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Abstract

Background: Ischemia/reperfusion (I/R) injury is associated with systemic inflammatory response. Macrophage migration
inhibitory factor (MIF) has been implicated in many inflammatory processes. Tanshinone IIA (TSA) is one of the active
ingredients in danshen, which derived from the dried root or rhizome of Salviae miltiorrhizae Bge. Recent studies have
demonstrated that TSA has protective effects against focal cerebral I/R injury. However, little is known about the underlying
mechanisms. Here we put forward the hypothesis that TSA acts through inhibition of MIF expression during focal cerebral I/
R injury in rats.

Methodology/Principal Findings: Rats were subjected to middle cerebral artery occlusion (MCAO) for 2 hours. This was
followed by reperfusion. We measured neurological deficits, brain water content, and infarct volume, and found that
neurological dysfunction, brain edema, and brain infarction were significantly attenuated by TSA 6 hours after reperfusion.
We also measured myeloperoxidase (MPO) activity at 6 and 24 hours, and found that neutrophil infiltration was significantly
higher in the vehicle+I/R group than in the TSA+I/R group. ELISA demonstrated that TSA could inhibit MIF expression and
the release of TNF-a and IL-6 induced by I/R injury. Western blot analysis and immunofluorescence staining showed that MIF
expression was significantly lower in the TSA+I/R group than in the vehicle+I/R group. MIF was found almost all located in
neurons and hardly any located in astrocytes in the cerebral cortex. Western blot analysis and EMSA demonstrated that NF-
kB expression and activity were significantly increased in the vehicle+I/R group. However, these changes were attenuated
by TSA.

Conclusion/Significance: Our results suggest that TSA helps alleviate the proinflammatory responses associated with I/R-
induced injury and that this neuroprotective effect may occur through down-regulation of MIF expression in neurons.
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Introduction

Stroke is the second most common cause of death and a major

cause of disability worldwide [1,2]. The inflammatory response to

brain injury plays a vital role in the pathogenesis of stroke [3,4].

The selective inhibition of inflammatory cytokine activity remains

an important goal in the effective treatment of brain ischemia and

reperfusion (I/R) injury. Recent studies have demonstrated that

agents with anti-inflammatory action have therapeutic potential in

experimental models of stroke [5,6].

Macrophage migration inhibitory factor (MIF) is a proinflam-

matory cytokine derived from many cell types [7]. After activating

nuclear factor kB (NF-kB), MIF induces the production of

subsequent cytokines [8]. There is ample evidence indicating that

MIF expression is increased at the transcriptional level in human

stroke patients and in animal models of focal ischemia [9]. This

suggests that inhibition of MIF may serve as a viable strategy for

the treatment of ischemic stroke.

Danshen, a very important component of Chinese medicine

derived from the dried root or rhizome of Salviae miltiorrhizae Bge

(SM), has been widely used in China for the treatment of

cerebrovascular conditions, such as ischemic stroke [10,11].

Tanshinone IIA (TSA), whose IUPAC name is Phenanthro [1,

2-b] furan-10, 11-dione, 6, 7, 8, 9-tetrahydro-1, 6, 6-trimethyl

being a derivative of phenanthrenequinone, is a key active

component of danshen (Fig. 1) [12]. Recent studies have

demonstrated that TSA has protective effects against focal cerebral

I/R injury [13,14]. Our previous study indicated that 25 mg/kg

TSA administered 10 minutes after middle cerebral artery

occlusion (MCAO) showed most protective effects [15]. However,

little is known about the mechanism responsible for the effects of

TSA. Researchers have reported that TSA attenuates seawater-

aspiration-induced lung injury by inhibiting MIF [16]. Given the

importance of MIF, this study puts forward the hypothesis that the
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neuroprotective effects of TSA may be associate inhibition of the

MIF pathway.

Results

Effects of TSA on Neurological Deficit, Brain Water
Content, and Infarction

To determine the neuroprotective effect of TSA against I/R

injury, we measured the neurological score, brain water content,

and infarct volume with and without administration of TSA. As

shown in Figures 2A, C, and D, relative to the vehicle+I/R group,

neurological scores and cerebral infarct volumes were significantly

decreased after treatment with TSA (P,0.05). As shown in

Figure 2B, in the sham group, the brain water content was

78.2860.16%. In the TSA+I/R group, the brain water content

was lower, 79.5260.21%, than in the vehicle+I/R group

81.6460.55% (P,0.05). No significant differences were observed

in contralateral hemispheres (P.0.05).

Effects of TSA on Neutrophil Infiltration in the Brain
Tissues

Next, we performed a myeloperoxidase (MPO) activity assay to

determine the neutrophil influx in the ischemia cerebral cortex

(Figure 3). MPO activity was significantly higher in the vehicle+I/

R group than the sham group at different points in time (P,0.05).

The increased MPO activity was reduced by treatment with TSA

after I/R injury (P,0.05).

Effects of TSA on MIF and Cytokine Expression Induced
by Reperfusion at Different Times

We also examined the effect of TSA on the expression of MIF,

tumor necrosis factor-a (TNF-a) and interleukin-6 (IL-6) induced

by the reperfusion at different points in time. As shown in

Figure 4A, MIF content was significantly higher in the vehicle+I/

R group than in the sham group at 1 hour, 3 hours, and 6 hours

after reperfusion, showing a maximum difference at 24 hours

(P,0.05). TSA markedly inhibited the expression of MIF at

different points in time after reperfusion (P,0.05). No difference in

TNF-a expression was observed at 1 hour. The elevation of TNF-

a levels was observed 3 hours and 6 hours after reperfusion and

found to reach a maximum at 24 hours after reperfusion (P,0.05,

Figure 4B). The change in IL-6 expression was similar to TNF-a
level (Figure 4C). The increased expression of TNF-a and IL-6 at

3 hours, 6 hours, and 24 hours after reperfusion were also down-

regulated by TSA treatment (P,0.05).

Effects of TSA on Expression of MIF and NF-kB p65
Western blot analysis (Figure 5) of brain samples showed that

the expression level of MIF was increased in the vehicle+I/R

group 24 hours after focal cerebral I/R and significantly lower in

the TSA treatment group than in the vehicle+I/R group (P,0.05).

The expression level of NF-kB p65 was also increased in the

vehicle+I/R group 24 hours after focal cerebral I/R and

significantly lower in the TSA treatment group than in the

vehicle+I/R group (P,0.05).

Effects of TSA on NF-kB Activation
NF-kB activation 24 hours after reperfusion was assessed by

electrophoretic mobility shift assay (EMSA). As shown in Figure 6,

low NF-kB binding activity was observed in sham-operated rats.

I/R induced activation of NF-kB in the ipsilateral hemispheres.

NF-kB binding activity was increased in the vehicle+I/R group 24

hours after focal cerebral I/R and significantly lower in the TSA

treatment group than in the vehicle+I/R group (P,0.05).

Effects of TSA on Location of MIF
As shown in Figure 7 and Figure 8, in the cerebral cortex, MIF

was found almost all located in neurons and hardly any located in

astrocytes. Following surgery, MIF showed significant increases

around the infarct core in the vehicle+I/R group and significantly

decreases in the TSA+I/R group 24 hours after reperfusion.

Discussion

MCAO is a classical model of cerebral ischemia [17,18]. In this

study, we have shown that TSA can reduce MPO activity after

focal cerebral I/R injury. We also demonstrated that TSA can

inhibit MIF expression, NF-kB activity and the release of TNF-a
and IL-6 induced by I/R injury. TSA was here found to provide

neuronal protection partly through its anti-inflammatory effect

associated with down-regulation of MIF. Our results also indicated

that MIF is presenting almost all located in neurons and rare

located in astrocytes.

Danshen, a very important traditional Chinese medicinal herb,

has been commonly used in traditional Chinese medicine practice

for over a thousand years in the treatment of coronary artery

disease and cerebrovascular diseases including stroke. The

therapeutic efficacy of Danshen in stroke has been confirmed by

clinical studies suggesting that Danshen preparations were

neuroprotective with few or no adverse effects [19]. In recent

decades, TSA being one of the active ingredients in danshen has

been widely used in research for the treatment of cadiovascular

and cerebrovascular disease and no adverse effects have been

reported till now. Lam et al. reported that, TSA was detected in

blood within 5 minutes after intraperitoneal injection and also

detected in the brain 5 minutes after injection, showing that the

drug was able to penetrate the blood brain barrier. The level in the

brain reached the peak at 60 minutes and decreased slowly over

several hours, and was undetectable after 8 hours, showing the

drug was able to affect the brain [10]. In our previous study, we

found that 25 mg/kg TSA was an optimal concentration. A dose

of 25 mg/kg TSA or 1 ml/kg PBS including 1% dimethyl

sulfoxide (DMSO) was given at 3 d before MCAO (once a day

for 2 consecutive days with the last injection 2 h before MCAO),

10 min after MCAO, 0 h after reperfusion, and 2 h after

reperfusion. The results showed that 25 mg/kg TSA reduced

infarct size relative to the vehicle+I/R group at all points in time,

of which 10 min after MCAO was the most significant [15]. So we

chose to administer 25 mg/kg TSA 10 min after MCAO in the

present experiments.

Figure 1. Chemical structure of Tanshinone IIA.
doi:10.1371/journal.pone.0040165.g001
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Focal cerebral I/R injury produces core infarct tissue that is

severely compromised and may not be repairable. The surround-

ing tissue, the peri-infarct region, may be subjected to further

damage through activation of secondary inflammatory and

neurodegenerative cascades [20]. Kim et al. and Phillips et al.

reported that inflammatory and immunological reactions are

involved in the pathogenesis of cerebral ischemia following blood

reperfusion to the surrounding tissue [21,22]. In this way, the

inhibition of inflammatory responses, especially inhibition of

inflammatory cytokine activities at the early stage of ischemia,

may constitute an attractive therapeutic strategy. Our results

demonstrated that I/R can lead to neurological dysfunction, brain

edema, brain infarction, and neutrophil infiltration. However,

these changes were attenuated by TSA. This indicates that the

protective effect of TSA may be associated with inhibition of

inflammation.

MIF is an upstream regulator of inflammatory immune

processes [23]. After activating NF-kB, MIF can induce the

production of subsequent cytokines [8]. A recent study has

demonstrated that MIF KO mice with I/R had reduced

expression of various inflammatory cytokines and mediators

[24]. Wang et al. showed that MIF expression is increased at

the transcriptional level in human stroke patients and in animal

models of focal ischemia [9]. This suggests that inhibition of MIF

may represent a suitable treatment strategy for ischemic stroke.

Our results demonstrated that TSA could inhibit MIF expression,

NF-kB activity and the release of TNF-a and IL-6 in the ischemic

cortex induced by cerebral I/R injury at different points in time.

This provided the evidence that MIF associated with the NF-kB

activation pathway plays an important role in the injury processes

after stroke. Inhibition of the up-regulation of MIF, NF-kB, TNF-

a and IL-6 during the early stage brings great benefits to the

organism.

Inácio et al. showed that, 5 days after surgery, MIF increases

around the infarct core in the permanent middle cerebral artery

occlusion in rats, where it is located to neurons and astrocytes [25].

Our results showed that, in the cerebral cortex, MIF is present

almost all located in neurons and hardly any located in astrocytes.

Following MCAO, MIF significantly increased around the infarct

core in the vehicle+I/R group and significantly decreased in the

TSA+I/R group at 24 hours after reperfusion.

As a regulator of death and survival proteins, NF-kB plays an

important role in neuron survival within the central nervous

system. Persistent activation of NF-kB renders neurons vulnerable

Figure 2. Effects of TSA on neurological deficit, brain water content, and infarction. As shown in Fig. 2, the (A) neurological score and (C
and D) infarct volume were significantly higher in the vehicle+I/R group than in the sham group after reperfusion at 6 hours (#P,0.05) and lower in
the TSA+I/R group than in the vehicle+I/R group (*P,0.05, one-way ANOVA, n = 5–6 for each group). (B) The brain water content of the ipsilateral
hemispheres was similar to the neurological score and infarct volume. No difference was found in contralateral hemispheres (P.0.05).
doi:10.1371/journal.pone.0040165.g002
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to ischemic insult [26,27]. Our results demonstrate that NF-kB

binding activity is increased in the vehicle+I/R group 24 hours

after focal cerebral I/R and significantly lower in the TSA

treatment group than in the vehicle+I/R group. Based on these

results, treatment with TSA can be said to hamper the movement

of NF-kB from the cytoplasm to the nucleus. Moreover, Jang et al.

reported that TSA inhibited NF-kB-DNA complex, NF-kB

binding activity, and the phosphorylation of IkBa in RAW

264.7 cells stimulated with LPS [28]. Their reports are consistent

with our study and also suggest that TSA may inhibit IkBa
degradation and NF-kB activation via suppression of the NIK–

IKK pathway as well as the MAPKs (p38, ERK1/2, and JNK)

pathway. Whether TSA inhibits NF-kB activation in the brain also

via these pathways, it is still unclear and worth of further

exploration.

Collectively, our results suggest that TSA has a protective effect

on the brain I/R injury and that this effect takes place partly

through its anti-inflammatory effect, which is associated with

down-regulation of MIF in neurons.

Materials and Methods

Chemicals
TSA (purity 99%, HPLC) was obtained from Sciphar Biotech-

nology Co (Shaanxi, China). TSA was dissolved in phosphate-

buffered saline (PBS) including 1% DMSO before the experi-

ments. 2,3,5-triphenyltetrazolium chloride (TTC) was purchased

from Sigma-Aldrich Co. (St. Louis, MO, U.S.). A determination of

MPO kit was purchased from the Jiancheng Bioengineering

Institute (Nanjing, China). Enzyme-linked immunosorbent assay

(ELISA) kits were purchased from R&D Systems (Minneapolis,

MN, U.S). MIF, NF-kB p65, and b-actin antibodies were

purchased from Santa Cruz Biotechnology, Inc. (Santa Cruz,

CA, U.S.). NeuN antibody was obtained from Merck Millipore

(MA, U.S.). GFAP antibody was obtained from Boster Bio-

engineering Co. Ltd. (Wuhan, China).

Animals
Adult male Sprague-Dawley rats weighing 250620 g (n = 132),

age 9064 d, were bred and held in the Experimental Animal

Center of Chongqing Medical University. The protocol was

approved by the institutional animal care and use committee and

the local experimental ethics committee. All rats were allowed free

access to food and water before the operation under optimal

conditions (12/12 hours light/dark with humidity 6065%,

2263uC).

Rat Model of Transient Focal Cerebral Ischemia
Transient cerebral ischemia was induced by MCAO in rats as

described in detail in our previously study [29,30]. The middle

cerebral artery was occluded by insertion of a nylon filament

(diameter 0.24–0.28 mm). After 2 hours of ischemia, the nylon

filament was carefully pulled out to establish reperfusion. Rats that

did not show neurological deficits immediately after reperfusion

(neurological score ,1) were excluded from the study. Rats that

showed neurological deficits immediately after reperfusion (neu-

rological score .0) but were found to be experiencing skull base or

subarachnoid hemorrhage were also excluded from the study. The

total elimination rate was 14/132. Sham-operated animals

underwent the same surgical procedures without occlusion of the

common carotid arteries.

Groups and Drug Administration
One hundred and thirty-two rats were divided into 3 groups

randomly: sham group, vehicle+I/R group, 25 mg/kg TSA+I/R

group (n = 44 for each group). TSA was injected intraperitoneally

10 minutes after MCAO. Our previously study demonstrated that

25 mg/kg TSA 10 minutes after MCAO had significant protective

effects [15]. A vehicle of 1 ml/kg PBS including 1% DMSO was

given.

Assessment of Neurological Deficits
Neurological testing of the vehicle- and drug-treated groups was

carried out after 2 hours of MCAO by one examiner blinded to

the experimental groups according to the method described by

Longa et al. [18]. Neurological findings were scored on a five-

point scale: 0, no neurological deficits; 1, failure to extend right

forepaw fully; 2, circling to the right; 3, falling to the right; and 4,

inability to walk spontaneously combined with depressed levels of

consciousness.

Figure 3. Effects of TSA on MPO activity. MPO activity at (A) 6
hours and (B) 24 hours reflects neutrophil infiltration in the ischemia
cerebral cortex. MPO activities were significantly increased in the
vehicle+I/R group at the two time points and lower in the TSA+I/R
group than in the vehicle+I/R group. Data are mean 6 S.E.M., #P,0.05
vs. sham group; *P,0.05 vs. vehicle+I/R group.
doi:10.1371/journal.pone.0040165.g003

Tanshinone IIA Protect Cerebral against Injury

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e40165



Figure 4. Effects of TSA on expression of proinflammatory cytokines. As shown in Fig. 4A, after reperfusion, MIF content was significantly
increased at 1 hour, 3 hours, and 6 hours, reaching a maximum at 24 hours ( DP,0.05) after reperfusion in vehicle+I/R groups, showing significant
differences from sham groups (#P,0.05). TSA markedly inhibited the expression of MIF at different points in time after reperfusion (*P,0.05). No
visible difference in TNF-a expression had been induced by reperfusion at 1 hour. The elevation of TNF-a level was observed at 3 hours and 6 hours,
reaching a maximum at 24 hours (DP,0.05) after reperfusion in vehicle+I/R groups over sham groups (#P,0.05). The change of IL-6 expression was
similar to TNF-a level. The increased expression of TNF-a and IL-6 at 3 hours, 6 hours, and 24 hours after reperfusion were also down-regulated by TSA
treatment (*P,0.05).
doi:10.1371/journal.pone.0040165.g004
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Measurement of Brain Water Content
Samples from all three groups (n = 6 for each group) were used

for assessment. The rats were killed with chloral hydrate anesthesia

6 hours after reperfusion, and the brains were rapidly removed

and dissected. Brain samples from the ischemic hemisphere were

immediately weighed on an electronic balance and then dried in

an oven at 100uC for 24 hours to determine the dry weight. Brain

water content was calculated as follows: (wet weight 2 dry

weight)/wet weight6100%.

Measurement of Infarct Volume in the Brain
Samples from all three groups (n = 6 for each group) were used for

analysis. At 6 hours after reperfusion, rats were killed and their

brains were quickly removed and frozen at 220uC for 15 minutes.

Coronal brain sections (2 mm thick) were stained with 2% TTC at

37uC for 20 minutes followed by fixation with 4% paraformalde-

hyde. The staining images were recorded using a digital camera

(Canon Oxus 950IS) and then quantified using an Image J (ver

1.37c, NIH). To compensate for the effects of brain edema, the

corrected volume was calculated using the following equation:

Percentage hemisphere lesion volume (%HLV) = {[total infarct

volume 2 (left hemisphere volume 2 right hemisphere volume)]/

right hemisphere volume} 6100%. Infarct volume measurements

were carried out by an investigator blinded to the treatment groups.

At the 1 hour, 3 hour, 6 hour, and 24 hour marks following

sham or injury, rats were killed for sample collection (n = 5–8 for

each point in time). For MPO activity assay, ELISA, Western blot,

and EMSA analyses, ischemia cortex tissue was rapidly taken from

fresh brains and immediately stored in liquid nitrogen.

MPO Assay
The accumulation of neutrophils in the ischemia cerebral cortex

was assessed by measuring MPO activity according to the

manufacturer’s instructions. Briefly, the brain tissue samples

obtained 6 hours and 24 hours after reperfusion were homoge-

nized in cool normal saline (brain tissue: normal saline = 1:10).

MPO activity was measured with a spectrophotometer at 460 nm.

Cytokine ELISA
Brain tissue homogenate was prepared using samples taken at

all four points in time. Levels of MIF, TNF-a and IL-6 were

determined using commercially available ELISA kits according to

the manufacturer’s instructions.

Western Blot Analysis
The ischemic cortex was harvested for the assay of protein

expressions 24 hours after reperfusion. Western blotting was

performed as described previously [15,31]. MIF antibody (diluted

to 1:500), NF-kB p65 antibody (diluted to 1:500), and b-actin

(diluted to 1:1000) were used as primary antibodies. Blots were

subjected to gel formatter (BIO-RAD) and quantified through

Quantity One analysis. b-Actin was used as an internal loading

control.

Nuclear Protein Extraction and EMSA
Nuclear proteins from cortical tissue were extracted and

quantified as described [32,33]. In brief, frozen brain samples

were homogenized in 0.8 ml ice-cold buffer A, composed of

10 mmol/L HEPES (pH 7.9), 10 mmol/L KCl, 2 mmol/L

MgCl2, 0.1 mmol/L EDTA,1 mmol/L dithiothreitol (DTT), and

0.5 mmol/L phenylmethylsulfonyl fluoride (PMSF) (all from

Sigma Chemical Co.). The homogenates were incubated on ice

for 25 minutes and vortexed for 30 seconds after addition of 50 mL

Figure 5. Effects of TSA on expression of MIF and NF-kB p65 24
hours after I/R injury. The protein expressions of (A) MIF and (B) NF-
kB p65 in the brain tissues of the injured cerebral hemisphere were
detected by Western blot (n = 6 for each group, #P,0.05 vs. sham,
*P,0.05 vs. vehicle+I/R). After TSA treatment, both the expression of
MIF and NF-kB p65 was clearly decreased relative to the vehicle+I/R
group.
doi:10.1371/journal.pone.0040165.g005
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10% NP-40 (Sigma Chemical Co.). The mixture was then

centrifuged for 10 minutes at 5000 g at 4uC. The pellet was

suspended in 200 mL ice-cold buffer B composed of 50 mmol/L

HEPES (pH 7.9), 400 mM NaCl, 50 mmol/L KCl, 0.1 mmol/L

EDTA, 1 mmol/L DTT, and 0.5 mmol/L PMSF, and 25% (v/v)

glycerol and incubated on ice 30 minutes with frequent mixing.

After centrifugation (12,000 6g, 4uC) for 15 minutes, the

supernatants containing nuclear proteins were collected and

stored at 280uC for further analysis. Protein concentration was

determined using a bicinchoninic acid assay kit with bovine serum

albumin as the standard (Pierce Biochemicals).

EMSA was performed using a commercial kit (Gel Shift Assay

System; Promega, Madison, WI, U.S.) using methods described in

detail elsewhere [32,34]. The NF-kB consensus oligonucleotide

probe (59-AGTTGAGGGGACTTTCCCAGGC-39) was end-

labeled with [c-32P] ATP (Free Biotech., Beijing, China) with

T4-polynucleotide kinase. Nuclear protein (15 mg) was preincu-

bated in a total volume of 9 mL in a binding buffer, consisting of

10 mmol Tris-HCl (pH 7.5), 20 mmol NaCl, 1 mmol MgCl2,

0.5 mmol DTT, 0.5 mmol EDTA, 4% glycerol, and 0.05 mg/mL

poly-(deoxyinosinicdeoxycytidylic acid) for 15 minutes at room

temperature. After addition of the 1 mL 32P-labled oligonucleotide

probe, the incubation was continued for 20 minutes at room

temperature. The reaction was stopped by adding 1 mL of gel

loading buffer. The mixture was subjected to nondenaturing 4%

polyacrylamide gel electrophoresis in a TBE buffer (Tris-borate-

EDTA). The gel was vacuum-dried and exposed to X-ray film

(Fuji Hyperfilm, Tokyo, Japan) at 280uC with an intensifying

screen. Levels of NF-kB DNA binding activity were quantified by

computer-assisted densitometric analysis.

Figure 6. NF-kB activity in the cortex of rat. (A) Nuclear proteins of brain samples of three groups were assayed for NF-kB binding activity by
EMSA 24 hours after focal cerebral I/R. Lane 1, positive control; Lane 2, sham group; Lane 3, vehicle+I/R group; Lane 4, TSA+I/R group. (B)
Quantification of NF-kB binding activity was performed by densitometric analysis. Bar graph showing the relative density of the EMSA
autoradiograph of the three groups compared to sham group. The figure indicates that cerebral NF-kB activity was significantly increased in
vehicle+I/R group (#P,0.05), which was significantly lower in the TSA treatment group than in the vehicle+I/R group (*P,0.05). Data represents
mean 6 S.E.M. (n = 5 per group).
doi:10.1371/journal.pone.0040165.g006
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Figure 7. Co-localization of MIF and NeuN. As shown in Fig. 7, A, B and C represent the expression of MIF in sham group, vehicle+I/R group and
TSA+I/R group respectively; D, E and F represent the expression of NeuN in sham group, vehicle+I/R group and TSA+I/R group respectively; G, H and I
represent the merger of MIF and NeuN in sham group, vehicle+I/R group and TSA+I/R group respectively. Original magnification, 6400. The
expression of MIF was increased in the vehicle+I/R group and attenuated by TSA. In the cerebral cortex, MIF was found almost all located in the
neurons in the three groups.
doi:10.1371/journal.pone.0040165.g007
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Figure 8. Co-localization of MIF and GFAP. As shown in Fig. 8, A, B and C represent the expression of MIF in sham group, vehicle+I/R group and
TSA+I/R group respectively; D, E and F represent the expression of GFAP in sham group, vehicle+I/R group and TSA+I/R group respectively; G, H and I
represent the merger of MIF and GFAP in sham group, vehicle+I/R group and TSA+I/R group respectively. Original magnification,6400. The
expression of MIF was increased in vehicle+I/R group and attenuated by TSA. In the cerebral cortex, MIF was scarcely located in astrocytes in the three
groups.
doi:10.1371/journal.pone.0040165.g008

Tanshinone IIA Protect Cerebral against Injury
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Immunofluorescence Staining
The samples used for histological assessment in our previous

study were also used for immunofluorescence staining here.

Briefly, sections were incubated for 15 min in 1% Triton X-100 to

disrupt the cell membrane after the removal of wax and benzene.

Brain tissues were microwaved for 10 min for antigen retrieval,

and then allowed to cool down. They were then placed in PBS and

blocked with normal goat serum at 37uC for 30 min. Mouse anti-

GFAP and anti-NeuN and rabbit anti-MIF were used as primary

antibodies. Sections were incubated in primary antibody (anti-

GFAP, 1:200; anti-NeuN, 1:200; anti-MIF, 1:100) overnight at

4uC, followed by reaction for 1 h at 37uC with FITC-conjugated

goat anti-rabbit IgG antibody (1:100) and TRITC-conjugated

goat anti-mouse IgG antibody (1:200). After washing, the sections

were cover slipped with glycerin jelly. Images were captured and

digitized using a Leica laser scanning confocal microscope (Leica

TCS-SP2).

Statistical Analysis
All data are expressed as mean 6 S.E.M. The differences

between various groups were analyzed by one-way analysis of

variance (ANOVA) followed by multiple comparison tests as post

hoc comparison. The neurological deficit scores were analyzed by

Mann-Whitney U test. A level of P,0.05 was considered to be

statistically significant. Statistical software package SPSS17.0 was

used.

Author Contributions

Conceived and designed the experiments: YZ JZ YC. Performed the

experiments: YC XW SY XL. Analyzed the data: YC JW LL. Contributed

reagents/materials/analysis tools: YZ JZ. Wrote the paper: YC YZ JZ.

References

1. Donnan GA, Fisher M, Macleod M, Davis SM (2008) Stroke. Lancet 371: 1612–

1623.

2. Liesz A, Sun L, Zhou W, Schwarting S, Mracsko E, et al. (2011) FTY720

reduces post-ischemic brain lymphocyte influx but does not improve outcome in

permanent murine cerebral ischemia. PLoS One 6: e21312.

3. Choe CU, Lardong K, Gelderblom M, Ludewig P, Leypoldt F, et al. (2011)

CD38 exacerbates focal cytokine production, postischemic inflammation and

brain injury after focal cerebral ischemia. PLoS One 6: e19046.

4. Chamorro A, Hallenbeck J (2006) The harms and benefits of inflammatory and

immune responses in vascular disease. Stroke 37: 291–293.

5. Tripathy D, Grammas P (2009) Acetaminophen inhibits neuronal inflammation

and protects neurons from oxidative stress. J Neuroinflammation 6: 10.

6. Elango C, Devaraj SN (2010) Immunomodulatory effect of Hawthorn extract in

an experimental stroke model. J Neuroinflammation 7: 97.

7. Bacher M, Metz CN, Calandra T, Mayer K, Chesney J, et al. (1996) An essential

regulatory role for macrophage migration inhibitory factor in T-cell activation.

Proc Natl Acad Sci U S A 93: 7849–7854.

8. Amin MA, Haas CS, Zhu K, Mansfield PJ, Kim MJ, et al. (2006) Migration

inhibitory factor up-regulates vascular cell adhesion molecule-1 and intercellular

adhesion molecule-1 via Src, PI3 kinase, and NFkappaB. Blood 107: 2252–2261.

9. Wang L, Zis O, Ma G, Shan Z, Zhang X, et al. (2009) Upregulation of

macrophage migration inhibitory factor gene expression in stroke. Stroke 40:

973–976.

10. Lam BY, Lo AC, Sun X, Luo HW, Chung SK, et al. (2003) Neuroprotective

effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine

10: 286–291.

11. Dong K, Xu W, Yang J, Qiao H, Wu L (2009) Neuroprotective effects of

Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res

23: 608–613.

12. Adams JD, Wang R, Yang J, Lien EJ (2006) Preclinical and clinical

examinations of Salvia miltiorrhiza and its tanshinones in ischemic conditions.

Chin Med 1: 3.

13. Tang C, Xue H, Bai C, Fu R, Wu A (2010) The effects of Tanshinone IIA on

blood-brain barrier and brain edema after transient middle cerebral artery

occlusion in rats. Phytomedicine 17: 1145–1149.

14. Liu L, Zhang X, Wang L, Yang R, Cui L, et al. (2010) The neuroprotective

effects of Tanshinone IIA are associated with induced nuclear translocation of

TORC1 and upregulated expression of TORC1, pCREB and BDNF in the

acute stage of ischemic stroke. Brain Res Bull 82: 228–233.

15. Chen Y, Wu X, Yu S, Fauzee NJ, Wu J, et al. (2012) Neuroprotective

Capabilities of Tanshinone IIA against Cerebral Ischemia/Reperfusion Injury

via Anti-apoptotic Pathway in Rats. Biol Pharm Bull 35: 164–170.

16. Zhang Y, Zhang B, Xu DQ, Li WP, Xu M, et al. (2011) Tanshinone IIA

attenuates seawater aspiration-induced lung injury by inhibiting macrophage

migration inhibitory factor. Biol Pharm Bull 34: 1052–1057.

17. Hoffman GE, Merchenthaler I, Zup SL (2006) Neuroprotection by ovarian

hormones in animal models of neurological disease. Endocrine 29: 217–231.

18. Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle

cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91.
19. Anonymous (1977) Danshen in ischemic stroke. Chin Med J (Engl) 3: 224–226.

20. Berti R, Williams AJ, Moffett JR, Hale SL, Velarde LC, et al. (2002)

Quantitative real-time RT-PCR analysis of inflammatory gene expression
associated with ischemia-reperfusion brain injury. J Cereb Blood Flow Metab

22: 1068–1079.
21. Kim JS (1996) Cytokines and adhesion molecules in stroke and related diseases.

J Neurol Sci 137: 69–78.
22. Phillips JB, Williams AJ, Adams J, Elliott PJ, Tortella FC (2000) Proteasome

inhibitor PS519 reduces infarction and attenuates leukocyte infiltration in a rat

model of focal cerebral ischemia. Stroke 31: 1686–1693.
23. Calandra T, Roger T (2003) Macrophage migration inhibitory factor: a

regulator of innate immunity. Nat Rev Immunol 3: 791–800.
24. Gao XM, Liu Y, White D, Su Y, Drew BG, et al. (2011) Deletion of macrophage

migration inhibitory factor protects the heart from severe ischemia-reperfusion

injury: a predominant role of anti-inflammation. J Mol Cell Cardiol 50: 991–
999.

25. Inácio AR, Ruscher K, Wieloch T (2011) Enriched environment downregulates
macrophage migration inhibitory factor and increases parvalbumin in the brain

following experimental stroke. Neurobiol Dis 41: 270–278.
26. Liu Y, Zhang XJ, Yang CH, Fan HG (2009) Oxymatrine protects rat brains

against permanent focal ischemia and downregulates NF-kappaB expression.

Brain Res 1268: 174–180.
27. Clemens JA, Stephenson DT, Yin T, Smalstig EB, Panetta JA, et al. (1998)

Drug-induced neuroprotection from global ischemia is associated with
prevention of persistent but not transient activation of nuclear factor-kappaB

in rats. Stroke 29: 677–682.

28. Jang SI, Kim HJ, Kim YJ, Jeong SI, You YO (2006) Tanshinone IIA inhibits
LPS-induced NF-kappaB activation in RAW 264.7 cells: possible involvement of

the NIK-IKK, ERK1/2, p38 and JNK pathways. Eur J Pharmacol 542: 1–7.
29. Zhao J, Yu S, Zheng W, Feng G, Luo G, et al. (2010) Curcumin improves

outcomes and attenuates focal cerebral ischemic injury via antiapoptotic
mechanisms in rats. Neurochem Res 35: 374–379.

30. Yu SS, Zhao J, Zheng WP, Zhao Y (2010) Neuroprotective effect of 4-

hydroxybenzyl alcohol against transient focal cerebral ischemia via anti-
apoptosis in rats. Brain Res 1308: 167–175.

31. Zhao J, Zhao Y, Zheng W, Lu Y, Feng G, et al. (2008) Neuroprotective effect of
curcumin on transient focal cerebral ischemia in rats. Brain Res 1229: 224–232.

32. Hang CH, Shi JX, Li JS, Li WQ, Wu W (2005) Expressions of intestinal NF-

kappaB, TNF-alpha, and IL-6 following traumatic brain injury in rats. J Surg
Res 123: 188–193.

33. Zhou ML, Zhu L, Wang J, Hang CH, Shi JX (2007) The inflammation in the
gut after experimental subarachnoid hemorrhage. J Surg Res 137: 103–108.

34. Jin W, Wang H, Yan W, Xu L, Wang X, et al. (2008) Disruption of Nrf2

enhances upregulation of nuclear factor-kappaB activity, proinflammatory
cytokines, and intercellular adhesion molecule-1 in the brain after traumatic

brain injury. Mediators Inflamm 2008: 725174.

Tanshinone IIA Protect Cerebral against Injury

PLoS ONE | www.plosone.org 10 June 2012 | Volume 7 | Issue 6 | e40165


