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We describe a directed genome-engineering approach that com-
bines genome-wide methods for mapping genes to traits [Warner
JR, Reeder PJ, Karimpour-Fard A, Woodruff LBA, Gill RT (2010) Nat
Biotechnol 28:856–862] with strategies for rapidly creating combi-
natorial ribosomal binding site (RBS) mutation libraries containing
billions of targeted modifications [Wang HH, et al. (2009) Nature
460:894–898]. This approach should prove broadly applicable to
various efforts focused on improving production of fuels, chem-
icals, and pharmaceuticals, among other products. We used bar-
coded promoter mutation libraries to map the effect of increased
or decreased expression of nearly every gene in Escherichia coli
onto growth in several model environments (cellulosic hydroly-
sate, low pH, and high acetate). Based on these data, we created
and evaluated RBS mutant libraries (containing greater than
100,000,000 targeted mutations), targeting the genes identified
to most affect growth. On laboratory timescales, we successfully
identified a broad range of mutations (>25 growth-enhancing
mutations confirmed), which improved growth rate 10–200% for
several different conditions. Although successful, our efforts to
identify superior combinations of growth-enhancing genes em-
phasized the importance of epistatic interactions among the tar-
geted genes (synergistic, antagonistic) for taking full advantage of
this approach to directed genome engineering.
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Directed evolution is fundamentally concerned with how to
most efficiently search combinatorial mutation space on

laboratory timescales (1–5). Many innovative approaches for
improved searching using rational design, screening, and/or ex-
haustive residue mapping have been demonstrated at the level of
individual proteins (3, 6–9). However, extensions to multiprotein
complexes and/or pathways that are affected by a large number
of possible mutations have remained a challenge. Advances in
multiplex DNA synthesis along with several recently reported
methods for rapidly modifying genomes have opened up the
possibility of applying directed evolution search strategies at
a scale far beyond what was previously possible (5, 10–23).
In particular, the trackable multiplex recombineering (TRMR)

approach allows one to simultaneously map the effect of in-
creased or decreased expression onto a trait of interest for every
gene in the Escherichia coli genome (22). This allows one to
perform high-throughput screens or growth selections, resulting
in the identification of a subset of genes with direct relevance
to a particular trait (i.e., acetate tolerance). As a complement,
multiplex automated genome engineering (MAGE) allows one to
generate billions of E. coli strains containing combinations of
mutations targeting a subset of genes (up to dozens of genes) (5),
thus allowing one to search for combinatorial mutants with
superior performance relative to the wild-type (WT) strain or
strains containing only a single mutation.
We hypothesized that these two methods could be combined

into a rational approach for engineering complex traits in a man-
ner conceptually similar to how such searches have been per-
formed at the level of individual proteins. That is, we used the
TRMR method to first perform a comprehensive mapping of the
effect of changes in the expression (up or down) of individual
genes on targeted traits, used these results to assign relevance to

target genes, and then used MAGE-like recursive multiplex
recombineering to create mutant libraries containing combina-
tions of genes indicated by the TRMR studies (see Fig. 1). These
libraries were then subjected to further growth selections to
identify mutations, and combinations thereof, conferring further
growth advantages. This approach, thus, mimics various combi-
natorial protein engineering strategies (4, 6, 9, 24) that were
designed to address the same combinatorial search space chal-
lenges by first identifying relevant individual residue modifications
and then constructing and searching combinations of such residue
modifications. We expected that the demonstration of our ge-
nome-scale search strategy would be complicated by a range of
factors, including the selective pressure used in the initial TRMR
selections, the level of combinatorial diversity achieved using re-
cursivemultiplex recombineering, the epistatic effects of combined
mutations (synergistic, additive, antagonistic), and the selective
pressure used upon the combinatorial mutant libraries. With this
in mind, we report here the demonstration of a combined genome
search and combinatorial optimization approach through the
engineering of several model traits (acetate tolerance, growth at
pH 5, and cellulosic hydrolysate tolerance).

Results and Discussion
Multiplex DNA synthesis and recombineering advances have
enabled the rapid construction of E. coli strains containing bil-
lions of specific mutations (5, 22, 25). Here, we used such
technologies to develop an approach to genome engineering that
starts with a broad-based search that maps individual genes to
traits at the genome-scale and follows with an in-depth search of
the combinatorial space comprising the subset of genes identified
to have the largest effect on the trait of interest. We used three
model traits to develop this search strategy: acetate tolerance,
corn stover hydrolysate tolerance, and growth at low pH (pH 5).
These traits were picked because of their broader relevance (i.e.,
sustainable fuels/chemicals) and differing levels of complexity in
toxicity mechanisms, which we expected would aid in the gen-
eralization of our approach.

Broad-Based Searching to Map Genes to Traits at the Genome Scale.
The TRMR technology employs barcoded promoter replace-
ment libraries to simultaneously map the effect of increased or
decreased expression onto a selected trait for nearly every gene
in the genome of E. coli (22). Here, we applied this technology to
track library population dynamics in growth selections using
three different selective environments (acetate, hydrolysate, pH
5). In so doing, we are able to identify promoter replacement
alleles that are enriched or diluted at different time points in the
growth selections, which enables the rapid identification of genes
for which increased or decreased expression confers a growth
advantage.
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A critical aspect of our approach involves understanding se-
lective pressure and, in particular, how to measure selective
pressure in a way that aids the design of integrated broad-based
(TRMR) and in-depth (MAGE) search strategies. The TRMR
technology provides a control for direct measurement of selec-
tive pressure across any selection. Specifically, the E. coli strain
JWKAN, which has a silent barcoded insertion near the attTn7
site (22), is mixed into the initial library population at a known
concentration. This barcode insertion is silent in that no pro-
moter or ribosomal binding site (RBS) is affected because of its
location, rendering it useful only for tracking the allele frequency
of a strain that grows similarly to the WT parental strain. Using
this control strain, we can directly calculate fitness and quanti-
tatively characterize selective pressure in a manner identical to
standard competition experiments (26). The fitness of the con-
trol strain (WJWKAN), and all other strains in the library, is cal-
culated by dividing the postselection barcoded allele frequency
by the initial barcoded allele frequency. Because the choice of
genes for combinatorial studies is largely based upon the TRMR
based fitness measurements, and because the distribution of such
fitness measurements is controlled by selective pressure, it is

important to understand how strong or weak a particular growth
selection was when interpreting fitness data for the ranking of
genes for combinatorial studies.
In the case of the acetate selections (performed for 69 h at 16

g/L acetate in 3-(N-morpholino)propanesulfonic acid (MOPS)
minimal medium as previously described by Neidhardt et al. (28);
Fig. 2A), the control strain fitness was calculated as WJWKAN =
0.024 (i.e., a 40-fold dilution of JWKAN), indicating a strong
selective pressure. For hydrolysate selections (15–17% or 18–20%
hydrolysate in MOPS minimal media; Fig. 2B), the averaged es-
timated control fitness for these selections were WJWKAN = 11.1
for 15–17% hydrolysate and WJWKAN = 0.079 for the 18–20%
hydrolysate, indicating minimal selective pressure for the low
concentrations and strong selective pressure for the high con-
centrations. For growth at pH 5 (15 h in minimal medium; Fig.
2C), the control fitness was calculated as WJWKAN = 0.25, in-
dicating a moderate selective pressure. Each selection reduced
the diversity of the population, yet the strength of selection
differed in each case (see Fig. 2 A–C and Fig. S1). This resulted
not only in the enrichment for a set of potential targets specific

Genome-wide search Relevance Ranking Combinatorial Search Optimized Mutants

A B C D

Fig. 1. Overview of strategy. (A) The TRMR library
(middle circle) is generated by introducing mutations
into WT E. coli (inner circle). A selection is performed
yielding data on high-fitness mutants (outer circle). (B)
A few mutants are chosen to be targets for further
study. (C) A recursive multiplex recombineering library
is constructed, generating a large diversity of clones
with one or more mutations. (D) A selection is per-
formed on the library to yield the most tolerant clones.
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Fig. 2. (A–C) Circle plots showing the result of TRMR analyses for acetate (16 g/L), hydrolysate (18–20%), and low pH. Clone fitness is mapped over the E. coli
genome. Peak location represents location of clone in E. coli genome; peak size is relative to fitness. Colors denote the type of mutation in the clones: red spikes
indicate an up mutation, blue spikes are down mutations. [B is adapted from Warner et al. (1).] (D–F) Growth studies of individual TRMR mutants. (D) Twenty-
four-hour growth in 16 g/L acetate. (E) Fourteen-hour growth in 27.5% hydrolysate. (F) Twelve-hour growth in pH 5.0 M9 media. Error bars represent 1 SD.
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to each environment but also, more generally, in a different dis-
tribution of potential targets (see Fig. 2 A–C and Fig. S1).
The TRMR datasets were used to identify genes to target in

combinatorial library design. Genes were selected primarily
based on their measured fitness (see Fig. 2 A–C), as well as the
level of improvement measured in individual growth studies
(Fig. 2 D–F). The eight acetate targets (six “down” and two
“up”) were chosen from the highest fitness mutants in the
TRMR selection. The low pH targets (14 total: 6 down; 8 up)
were selected by a combination of fitness and their relative
abundance in the postselection population. The hydrolysate
targets (27 total: 10 down; 17 up) were chosen by primarily by
high fitness in the previously described TRMR selection (22).
Two hydrolysate targets (talB and lpcA) were also included
based on their close metabolic relationship to another target,
talA, which was found with high fitness. All targets are listed in
Table S1. As shown in Fig. 2, these TRMR studies resulted in
the identification of a range of mutations that were confirmed to
increase growth in several broadly relevant conditions, thus
confirming our control calculations above that indicated me-
dium to strong selective pressure.

Design Considerations for Combinatorial Searches. Based on our
TRMR search results and follow-up target identification efforts,
we used recursive multiplex recombineering strategies identical
to those described by Wang et al. (5) to generate several dif-
ferent combinatorial RBS libraries specific to acetate, hydroly-
sate, or low pH tolerance. In brief, ssDNA cassettes were
designed to replace the RBS of relevant subsets of 8–27 target
genes with a degenerate set of RBS sequences expected to span
a range of increased or decreased expression levels relative to
the WT RBS. Although the generation of combinatorial libraries
was straightforward, both the efficiency of recombination and the

extent of any epistatic relationships among targeted genes play
key roles in dictating the effectiveness of our combinatorial
search strategy.
The goal here is to perform growth selections upon combi-

natorial libraries to identify clones containing combinations of
mutations that demonstrate superior growth relative to the WT
or a strain containing individual promoter mutations. Enrich-
ment for such improved clones depends upon the number of
RBS mutations in a clone, the growth advantage conferred by
individual RBS mutations, and the epistatic nature of the
mutations within the clone. Although we can calculate the
fraction of populations containing single, double, triple, etc.
mutations (Fig. 3A), and we can measure the growth effect of
individual mutations (as in Fig. 2 D–F), no current strategy exists
for predicting the nature and extent of epistatic interactions
among targeted genes. This challenges the design of growth
selections that will identify superior combinations because it is
not possible to then predict the selective pressure required to
identify combinations present at a given sequencing depth.
Our strategy for addressing this limitation was to predict library

population evolution using several different possibilities regarding
epistasis. Specifically, we categorized epistatic interactions as ei-
ther antagonistic, less-than-additive, additive, or synergistic (SI
Selection Model with Varying Epistasis). Through a simple math-
ematical model, we show how these different scenarios alter
population dynamics in a growth selection (Fig. 3 B–E) and how
deep one must sequence to identify combinations containing 1, 2,
3, etc. genes. The model assumes the culture is in the exponential
phase growth at the maximum specific growth rate (27), because
our selections were serially transferred so that the cultures did not
reach stationary phase. No interclonal interactions were assumed
or taken into account here. In the synergistic model, after 200 h of
selection, double and triple mutants quickly become a significant
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Fig. 3. Model of recursive multiplex recombineering library growth. (A) Construction of the library. Recombination efficiencies of 2–10% were routinely
achieved, as quantified using an oligo that restores operational sequence of the galK gene in the SIMD70 strain (oligo 478 in ref. 19). Shown is the theoretical
population distribution of the library where recombination efficiency is 5.0%. After 13 rounds of recombination, single, double, and triple mutants represent
35%, 11%, and 2%, of the total library populations, respectively. (B–E) Four cases of varying epistasis in a growth selection. WT growth rate was set to 0.05 1/h
(typical for 40% hydrolysate growth). Mutations were modeled to be either beneficial (35% increase in growth rate over control; 10% of mutations) or
neutral (no change in growth rate; 90% of mutations). (B) Synergistic: combinations of mutations increase in growth 10% more than additive. (C) Additive:
benefits of individual mutations are additive. (D) Less-than-additive: combinations 10% less than additive. (E) Antagonistic: combinations of mutations reduce
growth rate by 15% compared with individual mutations.
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portion of the population and would be easily identified through
the sequencing of a random collection of only a few clones (Fig.
3B). This enrichment, of course, happens more slowly in the ad-
ditive and less-than-additive models (Fig. 3 C and D). In the
antagonistic interaction model, the double and triple mutants are
depleted in the population, and thus require more extensive se-
quencing for identification (Fig. 3E).
As a further complication, the number of targets chosen will

have an effect on search results. Specifically, the number of pos-
sible double and triple combinations scales nearly exponentially
with the number of targets. The relevance here is that although
some double or triple mutants may have synergistic epistatic
interactions, such mutants may represent an exceedingly small
fraction of the population of possible double or triple mutants. As
an example, 27 targets were chosen for recursive recombination
in the hydrolysate library, allowing for 702 and 17,550 possible
double and triple mutant combinations, respectively.
In the absence of a priori knowledge of epistatic interactions,

it is difficult to design selections that will uniformly result in the
identification of combinatorial mutants. However, as shown in
Fig. 3, it is possible to make predictions that both provide a guide
in selection design and a framework for rapidly interpreting se-
lection results, which are critical to any future efforts to imple-
ment combinatorial genome-engineering as we describe next.

Construction and Searching of Combinatorial Mutant Libraries. Hy-
drolysate, low pH, and acetate combinatorial libraries were con-
structed via recursive, multiplex recombineering and subjected to
growth selections to identify further improved mutants. For the
hydrolysate library, 13 rounds of multiplex recombination were
performed with the mixed pool of oligonucleotides, as well as a
galK+ marker to track recombination efficiency. Efficiency was
measured at an average of 5.0% per round; thus, we estimate the
combinatorial population to contain 35% single mutants, 11%
double mutants, 2.1% triple mutants, and 0.3% quadruple mu-
tants (similar to Fig. 2A). This library population was grown via 11
serial transfers for a total of 232 h in MOPS minimal medium
containing 40% corn stover hydrolysate (as described in ref. 28).
The growth rate of the final population doubled compared with

the initial batch growth rate. After this time, samples were taken
and culture was plated to obtain individual colonies.
Based on the mathematics detailed above (and in Fig. 3), we

picked 10 individual colonies for further examination (which
would have contained 3–4 single mutants and 1 double mutant
preselection as in Fig. 3A and as many as 2–5 single, double,
triple, and quadruple mutations postselection as in Fig. 3 B–E).
Six of the 10 picked colonies contained mutants that grew sig-
nificantly better (as much as 200%) than the parent SIMD 70
strain (P value < 0.05; Fig. 4A), thus confirming that the same
selection strategy we used successfully in the TRMR studies
worked here to enrich for mutants with improved growth. The
RBS regions corresponding to all 27 targeted regions were se-
quenced for each of these 6 improved mutants (H40 A, B, C, G,
I, and J). The “H40 C” clone was modified in the target cyaA
RBS, the “H40 G” clone was modified in the tonB RBS, and the
“H40 I” clone in the ilvM RBS (Fig. 4B). The cyaA gene codes
for adenylate cyclase, which synthesizes cAMP, the signaling
molecule. The membrane-bound protein TonB plays a role in
the import of siderophore-bound iron and vitamin B12 (29, 30).
The ilvM gene codes for a subunit of acetohydroxyacid synthase
II (in the isoleucine synthesis pathway) (31). Interestingly, this
enzyme should not be fully functional in K12 derivatives because
of a frameshift mutation in the ilvG gene, which codes for the
other subunits (31). The H40 A, B, and J clones were found with
no mutations in the target regions, which may suggest sponta-
neous generation of tolerance over the 232 h selection. Because
three unique single mutants were identified, it suggests that the
end population was still genotypically diverse, even after a 10-d
serial transfer selection. To check this, we PCR amplified and
sequenced the RBS region from one of the targeted genes, lpp,
from the mutant mixture remaining after selection. We con-
firmed that variation in the lpp RBS sequence remained after
selection (see the chromatograph in Fig. S2). It is interesting to
note the mutations found here are not the same as the best
mutations found from the TRMR selection. Although these tools
are similar, TRMR replaces both the promoter and the RBS,
whereas MAGE replaces only the RBS; thus it is not surprising
that the two methods do not yield identical results.
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i. H1 C – cyaA*1, single mutant

cyaA*1 TAGCAAAGCCTCGTCCACGTCTTG
||||||| |       ||||||||

Wild Type TAGCAAATCAGGCGATACGTCTTG

ii. H1 G – tonB*1, single mutant

tonB*1 ACTGAAATCAAATAAGCTTCAATG
|||||||| |      ||||||||

Wild Type ACTGAAATGATTATGACTTCAATG

iii. H1 I – ilvM*1, single mutant

ilvM*1 AGAAATGGAGAGCGGTTTATCATG
|||||||  |      ||||||||

Wild Type AGAAATGTTGGAGAAATTATCATG

i. H2 - ilvM*1 + tonB*2, double mutant with H1 I parent

tonB*2 ACTTAAAGCAGGAGAGCTTCAATG
||| |||  |  |   ||||||||

Wild Type ACTGAAATGATTATGACTTCAATG

ii. H2 - ilvM*1 + tonB*3, double mutant with H1 I parent

tonB*3 ACTTAAAGCTAGGGGACTTCAATG
||| |||       ||||||||||

Wild Type ACTGAAATGATTATGACTTCAATG

iii. H2 – tonB*4, single mutant

tonB*4 ACTGAAAGCAAGTGAGCTTTAATG
|||||||  |      ||||||||

Wild Type ACTGAAATGATTATGACTTCAATG

iv. H2 – ilvM*2, single mutant

ilvM*2 AGAAATGTGTGGCGGGTTATCATG
||||||||  |     ||||||||

Wild Type AGAAATGTTGGAGAAATTATCATG

A B

C D

Fig. 4. Recursive multiplex recombineering hy-
drolysate selection isolates. (A) Relative growth
over 44 h of 10 isolated clones taken from sam-
ple plates after the initial selection. (B) Muta-
tions in RBS of tolerant clones. (C) Relative
growth over 20 h of four mutants isolated after
the second selection compared with WT and H1
G and I (isolated from the first selection). (D)
Mutations in RBS of the second combinatorial
library clones isolated after the second selection.
Error bars represent 1 SD.
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Our results here suggested that the growth advantage con-
ferred by the individual mutations was similar to the advantage
conferred by the best combinations of such mutations (i.e., the
scenario of Fig. 3 D or E). To study this possibility in greater
depth, and to provide guidance for future applications of this
approach, we again used recursive multiplex recombineering
to generate combinatorial libraries but this time started with
a mixture of the WT sensitive strain and two individual mutants
we had confirmed to have a growth advantage. We also chose
to target a smaller number of genes. Combined, these changes
in design not only allowed us to decrease library diversity in
a directed manner but also provided built in positive and
negative controls that allowed us to discriminate between
strength of selection effects and epistatic effects when analyz-
ing our selection results.
This library started with an equal mix of the SIMD70 strain,

the H40G clone (with the tonB RBS mutation), and the H40I
clone (with the ilvM RBS mutation). We targeted the RBS re-
gion of 4 (lpcA, lpp, tonB, and ilvM) of the previous set of 27
hydrolysate tolerance targets. The lpcA target was chosen be-
cause it had previously been seen to also confer resistance to
both acetate and furfural (32). The lpp target was chosen because
its RBS region was diverse in the end population described
above. Six rounds of recombination were performed with a
measured efficiency of ∼7.0%. Because two-thirds of the initial
population already had a mutation, we estimated that only
21.5% of the population had no mutations, 52.9% had a single
mutation, 21.3% were double mutants, and 3.9% were triple
mutants, with the remainder having four mutations per clone
(Fig. S3). The population was subjected to three serial transfer
selections in 40% hydrolysate over a total of 95 h (using the same
conditions as above). After plating of selected samples, 17 col-
onies were picked, and their 4 target RBS regions were se-
quenced (i.e., completely genotyped). Eleven of the 17 were
identical to the H40 I clone (i.e., each had the same ilvM RBS
mutation), 2 clones had single mutations that were different
compared with the H40 G (tonB) or H40 I (ilvM) starting clones
but were in the tonB or ilvM RBS, and 4 of the picked clones
were indeed double mutants. All double mutants had the H40 I
clone ilvM mutation, presumably the parent of the two, and
a unique tonB mutation as well (Fig. 4D).
Collectively, these results confirmed the results from the

original library studies above, suggesting that epistatic inter-
actions indeed followed the less than additive or antagonistic
models laid out in Fig. 3. This conclusion was further supported
by substantial decrease in WT strains remaining in the pop-
ulation (0 of 17 identified, or <5–6% of population) after se-
lection even though such strains made up ∼21.5% of the
preselection population (see Fig. S3). However, to further test
this suggestion, we measured the growth of a representative
number of clones isolated from this second selection. As can be
seen in Fig. 4C, the double mutants tested did not grow better
than the single mutants from which they derive.
Although these results emphasize the importance of epistasis,

it is possible that these results were specific to hydrolysate based
toxicity, which involves a complex and incompletely understood
model of inhibition involving the broad range of inhibitory
compounds within the hydrolysate mixture. To investigate this
possibility, we performed similar recursive multiplex recombin-
eering and selection studies using the acetate and low pH TRMR
results. Fourteen targets were chosen for the low pH combina-
torial library (Table S1). Although slightly different strategies
were used for library generation and selection (SI Materials and
Methods), the same results were observed where sequencing
results resulted in the identification of only a single RBS mutant:
ybiU up. Similar to the hydrolysate studies, we performed further
recombineering using the ybiU up strain as the basis for a second
low pH library. After recombination and selection by serial cul-
tures at pH 5, we identified a double mutant strain (ybiU, up; and
ydfZ, down) that grows significantly better than WT at pH 5. The
ybiU gene encodes an uncharacterized predicted protein,
whereas the ydfZ gene encodes for an uncharacterized conserved
protein; neither has been implicated previously in low pH

tolerance. In contrast to the lack of positive epistasis observed in
our hydrolysate studies, the double mutant demonstrated slightly
positive epistasis here with a ca. 65% increased growth relative
to the WT, whereas the best single mutant grew ca. 50% better
(Fig. S4). For the acetate library, eight targets were chosen from
the highest fitness TRMR alleles. Although this library un-
derwent serial transfer selection in 10 g/L acetate for 110 h, none
of the 23 colonies picked exhibited a further increase in growth
rate. Four colonies were selected and each of their 8 target RBS
regions sequenced (32 total sequencing reactions), but no
mutations were found. This result reinforces our hydrolysate
findings and further underlines the importance of developing
a better ability to predict epistatic interactions.

Conclusions
We have presented data demonstrating an approach for directed
genome-engineering that can be performed on laboratory time-
scales (weeks) by a few individuals (one scientist can perform
several rounds of this approach in a month). Specifically, we
quantified the effect of increased or decreased expression of
nearly every gene in the E. coli genome (8,155 mutants) under
three different conditions. Many of such growth selections can be
performed in parallel, thus allowing one to rapidly map pro-
moter mutations onto various phenotypes of interest. Analysis of
these growth data led to the constructing of combinatorial li-
braries based on the best performers (more than 100,000,000
unique mutants were constructed). These mutants were con-
structed using readily available multiplex recombineering meth-
ods that can be performed recursively by hand or in an
automated fashion (5) to generate billions of mutations in a few
days. Although we were able to identify a broad range of pre-
viously unknown mutations affecting growth, our results sug-
gested that the ability to take full advantage of this approach
depends on the nature of interactions between the different
mutations (synergistic, antagonistic, etc.). Such epistatic inter-
actions are currently difficult or impossible to predict, which,
thus, emphasizes the need for improved methods of assigning
relevance to fitness of the individual mutants in relation to other
high-ranking mutants.
In our studies, we explored several strategies for assigning

relevance to individual genes that went beyond simply using the
fitness data provided by our TRMR selections. These approaches
included the use of online databases of gene classifications (Gene
Ontology Enrichment Analysis Software Toolkit; Ecocyc) to at-
tempt to provide additional information for selecting genes for
combinatorial studies. Unfortunately, our efforts here did not
successfully identify any core set of enriched genes that were
disproportionately represented in certain functional, metabolic,
or orthologous classifications. [In contrast to prior studies, we
have reported linking-enriched genetic loci by metabolic path-
ways (32).] Given the clear epistatic complications that arise, and
the strong effect these have on the success of this approach,
methods for interpreting fitness data in a way that leads to im-
proved target identification for combinatorial studies are critical.
These could involve better understanding of biological networks
at various levels of interaction (regulatory, protein–protein,
metabolic, gene ontology, energy balancing, etc.). The ability to
predict these interactions will be enhanced by the methods we
described herein, where it is now possible to test a broad range of
predictions in a short amount of time (i.e., by recursive multiplex
recombineering). Taken together, the approach we describe
herein, along with continued development in predicting target
relevance, will not only allow for improved directed genome en-
gineering but also for enabling a broad range of fundamental
studies seeking to better understand how to construct complex
phenotypes in general.

Materials and Methods
Bacteria, Plasmids, and Media. E. coli K12 (ATCC no. 29425) was used for
dsDNA TRMR clone reconstructions. Plasmid pSIM5 was provided by Donald
Court (Gene Regulation and Chromosome Biology Laboratory, National
Cancer Institute at Frederick, Frederick, MD) and used for the dsDNA
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recombination (20). Plasmids pKD13 and pKD46 were obtained from the Coli
Genetic Stock Center (CGSC) (7633 and 7634) (14). E. coli strain SIMD 70,
derived from strain SIMD 50, was graciously provided by Donald Court and
was used for ssDNA recombination (33). Overnight cultures used Luria–
Bertani (LB) medium. Samples on solid media were with LB media and agar
unless the antibiotic blasticidin was used, in which case, a low-salt LB media
with agar was used. MOPS minimal media was used as described (28). Pre-
treated corn stover cellulosic hydrolysate was provided by the National Re-
newable Energy Laboratory (Golden, CO). Blasticidin was used at a working
concentration of 90 μg/mL. Chloramphenicol was used at a working con-
centration of 20 μg/mL.

TRMR Library and Selections. The TRMR library was prepared in the laboratory
of R.T.G. previous to this study (22). Preparation of the TRMR library for all
selections and the sample populations for microarray analysis were done
according to the instructions of the author (22). All TRMR selections were
performed at 37 °C in a shaking incubator rotating at 225 rpm.

Selections in acetate were performed in 200 mL of MOPS minimal medium
with 0.2% (mass/vol) glucose and 16 g/L acetate. Stock acetic acid solutionwas
prepared by titrating HPLC-grade 50% (vol/vol) acetic acid solution (Fluka) on
ice with 10 M KOH to neutral pH. Portions of the up and down libraries were
mixed for an equal number of cells. The JWKAN strain was introduced into
the library mix so that the JWKAN strain started with 20 times the number of
the average TRMR mutant present in the library, or in a ratio of 1:400. This
final mixture was introduced into the selection environment at a 2.5% in-
oculation. The acetate selection was performed for 69 h.

Selections in low pH were performed in 500 mL of M9 media (adjusted to
pH 5 using 1 M H2SO4) in a 2-L flask at cell density of 2 × 106 cells/mL. Control
strain JWKAN was mixed at the ratio of 1:8,000. Cells were grown for ∼8 h
and transferred to fresh medium of pH 5 serially before cell growth enters
stationary phase. Serial transfer was performed 10 times corresponding to
about 30 generations.

Selections in hydrolysate were performed as described previously (22).
Briefly, selections were performed in a decreasing concentration of hydro-
lysate over three batches.

TRMR Clone Reconstruction. TRMR clones were reconstructed in E. coli K12 via
recombination using the pSIM5 or pKD46 plasmid. TRMR up and down
inserts were amplified from genomic DNA extracted from the library pop-
ulation. Fifty base pairs of homology were added to each end of the insert
specific to the desired location of insertion. The homology regions chosen
were identical to those in the original TRMR library. Recombination was
performed at 30 °C as described previously (21). Recombination recovery
cultures were plated onto low-salt LB with agar solid medium with blasti-
cidin. To ensure the TRMR insert was located in the proper location and
orientation in the genome, the surrounding region was amplified via PCR,
purified, and sequenced. Growth study methods can be found in SI Materials
and Methods.

Library Construction of Mutated RBS. The mutated RBS libraries were con-
structed via λ-red recombination. SIMD 70 was used as the base strain for the
acetate and hydrolysate libraries. ssDNA oligonucleotides were designed to
replace the RBS of the previously selected gene target with either a partially
or completely degenerate sequence according to the allele found in the
TRMR selection. Design constraints of the oligos and quantification of effi-
ciency can be found in the supplemental methods (SI Materials andMethods).

Multiple rounds of recombination were performed on SIMD 70 with the
various mixed oligo pools. Recombination was performed at 30 °C as de-
scribed previously (21). After each round of recombination, the recombined
cultures were allowed to recover for 1–2 h in Terrific Broth. The recovery
culture was then used to inoculate a Luria Broth culture for the next round
of recombination. If the cells were not immediately recultured, the recovery
culture was pelleted and chilled at 4 °C until further use. The galK+ oligo was
spiked in at a rate of 1:20, so that the recombination frequency of the final
library could be tested on MacConkey agar with 1% (mass/vol) galactose.

Recombineering for the low pH library was performed using the strain
MG1655LRM with the same procedure as above. Methods for recombination
strain construction can be found in SI Materials and Methods. Selection was
performed by serial cultures in M9 media (pH 5) after two or three rounds of
recursive recombineering.
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