett-

ability a vibrant topic of research in recent years (2). However,
nature also offers other concepts for exploiting nonwettability,
in particular layers of trapped air (plastrons) that some under-
water insects maintain within the hair growing on their exterior
to keep them dry or to serve as a physical gill (3, 4). Plastrons on
immersed artificial superhydrophobic surfaces have been under
active study as well (5–9). Because the formation of an air layer
between water and the surface is the essential feature of super-
hydrophobic surfaces in general, a transition from a state with an
air layer (Cassie state) to a state where it is lost (Wenzel state)
means loss of nonwetting properties (10, 11). Therefore, super-
hydrophobic surfaces are typically designed to provide the most
stable Cassie state possible using hydrophobic surface chemistry
and rough microtopography (12).

Reversing the Cassie-Wenzel transition is very challenging
(13–16)—in particular for immersed surfaces (involving a plas-
tron, see Fig. 1) where it has so far only been accomplished by
electrochemical generation of gas on the surface to create a new
plastron (17) or by exploiting the expansion of gas at low pressure
(18). Hierarchical topographies are known to improve the stabi-
lity of the Cassie state (19) (as well as to promote mechanical
resilience, ref. 20, and nonwettability, ref. 21), but it is less widely
realized that complex topographies also provide new approaches
to wetting state switching by giving rise to a larger number of wet-
ting states, making the term “Cassie state” less well defined: there
exist several possible states that involve trapped air, but vary in
terms of wetted solid fraction and the volume of the air layer (4,
22, 23). Wetting hysteresis depends on the amount of wetted so-
lid, so states with little wetting are of particular interest for
designing bistable systems.

Here we present, for the first time, reversible and localized
pressure-induced transitions between two distinct Cassie-type

wetting states on a hierarchical superhydrophobic surface
immersed in water. The states arise from the two topographical
levels on the surface: a pattern of silicon microposts and a super-
hydrophobic nanofilament coating grown on the microtopogra-
phy (Fig. 1B). In one wetting state the plastron occupies the
space between the microposts—we call this state themicro-Cassie
state as the plastron has micron-scale dimensions. In the other
state the space between the posts is mostly filled with water
but air still remains in the nanofilament layer, which is only hun-
dreds of nanometers thick. Because of this thin plastron, the state
is also of the Cassie type because the water-solid contact area
fraction is small. This state is called the nano-Cassie state, accord-
ingly. We will show that the wetting states can be locally and
reversibly switched by using a nozzle to cause pressure-driven
transitions (Fig. 1B).

Results
Superhydrophobic surfaces with two-level topography were con-
structed from silicon wafers patterned with a square array (pitch
20 μm) of cylindrical microposts (diameter 10 μm, height 5 or
10 μm) that are further coated with silicone nanofilaments
(24–26). The nanofilaments are themselves superhydrophobic
(advancing and receding contact angles of planar coating
170°∕145°� 5°), which is necessary for a stable nano-Cassie state.

Submerging the hierarchical surface in water leads to the for-
mation of a plastron in the micro-Cassie state. A local switching
to the nano-Cassie state can be induced by “writing” with a jet of
water (see Fig. 1B). The dynamic pressure of the jet gives rise to
Laplace pressure (pressure difference between water and plas-
tron) that pushes the water between the microposts, causing a
localized and immediate transition. Calculations predict a transi-
tion Laplace pressure of 6.9 kPa (see SI Text). Yet, even a large
pressure will not cause a transition to the Wenzel state due to the
high stability of the plastron within the nanofilaments. An optical
micrograph of a nano-Cassie/micro-Cassie boundary is shown
in Fig. 2A.

Unlike the Wenzel to Cassie transition, the nano-Cassie to
micro-Cassie transition involves only a low kinetic barrier due
to the small amount of wetted solid in the nano-Cassie state.
In fact, the micro-Cassie state is energetically more stable than
the nano-Cassie state (see SI Text). We were able to restore the
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micro-Cassie state by a reverse writing process: local negative
Laplace pressure was built between water and the plastron by
sucking water with the needle close to the surface, causing the
plastron to fill the space between the posts once again (see
Fig. 1B). According to our calculations (SI Text) the nano-Cassie
state becomes unstable at a Laplace pressure between −5.0 kPa
and −1.3 kPa. The local transitions do not alter the pressure of
the plastron because a gas reservoir (like an air bubble on the
surface shown in Fig. 3A) will store and release air as needed.

For comparison with the hierarchical topography, we also fab-
ricated a superhydrophobic surface with single-level topography
(see Fig. 1A) by coating a micropatterned silicon surface with a
hydrophobic fluoroalkylsilane monolayer (advancing and reced-
ing contact angles of coating on flat surface 118°∕102°� 3°) in-
stead of nanofilaments. The plastron on an immersed single-level
surface is in the Cassie state, and the water jet writing technique
shown in Fig. 1A can be used to cause a local Cassie-Wenzel tran-
sition, which is irreversible.

To study in detail the shape of the water-air interface in the
micro-Cassie and nano-Cassie states we introduced a new laser
scanning confocal imaging technique that makes use of fluores-
cent polymer nanoparticles dispersed in the water. Two confocal
scanning modes are combined: reflection of 633-nm-wavelength
laser light and fluorescence from the nanoparticles that are ex-
cited with a 543-nm-wavelength laser light. The reflection signal
provides information on topography while the fluorescent nano-
particles help to differentiate water from air. Fig. 2B shows a
series of micrographs of the boundary between nano-Cassie and
micro-Cassie regions, focused 15, 10, 5 and 0 μm above the sub-

strate. The fluorescence image shows that, while the space be-
tween the posts in the micro-Cassie region is filled with air, in
the nano-Cassie region water occupies most of the space except
the filament layer, as depicted in the schematic picture in Fig. 2B.

The interference fringes in the reflectance images—caused by
interference between reflections from the water-air interface and
the air-silicon interface at the bottom—reveal the shape of the
water-air interface. The vertical distance between two intensity
maxima corresponds to a half of the wavelength of the laser light,
317 nm. The interface starts to curve downwards about 30 μm
from the boundary between the micro-Cassie and nano-Cassie
states with the slope increasing close to the boundary.

Although water fills most of the space between the posts in the
nano-Cassie state, the “coronae” surrounding the posts in the mi-
croscope images in Fig. 2 suggest that micrometer-sized pockets
of air still remain around the bases of the posts (see also Figs. S1
and S2). Indeed, theoretical considerations (see SI Text) show
that small air pockets are expected to remain in the corners be-
tween the posts and the bottom if the advancing contact angle of
the nanopattern is greater than 135°. Negative Laplace pressure is
shown (SI Text) to destabilize the air pockets, ultimately inducing
transition to micro-Cassie state.

Fig. 3A shows a sample with two-level topography and another
with single-level topography in water. The sample with two-level
topography is mostly in the micro-Cassie state but has regions,
made in the shape of letters (“2 TIER”), which are in the
nano-Cassie state. These regions appear remarkably bright due
to intense light scattering. In fact, nano-Cassie regions exhibit
an order of magnitude stronger scattering intensity than micro-

Fig. 1. Wetting states and transitions between them on surfaces with different topographies. (A) With single-level topography, positive Laplace pressure
causes a transition from the Cassie to the Wenzel state. The transition involves wetting of the whole solid surface and is irreversible in most cases. (B) Hier-
archical topography. Nanofilaments suppress the transition to the Wenzel state and positive Laplace pressure will cause a transition to the nano-Cassie state
instead, where wetted solid area remains small due to the plastron in the nanofilament layer. This transition can be reversed by negative Laplace pressure.
Constant pressure in the plastron is maintained by a gas reservoir such as a macroscopic bubble on the edge of the surface. Scale bar in the scanning electron
micrographs is 10 μm (in the inset, 500 nm). The post height in the micrographs is 5 μm.
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Cassie regions, leading to substantial optical contrast (see
Fig. S3). The scattering is caused by the curved interface between
water and the air pockets around the bases of the posts that cause
reflections to a wide range of angles (see Fig. S2). Unlike nano-
Cassie regions, Wenzel regions on single-level topography (letters
“1 TIER” in Fig. 3A) do not scatter much due to the absence of a
water-air interface.

The difference in terms of wettability between the nano-Cassie
and the Wenzel state is demonstrated in Fig. 3B, which shows the
samples from Fig. 3A after water has been drained out. A thin
film of water stays on the Wenzel regions on the single-level sur-
faces and assembles into droplets, while the two-level surface
emerges completely dry: this is because the nano-Cassie state
is nonwetting whereas Wenzel is wetting.

Fig. 3C confirms that although the nanofilament layer is just
hundreds of nanometers thick and thus the nano-Cassie plastron
is very thin, air can still flow through it to form a micro-Cassie
region inside a larger nano-Cassie region.

Discussion
We wish to emphasize that the two wetting states can be thought
of as bistable logic states to store binary data. For example, the
surface could be divided into an array of dots that represent bits.
Also, the optical contrast between the states suggests that such an
array of bits could be used for a bistable reflective display. To de-
monstrate repeated write/erase cycles, we present in Fig. 3D a
series of photographs of a group of five nano-Cassie dots. The
dot in the center is repeatedly erased and rewritten. Furthermore,
to verify stability and reversibility even after prolonged storage, a
pattern was written on a surface and inspected after 30 days. The
pattern was found to be unchanged and still erasable.

Apart from data storage or display applications, we also
envision uses in microfluidics. While the micro-Cassie state is
expected to have a large slip length (5), the nano-Cassie state
most likely involves little slip regardless of the plastron, as
water between the microposts is unlikely to flow well. The

Fig. 2. The boundary between nano-Cassie and micro-Cassie states.
(A) Optical microscope images of a nano-Cassie/micro-Cassie boundary, one
focused at the post tops and the other at the bottom. In the nano-Cassie re-
gion the posts are surrounded by “coronae” that are pockets of remaining
air. (B) Combined confocal images where the reflectance scan is shown in
greyscale while fluorescence signal coming from dispersed nanoparticles is
shown in green (false color). When the confocal plane is below 10 μm, na-
noparticles are seen only in the nano-Cassie region where water fills most
of the space between posts. A schematic interpretation is below the images.
The diameter and height of silicon posts is 10 μm.

A

C

D

B

Fig. 3. Writing and erasing patterns. (A) A jet of water has been used to
create letter-shaped regions of Wenzel and nano-Cassie state in the plastrons
of single-level (1-tier) and two-level (2-tier) topography surfaces, respectively.
The escaping air pushed aside by the jet has formed into macroscopic bubbles
that act as gas reservoirs (indicated by arrows in the figure). (B) Water has
been drained from the container. The sample with single-level topography
has small droplets where the letters have been, whereas the sample with
hierarchical topography has emerged from the water completely dry. (C) De-
monstrating the reverse transition: a small region of micro-Cassie state is cre-
ated by suction inside a larger region of nano-Cassie state (created by a jet
of water). The inset is a photograph taken with a camera. Scale bar is 40 μm.
(D) The middle one of the 5 nano-Cassie dots is repeatedly erased (returned
to micro-Cassie state) and rewritten. Scale bar is 4 mm.

10212 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1204328109 Verho et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204328109/-/DCSupplemental/pnas.1204328109_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204328109/-/DCSupplemental/pnas.1204328109_SI.pdf?targetid=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1204328109/-/DCSupplemental/pnas.1204328109_SI.pdf?targetid=SF2


micro-Cassie/nano-Cassie transition could enable dynamical
creation of configurable flow barriers or fast-flowing channels.

To summarize, we demonstrated reversible bistable switching
between two Cassie-type wetting states on a hierarchical super-
hydrophobic surface and used a novel confocal microscopy tech-
nique based on dye-labeled nanoparticles for imaging the plas-
tron. A localized writing/erasing procedure was used for instant
switching of wetting state, enabling storage of binary data, and a
substantial scattering intensity contrast between the states allows
optical reading of information. We believe the result opens a new
perspective to wetting-functionalized surfaces as reversibly con-
figurable information-carrying media.

Materials and Methods
Silicon Micropatterning. Microposts were fabricated on (100) silicon wafers. A
UV-lithography step defined the patterns of the microposts to a 500 nm thick
layer of AZ1505 photoresist (Clariant). Subsequently, cryogenic deep reactive
ion etching (Oxford Instruments, Plasmalab 100) was used to etch the micro-
posts in silicon. (temperature −120 °C, inductively coupled plasma power
1,000 W, capacitively coupled plasma power 3 W, pressure 10 mTorr, SF6 flow
40 sccm, O2 flow 6 sccm). The etch rate was measured to be 2.0–2.5 μm∕min.
After etching, the remaining photoresist was removed in acetone.

Deposition of Nanofilament and Fluoroalkylsilane Coatings. For nanofilament
deposition, patterned silicon samples were kept in oxygen plasma (Gatan
Solarus Model 950) for 5minutes to increase the density of surface OH groups
(plasma power 65W, pressure 70 mTorr, O2 flow 40 sccm). Samples were then
placed to a glass reaction vessel (volume ca. 1 L) which was flushed with hu-
midified argon (relative humidity 30%). After flushing, the gas inlet and out-
let were closed and ca. 100 μl of methyltrichlorosilane (Sigma-Aldrich, 99%)
was injected with a syringe through a silicone septum into a Teflon cup inside
the vessel. After at least 14 hours the samples were taken out and rinsed with
deionized water. Fluoroalkylsilane coatings were made in a similar manner
except the vessel was flushed with dry argon and CF3ðCF2Þ5ðCH2Þ2SiCl3 pre-
cursor (ABCR, 97%) was used (injected amount was ca. 30 μl).

Scanning Electron Microscopy. Scanning electron microscopy was performed
on a JEOL JSM-7500FA field-emission microscope. Micrographs were taken at
5 kV voltage.

Optical Microscopy. A Leica DM4500 P optical microscope was used with an
immersion objective. Photographs were taken with a Leica DFC 420 camera.

Confocal Imaging. Samples were immersed in water containing fluorescently
labelled nanoparticles (Fluoro-Max red fluorescent polymer microspheres,
0.21 μm diameter, Thermo Scientific). Confocal laser scanning microscopy
(LSM 510, Zeiss, Germany; 25 × water immersion objective, NA ¼ 0.8) was
used to record z-stacks of the samples. Interfaces between media with dif-
ferent refractive indices (e.g., water and air) were visualized by recording
the reflection of a HeNe laser (λ ¼ 633 nm), fluorescence of the beads was
measured with a second HeNe laser (λ ¼ 543 nm). For visualization, the fluor-
escence signal was superimposed on the reflectivity signal (Fig. 2B). Noise was
removed from the fluorescence signal by Gaussian convolution and removal
of low-intensity pixels. Unmodified data is shown in Fig. S4.

Wetting Transitions. Switching between micro-Cassie and nano-Cassie states
was done using a syringe or a pressurized hose and a needle with a nonbe-
veled tip. The pressurized hose could be used to provide a steady pressure for
careful drawing (Fig. 3A) whereas a syringe could be used for both blowing
(micro-Cassie to nano-Cassie transition) and sucking (nano-Cassie to micro-
Cassie transition) water. Surfaces with 5 μm tall posts were used for reversible
writing and erasing.

Light Scattering Intensity Measurement. Sample (in a petri dish filled with
water) was illuminated from above with light focused on either a nano-Cassie
or micro-Cassie region. Scattered light was collected with an optical fiber
directed at the illuminated spot at an angle of 55° relative to the surface
normal. The intensity as a function of wavelength was measured with an
Ocean Optics USB4000-VIS-NIR spectrometer.
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