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Epistasis refers to the phenomenon in which phenotypic conse-
quences caused by mutation of one gene depend on one or more
mutations at another gene. Epistasis is critical for understanding
many genetic and evolutionary processes, including pathway
organization, evolution of sexual reproduction, mutational load,
ploidy, genomic complexity, speciation, and the origin of life.
Nevertheless, current understandings for the genome-wide distri-
bution of epistasis are mostly inferred from interactions among
one mutant type per gene, whereas how epistatic interaction
partners change dynamically for different mutant alleles of the
same gene is largely unknown. Here we address this issue by
combining predictions from flux balance analysis and data from
a recently published high-throughput experiment. Our results
show that different alleles can epistatically interact with very
different gene sets. Furthermore, between two random mutant
alleles of the same gene, the chance for the allele with more
severe mutational consequence to develop a higher percentage of
negative epistasis than the other allele is 50∼70% in eukaryotic
organisms, but only 20∼30% in bacteria and archaea. We devel-
oped a population genetics model that predicts that the observed
distribution for the sign of epistasis can speed up the process of
purging deleterious mutations in eukaryotic organisms. Our
results indicate that epistasis among genes can be dynamically
rewired at the genome level, and call on future efforts to revisit
theories that can integrate epistatic dynamics among genes in
biological systems.

Epistasis between two deleterious mutations is positive when
a double mutant causes a weaker mutational defect than

predicted from individual deleterious mutations, and is negative
when the double mutant causes a larger defect (1, 2). In a pop-
ulation with sexual reproduction, positive epistasis alleviates the
total harm when multiple deleterious mutations combine to-
gether and thus reduces the effectiveness of natural selection in
removing these deleterious mutations, whereas negative epistasis
can lower average mutational load by efficiently purging dele-
terious mutants (3). As a consequence, selective elimination of
deleterious mutations would be especially effective if negative
epistasis is prevalent. It is important to understand the distri-
bution of epistasis among mutations, which plays a central role in
genetics and theoretical descriptions for many evolutionary
processes (1, 2).
Tremendous efforts have been put into genome-wide meas-

urements for the sign and magnitude of epistasis among different
genes in various species (4–15). A series of high-throughput ex-
perimental platforms have been developed, such as synthetic
genetic array (SGA) (4, 5), diploid-based synthetic lethality
analysis with microarrays (6, 7), synthetic dosage-suppression
and lethality screen (8–10), and epistatic miniarray profiles (11–
13). The epistatic relations in these experiments were mostly
measured based on one mutant type (deletion mutant) per gene.
Few studies constructed multiple mutant alleles for single genes
to examine the dynamics of epistatic relations among genes un-
der different genetic perturbations. As a consequence, the global
landscape of epistasis for different alleles of the same gene
remains largely uninvestigated.

Here we address this issue by combining experimental data
with mathematical modeling using flux balance analysis (FBA).
FBA involves the optimization of cellular objective functions and
allows prediction of in silico flux values and/or growth (16–18).
FBA has been used to investigate the fitness consequence of
single-deletion mutants (19, 20) and epistatic relations between
metabolic reactions, genes, and functional modules (21–24). The
FBA predictions show good agreement with genome-wide ex-
perimental studies (25–32). One essential advantage of FBA
modeling is that it can simulate epistasis between genes based on
different genetic mutants. Using this platform, together with data
from a recently published experiment, we were able to show that
epistasis can be rewired among genes, and that the sign of
epistasis can change dramatically at the global scale, depending
on the mutant alleles involved in the processes. Our study pro-
vides a genome-wide picture on the dynamic epistatic landscape
of various mutant alleles for the same gene.

Results
Epistatic Relations Between Genes Are Largely Allele-Specific. We
first used the yeast Saccharomyces cerevisiae metabolic recon-
struction iMM904 (16) to examine the distribution of epistasis
under various genetic mutant alleles. The reconstruction is a
genome-scale metabolic model, having 904 metabolic genes as-
sociated with 1,412 reactions. For each gene, we simulated ge-
netic perturbations that retain the corresponding flux from 90%
to 0% in decrements of 10% of its WT (optimal) flux. As a result,
10 different single mutants per nonessential gene and nine dif-
ferent single mutants per essential gene (the 0% flux mutants in
these genes represent lethal deletion for which epistasis cannot
be calculated) were simulated. We computed the fitness of the
single mutants and double mutants with any possible pairwise
allele combination of different genes. These data were used to
infer the epistatic relationships among genes. In total, over 40
million simulations were conducted.
To investigate the dynamics of epistasis among genes, we

calculated the percentage of shared epistatic interaction partners
between any two mutants within the same gene. Two mutant
alleles are defined to share an epistatic interaction partner (a
mutant from another gene) if they both epistatically interact with
this mutant and the signs of epistasis are the same. The per-
centage of shared epistatic interaction partners between two
mutants is calculated as the number of their shared epistatic
interaction partners divided by the sum of their total epistatic
interaction partners. As shown in Fig. 1A, our results indicate
that the percentage of shared epistatic interaction partners
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between two mutants of the same gene decreases as the flux
difference between them increases. Two mutants of the same
genes could have as low as only ∼20% overlap between their
epistatic interaction partners, indicating that the epistatic profile
of a gene is largely dependent on the mutant types used. Our
results also show that the average number of epistatic interaction
partners per gene do not affect this conclusion (Fig. S1). In-
terestingly, there are cases where the sign of epistasis between
two genes can even change under varying mutant types (an ex-
ample is in Fig. S2, and all pairs with reversed sign of epistasis
are listed in Dataset S1). However, such events are rare (∼1.2%
of all gene pairs that show epistatic interactions). Furthermore,
we repeated the above FBA analysis for another species,
Escherichia coli, and the results confirmed the above trend
(Fig. S3).
In a recently released high-throughput experiment that mea-

sured genome-wide epistatic relations among genes in S. cer-
evisiae (4), there were 43 mutant pairs having two different
mutant alleles of the same gene (Dataset S2), each of which were
experimentally crossed with 3,885 array gene deletion mutants to
explore their epistatic relations in the genome. In total, over

200,000 double mutants were experimentally constructed. This
dataset provides the most comprehensive experimental source for
investigating the epistatic landscape of different mutant alleles in
the same gene. Fig. 1B shows the empirical cumulative distribu-
tion for the percentage of shared interaction partners between
mutant pairs within the same gene. Our results indicate that more
than 50% of mutant pairs within the same gene have less than
10% overlap of their epistatic interaction partners, and ∼90%
mutant pairs have less than 20% overlap (Fig. 1B). As shown in
Dataset S2, the functions of genes used in the experiments are
very diverse, and not restricted to metabolic functions as genes in
the FBA model. Nevertheless, the result from experimental
studies confirms our FBA modeling prediction that different
mutant alleles of the same gene can have very distinct epistatic
interaction partners in the genome. In addition, the conclusions
are robust under various epistasis thresholds (Fig. S4).

Sign of Epistasis for Individual Genes Depends on Mutation Severity.
The relative prevalence of positive vs. negative epistasis is of
tremendous importance for understanding many evolutionary
processes (1–3). In the following we addressed this issue for
different alleles of the same gene. Based on the above high-
throughput experimental dataset, we calculated the percentage
of negative epistasis for each mutant, defined as the number of
negative epistatic partners for this mutant divided by the overall
number of its epistatic partners. We then compared the per-
centage of negative epistasis between different mutant alleles of
the same gene in the experiment. Among 43 mutant pairs in the
study, 35 mutant pairs have significantly different fitnesses be-
tween two mutants of the same gene. As shown in Fig. 2A Left,
21 mutant pairs (60%) show that alleles with more severe defects
have a higher chance than the other allele in the same gene to
develop negative epistasis in the genome.
To see if this result could be caused by a systematic trend in

the high-throughput experiments, we randomly selected 35 pairs
of mutants from distinct genes that have the same fitness level
for single-deletion mutant and fitness difference between two
mutants as the above 35 pairs of mutants within the same genes,
and compared their relative prevalence of negative epistasis. The
permutation was repeated 100,000 times, and the result is
depicted in Fig. 2B. Among all repeats of randomly selected 35
mutant pairs, only a small percentage (4.1%) have 21 or more
mutant pairs where the mutant with more severe defects has
a higher chance than the other mutant to develop negative
epistasis in the genome, indicating that our observation for dif-
ferent mutant alleles of the same gene is not likely caused by the
overall pattern in the high-throughput experiments.
Using results from the above FBA simulation, we also con-

firmed the same pattern that between mutant alleles of the same
gene, the mutant allele with more severe defect is more likely
than the other allele to develop negative epistasis in the genome
(Fig. 2A, Right). Indeed, an even higher percentage of mutant
allele pairs in the FBA simulation (∼70%) than in real experi-
ments (60%) support this conclusion. To avoid possible bias
from the definition of epistasis and fitness differences between
mutant alleles in the FBA simulation, we repeated the calcu-
lations based on multiple criteria and our conclusion remains the
same (Fig. 2C).
Our observation is surprising given that previous results based

on virus models or gene network simulations proposed a totally
opposite pattern at the genome level, i.e., mutations with larger
mutational defects are more likely to develop positive epistasis
(33–37). We further used the FBA simulations to explore the
dynamics of epistasis for various mutant alleles of the same
gene in different species. High-quality genome-wide metabolic
networks in three bacteria [Escherichia coli (38), Salmonella
typhimurium (39), and Helicobacter pylori (40)], one archaea
[Methanosarcina barkeri (41)], and another single-cell eukaryote

Fig. 1. Epistatic relations between genes are allele specific. (A) FBA simu-
lation results for the distribution of the percentage of shared epistatic in-
teraction partners between two mutant alleles within the same gene. Solid
and broken lines represent mean and 95% confidence intervals, respectively.
(B) The cumulative distribution for the percentage of shared epistatic in-
teraction partners between two mutant alleles within the same gene based
on real experimental data. Two broken lines represent 10% and 20% of
shared epistatic profiling, respectively.
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[Plasmodium falciparum (42)] were used in our simulation. As
shown in Fig. 3, when two mutant alleles of the same gene are
compared, in 22%, 17%, 32%, and 19% of cases for E. coli,
S. typhimurium, H. pylori, and M. barkeri, respectively, mutant
alleles with more severe defects display higher percentages of
negative epistasis than the other allele, indicating that more
deleterious mutant alleles in the same gene indeed tend to de-
velop positive epistasis in these species. However, these numbers
are significantly smaller than that of yeast and another eukary-
otic organism, P. falciparum (52%). The conclusion is robust
under various epistasis thresholds (Fig. S5).

Self-Purging Mechanism for Deleterious Mutations at the Population
Level. Our above results indicate that between two random mu-
tant alleles of the same gene, the chance for the allele with more
severe mutational consequence to develop a higher percentage
of negative epistasis than the other allele is 50∼70% in eukary-
otic organisms, but only 20∼30% in bacteria and archaea. In
other words, mutant alleles with more severe defects in the same
gene might have a higher chance to develop negative epistasis in
eukaryotic organisms than in bacteria and archaea. We con-
structed a simple population genetic model as in Fig. 4A to ad-
dress the evolutionary significance of this observation. The

genetic system has two genes: a query gene A, which contains
three different alleles (AS: mutants with severe defects; AD:
mutants with weak defects; AWT: WT), and a gene X, which has
two different alleles (mutant, XM, and WT, XWT). We simulated
the ratio of allele frequency between the severe and the weak
mutant alleles in gene A under different probabilities of having
negative epistasis between these two alleles and the mutant allele
in the gene X.
Our results in Fig. 4B depict the simulation results. The six

panels in the figure represent the ratio of AS to AD alleles in the
50th, 100th, 150th, 200th, 250th, and 300th generations, respec-
tively. Our simulations indicate that if the percentage of negative
epistasis for the severe mutant is kept as a constant, as the per-
centage of negative epistasis for the weak mutation increases (as
shown by the arrow A), the ratio of the severe to the weak allele
frequency would increase. However, this ratio would decrease,
indicating a faster removal of the severe mutants from the pop-
ulation, in another direction (as shown by the arrow B), i.e., the
percentage of negative epistasis for the weak mutant is kept as
a constant, but the percentage of negative epistasis for the severe
mutant increases. Therefore, the distribution for the sign of
epistasis among different alleles of the same gene observed in this

Fig. 2. Mutant alleles in the same gene with more severe
defects tend to have a higher percentage of negative epis-
tasis in yeast. (A) The two matrices represent all mutant pairs
identified in real experimental data (Left) and FBA simula-
tion (Right) (fitness difference jfj ≥ 0.01; epistasis threshold
jεj ≥ 0.01). Each cell represents one mutant pair within the
same gene. The color bar to the right represents the nor-
malized percentage of negative epistasis for the mutant al-
lele with more severe defects (percentage of negative
epistasis for the mutant allele with more severe defects/the
sum of percentage of negative epistasis for two mutant
alleles). Red and yellow colors represent that mutant allele
with more severe defects in the same gene has higher and
lower percentage of negative epistasis than the other allele,
respectively. (B) Distribution for the number of mutant pairs
among randomly selected 35 pairs where mutants with more
severe defects have higher percentage of negative epistasis.
The arrow represents the observed number for the mutant
allele pairs within the same genes. (C) The percentage of
mutant pairs in which the mutant allele with more severe
defects in the same gene has a higher percentage of nega-
tive epistasis under various fitness difference and epistasis
thresholds during FBA simulations.
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study might represent an efficient way for eukaryotic organisms to
purge deleterious mutations from populations.

Discussion
Our study represents a genome-wide theoretical survey for the
dynamics of global epistatic effects under various mutant alleles
of the same gene. We show that the epistatic profiling of a gene
at the genome level is largely dependent on mutant types in-
volved. Our results indicate that previous conclusions inferring
epistatic relations among genes based on only one mutant type
per gene can be greatly improved by using multiple mutant
alleles. More importantly, our study shows that mutant alleles
with severe defects have a higher chance to develop negative
epistasis in eukaryotic organisms than in bacteria and archaea. It
has been speculated that eukaryotic organisms might have more
negative epistasis due to their increased complexity over pro-
karyotic organisms (43, 44). Even if this hypothesis is true,
however, our results for different mutant alleles of the same gene
cannot be directly inferred from this complexity argument.
Even though the mechanism underlying our observation

remains to be determined, we argue that such distributions for
negative epistasis among different alleles of the same genes have
significant evolutionary consequences, as shown in our pop-
ulation genetics simulations (Fig. 4). The origin and maintenance
of sexual reproduction remains one of the central issues in
evolutionary biology. Population genetics models have been
proposed to explore the impact of epistasis on the maintenance
of sexual reproduction (45–48). The mutational deterministic
hypothesis posits that sex enhances the ability of natural selec-
tion to purge deleterious mutations by bringing them together
into single genome through recombination (45). This explana-
tion requires the prevalence of negative epistasis at the genome
level. Here we found that the mutations with larger deleterious
defects within the same gene have a higher chance to develop
negative epistasis in eukaryotic organisms than bacteria and ar-
chaea. The model we proposed in Fig. 4, which is based on the
population genetics theory from Kondrashov (45), indicates that
such distribution of negative epistasis among different alleles of
the same gene in eukaryotic organisms might lead to more effi-
cient purging of deleterious mutations from populations, thus
providing a previously unappreciated evolutionary advantage for

sexual reproduction. We emphasize that these findings do not
necessarily provide sufficient evidence to explain the cause for
the emergence of sexual reproduction during evolution.
Although we found several unique characteristics regarding

the global epistatic landscape of different mutant alleles in the
same gene, three caveats need to be addressed. First, the FBA
modeling used in this study, which has been successfully applied
to various research problems (19–24), includes only metabolic
genes in the simulation. However, results from our analysis on
the experimentally defined epistatic relations among ∼0.2 million
double mutants comprising ∼4,000 S. cerevisiae genes, which
nearly represent all functional categories in the budding yeast,
confirmed our major FBA modeling predictions.
Second, even though FBA is one of the most comprehensive

computational tools for simulating epistatic interactions among
genes, there are still many aspects that can be improved to aid in
capturing the full set of empirical genetic interactions (49). For
example, rules for transcriptional regulation and physical inter-
actions can be integrated into the current FBA framework to
improve its accuracy (50). In addition, mapping between in-
dividual alleles and metabolic flux reduction is a complex process
and difficult to measure experimentally (51). It is noteworthy that
in our simulations we have uniformly evaluated fitness conse-
quence based on the percentage ofWT flux attainable in a specific
background. Depending on the regulation dynamics of individual
genes, such uniform sampling may be unlikely to correspond to
random sampling of mutant alleles. For instance, a mutation that
limits the availability of a ligand that activates an enzyme fol-
lowing a Hill equation with early saturation may have a very high
frequency of neutral or mildly deleterious mutations compared
with a similar enzyme with late saturation. Nevertheless, uniform
sampling in our study is still useful in illustrating the main evo-
lutionary ideas presented here, which all have to do with relative
severity of mutations rather than their absolute fitness.
Third, measuring the presence of epistasis is subject to a choice

of threshold. Does the flux smoothly influence epistasis, or can
epistasis abruptly change or become zero?We have seen evidence
of both trends in our simulations. Though there are many dif-
ferent trends in the magnitude of epistasis that we are currently
investigating, we present two cases to explore this issue (Figs. S6
and S7 and Datasets S3 and S4). However, based on Figs. S4 and
S5, we have confirmed that our major results are robust to a va-
riety of epistasis thresholds. As a result, although the choice of
thresholds is a common problem for research on epistasis, we are
still confident that our conclusion is unlikely to be significantly
influenced by this factor. With these limitations in mind, our
observations identified several important features for the epistasis
among genes, and call on future experimental and theoretical
efforts to revisit genetics and evolutionary theories that can in-
tegrate epistatic dynamics among genes in biological systems.

Methods
Experimental Dataset. The experimental data were extracted from a global
survey for the epistatic interactions among genes in S. cerevisiae (4). In the
original SGA study (4), the authors screened 1,712 S. cerevisiae query gene
mutants against 3,885 array gene mutants to generate a total of more than
5 million gene mutant pairs spanning all biological processes. In each gene
mutant pair, the epistasis value is calculated based on the equation ε =Wxy −
WxWy, in which Wxy is the fitness of an organism with two mutations in
genes X and Y, and Wx or Wy refers to the fitness of the organism with
mutation only at gene X or Y, respectively. In addition, a statistical confi-
dence measure (P value) was assigned to each interaction based on the
observed variation of each double mutant across four experimental repli-
cates and estimates of the background error distributions for the corre-
sponding query and array mutants. Finally, a defined confidence threshold
(jεj ≥ 0.01, P < 0.05) was applied to generate epistatic interactions (4).

Fig. 3. Mutant alleles with more severe defects tend to have a higher
percentage of negative epistasis in eukaryotes than bacteria and archaea.
The y axis shows the percentage of mutant pairs in which mutant alleles with
more severe defects in the same gene have a higher percentage of negative
epistasis than the other allele. FBA simulations were conducted for three
bacterial species (E. coli, S. typhimurium, and H. pylori), one archaea species
(M. barkeri), and two single-cell eukaryote species (P. falciparum and S.
cerevisiae). The mean and SEs were based on results from 40 epistasis
threshold values ranging from 0.01 to 0.05.
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Flux Balance Analysis. FBA frames the stoichiometric equations that describe
the biological reactions of a system as the following matrix equations, which
is possible because stoichiometric equations are linear (16–18).

Sυ ¼ dx
dt

¼ 0

υ ¼ ½υ1υ2 . . . υn�T

υlb ¼ ½l1l2 . . . ln�T

υub ¼ ½u1u2 . . .un�T

max
υ

 cTυ such that Sυ ¼ 0 and υlb ≤ υ≤ υub

The vector of concentration change over time (dx/dt) is found by multiplying
the stoichiometric matrix S by a flux vector v. S has columns corresponding
to each reaction in the system, and rows corresponding to metabolites.
Typically, one or more enzymes correspond to each reaction, which allows us
to see how a genetic perturbation, such as a knockout, may affect the sys-
tem. The vector v consists of reaction fluxes and is subject to upper and
lower bounds vub and vlb. If we want to simulate the knockout or knock-
down of an enzyme, the fluxes corresponding to that enzyme can be con-
strained to be zero or lower than WT, respectively. It is assumed that the
change in concentration over time is at steady state, therefore dx/dt = 0 in
the FBA simulation (18).

The linear objective is written in terms of the vi with weight coefficients ci.
Modified versions of COBRA and COBRA2 scripts, popular FBA software
packages written for MATLAB, were used to implement our simulation
framework (17). The method for calculating a realistic WT flux for a given

environment and organism model is taken from Smallbone and Simeonidis
(18). This method, termed geometric FBA, attempts to choose a flux vector
that is close to the average of all optimal flux vectors. The geometric FBA
solution is also a minimal L1-norm solution, which has been previously her-
alded as a good choice because it minimizes the total amount of flux needed
to achieve the objective, based on the fact that cells would avoid having
much unnecessary flux and wasted energy (18). A minimal L1-norm solution
is advantageous in this study because restricting fluxes for mutants based
on unnecessarily large WT fluxes may not constrain the system. Finally, the
minimal L1-norm solution avoids the problem of having futile cycles, which
are thermodynamically infeasible (18).

Mutations of genes are simulated by the use of gene-reaction mapping
and flux constraints. Enzymes may be involved in multiple reactions (i.e.,
pleiotropy). Although we often have Boolean rules describing the relation-
ship between genes in an enzyme complex, it is currently extremely difficult
to ascertain the exact contribution of each enzyme to each reaction (51).
Choosing the simplest unbiased approach, we used gene-reaction mapping
and uniformly constrained the flux through each reaction associated to the
gene being mutated. With one notable exception (24), most research re-
lating to simulation of mutations with FBA has focused on null mutants (19–
23, 25, 26). Our simulation approach, though simplifying the actual dynamics
that result in decreased fluxes in vivo, allows us to see behavior that was not
previously possible. To be consistent, we used the same equation and
threshold (jεj ≥ 0.01) to calculate epistasis for FBA results as we did for the
experimental data.

Population Genetics Model. A flowchart in Fig. S8 provides more illustration
of the simulation procedure. We constructed a genetic system with a query

Fig. 4. Increased efficiency of purging delete-
rious mutations in eukaryotic organisms. (A) The
population genetics model for allele frequency
changes from generation to generation. In the
figure, p and ω represent allele frequency and
fitness, respectively. A and X are genes with
different alleles, and ε is the epistasis term be-
tween mutant types of different genes. (B) The
ratio of the severe to the weak alleles of the A
gene in the 50th, 100th, 150th, 200th, 250th,
and 300th generations. Colors represent the
ratio as indicated at the bottom. The diagonal
line in each panel represents the situation
where the severe and the weak mutant alleles
have the same probability of having negative
epistasis in the genome. It is noteworthy to
point out that in each panel the ratio of the
severe to the weak alleles decreases, indicating
increased efficiency of purging the severe mu-
tant allele, from the Upper Right (region I, the
weak mutant has more negative epistasis) to
the Bottom Left (region II, the severe mutant
has more negative epistasis) part of the panel.
The arrows A and B are discussed in the text.
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gene A, which contains three different alleles (AS: severe mutant; AD: weakly
deleterious mutants; and AWT: WT) and a gene X that has two different
alleles (XM: mutant and XWT: WT). The table in Fig. 4A explains how geno-
type frequencies could be calculated from generation T to generation T + 1
under natural selection. In the figure, p and ω represent allele frequency
and fitness, respectively. The average fitness in generation T could be cal-
culated (52).

We simulated the ratio of allele frequency for the severe (AS) to the weak
(AD) mutant alleles of the A gene under all possible combinations of the
percentages of negative epistasis for these two alleles, as shown on the x and
y axis of Fig. 4B. For each possible combination in each generation (a specific
location on each panel of Fig. 4B), the following two-step procedure was
repeated 1,000 times. First, the epistatic relations (negative, positive, and no
epistasis) between the mutant alleles of the genes A and X were randomly
determined as the following: either A allele is assumed to have 10% possi-
bility of having epistasis (either positive or negative) with the allele XM (4);
when A and X alleles do have epistasis, the likelihoods for the epistasis being
negative (and the remaining epistases are positive) are assigned indepen-
dently for AS and AD alleles according to their location on Fig. 4B. Second,
the fitness of each genotype was calculated, which was then used to infer
the genotype frequencies in the next generation according to Fig. 4A. The

average genotype frequencies among 1,000 randomizations were then
recorded for simulations in the next generation. The ratio of allele frequency
for the severe to the weak mutant alleles of the A gene in each generation
was calculated based on genotype frequencies in that generation.

To make the simulation simple, the initial allele frequencies for the severe,
weak, and WT alleles of the A gene were assumed to be equal (one-third),
and the initial allele frequencies for the mutant and WT of the X gene were
also assumed to be equal (one-half). The fitness was assumed to be 1, 0.99,
and 0.98 for the WT, weak, and severe mutant alleles of gene A, re-
spectively, and 1 and 0.99 for the WT and the mutant alleles of gene X,
respectively. The positive and negative epistasis values between A and X
gene mutants were assumed to be 0.01 and −0.01, respectively. A variety of
fitness differences between the severe and weak alleles and epistasis values
have also been used in the simulations, and the trend remains the same.
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