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Abstract

Background: Staphylococcus aureus (S. aureus) plays an important role in the pathogenesis of severe chronic airway disease,
such as nasal polyps. However the mechanisms underlying the initiation of damage and/or invasion of the nasal mucosa by
S. aureus are not clearly understood. The aim of this study was to investigate the interaction between S. aureus and herpes
simplex virus type 1 (HSV1) in the invasion of the nasal mucosa and nasal polyp tissue.

Methodology/Principal Findings: Inferior turbinate and nasal polyp samples were cultured and infected with either HSV1
alone, S. aureus alone or a combination of both. Both in turbinate mucosa and nasal polyp tissue, HSV1, with or without S.
aureus incubation, led to focal infection of outer epithelial cells within 48 h, and loss or damage of the epithelium and
invasion of HSV1 into the lamina propria within 72 h. After pre-infection with HSV1 for 24 h or 48 h, S. aureus was able to
pass the basement membrane and invade the mucosa. Epithelial damage scores were significantly higher for HSV1 and S.
aureus co-infected explants compared with control explants or S. aureus only-infected explants, and significantly correlated
with HSV1-invasion scores. The epithelial damage scores of nasal polyp tissues were significantly higher than those of
inferior turbinate tissues upon HSV1 infection. Consequently, invasion scores of HSV1 of nasal polyp tissues were
significantly higher than those of inferior turbinate mucosa in the HSV1 and co-infection groups, and invasion scores of S.
aureus of nasal polyp tissues were significantly higher than those of inferior turbinate tissues in the co-infection group.

Conclusions/Significance: HSV1 may lead to a significant damage of the nasal epithelium and consequently may facilitate
invasion of S. aureus into the nasal mucosa. Nasal polyp tissue is more susceptible to the invasion of HSV1 and epithelial
damage by HSV1 compared with inferior turbinate mucosa.
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Introduction

Staphylococcus aureus, a gram-positive bacterium commonly found

as part of the normal microflora of the human skin, the upper

respiratory tract (particularly the nares) and the intestinal tract, has

been shown to cause a number of illnesses ranging from minor skin

infections to life-threatening diseases such as pneumonia, menin-

gitis, toxic shock, osteomyelitis, endocarditis, bacteremia, and

autoimmune disorders.1 The mechanisms underlying S. aureus

pathogenicity involve a variety of staphylococcal enterotoxins

(SAEs) that act as superantigens [1,2], capable of activating T cells

and B cells. Several studies have indicated that SAEs play an

important role in the pathogenesis of upper airways disease,

particularly chronic rhinosinusitis and nasal polyposis [3–7], with

more recent findings suggesting that SAEs may also be involved in

the pathogenesis of asthma [8–10].

Despite evidence for the high colonisation rates of the airway

mucosa by S. aureus [7],7 the mechanisms underlying the damage

or invasion of the nasal mucosa by S. aureus are not clearly

understood. A recent study by Corriveau and colleagues [11],
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employing the peptide nucleic acid-fluorescence in situ hybridiza-

tion (PNA-FISH) technique, has demonstrated that S. aureus was

present intramucosally and intracellularly in great quantities in the

nasal mucosa of aspirin-sensitive patients with nasal polyps, but

not in control subjects. Moreover, significant increases in Th2

markers (eosinophil cationic protein and total IgE) were correlated

with the presence of specific IgE-antibodies against SAEs,

suggesting that factors that modulate the release of SAEs are

likely to play a role in intramucosal invasion by S. aureus.

As bacterial infections of the airways have often been shown to

follow viral infections [12], we hypothesized that in patients with

airway disease chronic invasion and colonization of the nasal

mucosa by S. aureus may be a consequence of an interaction

between specific viral and S. aureus components, which results in

enhanced disruption of the nasal epithelium and basement

membrane. To test this hypothesis, we have used an explant

culture model of intact human turbinate tissue [13] and nasal

polyp tissue to evaluate epithelial damage and intramucosal

invasion by S. aureus, following infection with herpes simplex virus

type 1 (HSV1). The choice of HSV1 as the infecting virus was

based on its comparatively high global seroprevalence [14–17] and

findings from recent studies, which have underlined the presence

and possible role of HSV1 in upper airway disease: nearly 10% of

human nasal polyps are infected with HSV1 [18], 2 out of 8 nasal

mucosal samples taken at autopsy were positive for HSV1 [19],

and HSV infection is a risk factor for nasal carriage of S. aureus in

human immunodeficiency virus (HIV)-infected patients [20].

Methods

Nasal Turbinate Tissue
Inferior turbinate mucosal tissue was obtained from 10 patients

scheduled for turbinate surgery due to septal deviations or

turbinate hypertrophy and 7 nasal polyp tissue was obtained from

endoscopic sinus surgeries at the department of Oto-Rhino-

Laryngology, Ghent University Hospital. The patients were

refrained from using oral or nasal corticosteroids for four weeks

and antibiotics for two weeks before surgery. All patients provided

written informed consent, and the ethics committees of the Ghent

University Hospital approved the study.

HSV1 Stocks
HSV1 (ATCC VR-733) was purchased from the American

Type Culture Collection (ATCC; Rockville, MD, USA) and

propagated to large quantities by infection of African green

monkey kidney (Vero) cells (ATCC CCL-81; Rockville, MD,

USA). The virus strains were passaged twice and diluted in serum-

free medium to a final concentration of 107 TCID50/ml. Equal

amounts of RPMI medium 1640 (Invitrogen, Merelbeke, East

Flanders, Belgium) and Dulbecco’s Modified Eagle Medium

(Invitrogen, Belgium) were used for all subsequent experiments

involving infection of nasal turbinate tissue ex-vivo.

S. aureus Stocks
S. aureus strain RN 6390 was chosen as the infecting strain in

these studies because it has been well characterised; in particular it

has shown to produce several important S. aureus exotoxins

including hemolysin-A, -B, and -D and V8 protease, and is

employed in several animal models of staphylococcal pathogenesis

[21–23], and is labelled with the gene for green fluorescence

protein (GFP) [22]. A stock of S. aureus strain RN 6390 (Provided

by Prof. C. von Eiff, Munster, Germany) was grown in Trypticase

Soy-Yeast Extract Broth (TSB; BD Biosciences, Erembodegem,

East Flanders, Belgium) for 24 h at 37uC, on the day prior to use

as an infecting agent. At the end of the incubation, the

concentration of the S. aureus in the broth was assessed according

to the optical density (OD) of the suspension, measured using a

Beckman DU640B spectrophotometer (Beckman Instruments,

Fullerton, CA, USA), and the suspension was centrifuged at

2500x g for 5 min. The medium was decanted and the S. aureus

pellet was washed three times by resuspension and centrifugation

in equal volume of phosphate buffered saline (PBS). The washed S.

aureus pellet was resuspended in serum-free medium to a

concentration of 206106 CFU/ml for use in subsequent experi-

ments involving infection of nasal turbinate tissue ex-vivo. Based on

former ex vivo experiments in cultured epithelial cells described in

the literature [24,25], we used bacterial concentrations of 107–

108 CFU/ml and prepared pilot experiments to finally choose a

concentration of 206106 (2x107) CFU/ml as sub-optimal effective

dose, which did not overgrow the mucosa.

Culture and Infection of Nasal Turbinate and Nasal Polyp
Explants with HSV16 S. aureus

Nasal turbinate and nasal polyp tissue obtained from each

patient following surgery was immediately washed three times with

serum-free medium supplemented with antibiotics (50 IU/mL

penicillin (Invitrogen, Belgium) and 50 mg/mL streptomycin

(Invitrogen, Belgium) and cultivated as described previously [13].

The washed tissue explant was cut into smaller cubes approxi-

mately 25 mm2 in size. Eight nasal tissue cubes of each turbinate

or nasal polyp explants were used for further investigation which

were divided into four equal groups of two cubes each (Group 1 =

HSV1 infection group; Group 2 = S. aureus infection group; Group

3 = HSV1+ S. aureus infection group; and Group 4 = control, non-

infection group) (Table S1, online data supplement of tissue

culture protocol). Each cube was placed with the epithelial surface

upwards on a sterile fine-meshed gauze in a 6-well tissue-culture

plate (Falcon, BD Biosciences, Erembodegem, East Flanders,

Belgium) and 3 ml serum-free medium supplemented with

antibiotics was added to each well to create an air-liquid interface.

All tissue cubes were conditioned as explant cultures by incubation

for 24 h at 37uC in 5% CO2 in air atmosphere (culture stage 1),

and then transferred to a 24-well tissue-culture plate (Falcon, BD

Biosciences, Belgium). Groups 1 and 3 tissue cubes were

inoculated with 1.0 ml inoculum containing 107 TCID50 of

HSV1, and 1.0 ml of serum-free medium was added to the tissue

cubes in Groups 2 and 4 as mock-condition, all tissue cubes were

incubated (culture stage 2) for 1 h at 37uC in 5% CO2 in air

atmosphere. All tissue cubes were washed three times, transferred

onto a sterile fine-meshed gauze and incubated in a 6-well tissue-

culture plate (culture stage 3) for either 24 h or 48 h under air-

liquid interface culture conditions as before. At the end of each

incubation period, the tissue cubes were transferred to a 24-well

tissue-culture plate. 1.0 ml of S. aureus infection medium contain-

ing 206106 CFU was added to the cubes in Groups 2 and 3 and

1.0 ml of serum-free medium to the tissue cubes in Groups 1 and

4, and all tissue cubes were incubated for 2 h at 37uC in 5% CO2

in air atmosphere (culture stage 4). Following incubation, all tissue

cubes were transferred to a 6-well tissue-culture plate for a final

24 h incubation period (culture stage 5) on fine-meshed gauze at

an air-liquid interface. At the end of the culture, the tissue cubes

were weighed and snap-frozen in liquid nitrogen and stored at

280uC, until further assessment by immunohistochemistry.

Immunofluorescence and Hematoxylin Staining
Frozen tissue cubes were assessed for nasal epithelial and

basement membrane damage and viral and bacterial invasion by

hematoxylin- and immunofluorescence-staining, respectively.

HSV1-S. aureus Interaction in Human Nasal Mucosa
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Cryosections (5 mm thickness) were prepared using a Shandon

CryotomeH (Thermo, Runcorn, Cheshire, UK). The first and last

1 mm of the tissue cubes were discarded. Every 300 mm, two

sections were prepared to evaluate HSV1 and SA invasions with

immunofluorescence staining, and nasal epithelial damage with

hematoxylin staining. 10 sections of each tissue cube were

processed for staining.

Immunofluorescence Staining for Evaluation of HSV1/
S. aureus Invasion

Briefly, the tissue sections were fixed in 3% paraformaldehyde

(Sigma-Aldrich, Bornem, Antwerp, Belgium) for 25 min at room

temperature and then washed twice with PBS. The sections were

treated with 0.1% triton-X 100 (Sigma-Aldrich, Belgium) for

2 min and washed twice with PBS, incubated for 10 min at room

temperature in the presence of 10% Normal Goat Serum (NGS)

(Invitrogen, Belgium), to block nonspecific binding sites. At the

end of this incubation, the NGS was decanted and the sections

were incubated for 1 h at 37uC in the presence of mouse anti-

HSV1-gD antibodies (Santa Cruz, Heidelberg, Baden-Württem-

berg, Germany) (100 mg/ml, 1:100 in 10% NGS) or mouse IgG2

as an isotype specific negative control antibody (Dako, Glostrup,

Region Hovedstaden, Denmark). Following three washings with

PBS, the sections were incubated for a further h at 37uC in the

presence of goat anti-mouse-Texas Red antibodies (Molecular

Probes, Invitrogen, Belgium) (2 mg/ml, 1:50 in 10% NGS). At the

end of this incubation, the sections were washed three times with

PBS and once with ultrapure water and dried at room

temperature, prior to being mounted with glycerin-DABCO

(Janssen Chemica, Beerse, Antwerp, Belgium).

Hematoxylin Staining for Evaluation of Epithelial Damage
Slides were stained with hematoxylin (Sigma-Aldrich, Belgium)

for 1 min and washed with tap water for 5 min. The slides were

mounted with Aquatex (Merck KGaA, Darmstadt, Hessen,

Germany).

Evaluation of HSV1/S. aureus Invasion and Epithelial
Damage

Immunofluorescence-stained slides were evaluated for viral and

bacterial invasion by viewing at 6630 magnification using a

fluorescence microscope (Axioplan 2, Carl Zeiss, Gottingen,

Lower Saxony, Germany), and hematoxylin-stained slides were

evaluated for epithelial damage by viewing at 6400 magnification

using a light microscope (CX40RF200, Olympus, Tokyo, Japan).

All stained slides were evaluated by two independent observers (LF

and MJ), who were blinded to the tissue-treatment protocol and

assessed the entire epithelium in each section by viewing up to 8–

10 adjacent fields. To exclude penetration from the non-epithelial

sides, we omitted the outer edges of the tissue cubes and only took

specific invasion patterns from the epithelium to the lamina

propria into account. HSV1 and S. aureus invasion in each field

was graded on a 5-point scale (0 = epithelium not infected,

1 = epithelium superficially infected, 2 = basal cells infected,

3 = basement membrane and HSV1 and/or S. aureus colocalisa-

tion, HSV1 or S. aureus do not penetrate the basement membrane,

4 = HSV1 or S. aureus penetrated the basement membrane into the

lamina propria); whereas epithelial damage was graded on a 4-

point scale (0 = no damage, epithelium totally preserved; 1 = focal

and superficial damage, superficial cells desquamate; 2 = epithelial

damage involving basal cells, basal epithelial cells partly detached;

3 = epithelium severely damaged, loose). The mean of total scores

in the ten sections on each slide was used as the final epithelial

damage or invasion score for each explant.

Statistical Analysis
All data are expressed as mean 6 SEM for each treatment

group and differences between the groups were compared by the

analysis of variance (ANOVA) assessed using the SPSS version

11.5 software (SPSS Inc, Chicago, USA). Correlations between

HSV1 and/or S. aureus invasion scores and epithelial damage

scores were assessed using MEDCALC version 11.3.3 software

(F.Schoonjans, Mariakerke, Belgium). P-values ,0.05 were

considered to be significant.

Results

Patient Characteristics
Clinical characteristics, skin prick test and IgE data of all

patients are summarized in Table 1. The two groups were

comparable in terms of age, female/male ratio, asthma, aspirin

intolerance, chronic obstructive pulmonary diseases (COPD) and

atopy (positive skin prick tests or Phadiotop result). Patients with

Churg-Strauss Syndrome or other immune disorders were

excluded from this study.

HSV1 and S. aureus Invasion of Nasal Mucosa
Figure 1 shows invasion of the nasal mucosa by HSV1 and S.

aureus. Infection of the nasal turbinate mucosal tissue with HSV1

alone led to focal infection of outer epithelial cells (red

fluorescence) with distribution up to the basement membrane

and damage of epithelial structural integrity after 48 h (24 h pre-

incubation with HSV1, followed by 24 h mock-treatment) in

several cases (Figure 1A). Incubation of the tissue for 72 h

following inoculation with HSV1 (48 h pre-incubation with

HSV1, followed by 24 h mock-treatment) led to infection of basal

epithelial cells, followed by loss of the epithelium and subsequent

invasion of HSV1 into the lamina propria (Figure 1C). In contrast,

HSV1 invaded into the whole epithelium of nasal polyp tissue

causing partial damage (Figure 1B) after 48 h and into the lamina

propria through the basement membrane with significant damage

of the epithelium after 72 h (Figure 1D).

Incubation of the nasal mucosa in the presence of S. aureus alone

did not affect the epithelium and there was little or no attachment

of the bacterium to the epithelium of nasal turbinate mucosa and

nasal polyp tissue (Figure 1E and 1F). However, incubation of the

nasal mucosa with S. aureus following incubation with HSV1 led to

Table 1. Patient characteristics.

Inferior turbinate
group

Nasal polyps
group

No. 10 7

Age(y), median 30.4(17.4–44.8) 48.5(17.4–64.8)

Female/male, sex 1/9 0/7

Asthma 1/10 2/7

Aspirin intolerance 0/10 1/7

COPD 0/10 1/7

Previous surgery 0/10 1/7

Skin prick
tests/specific IgE

1/10 1/7

doi:10.1371/journal.pone.0039875.t001
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formation and attachment of S. aureus clusters (green fluorescence)

to the HSV1-infected residual epithelial cells following 24 h of

HSV1 infection (Figure 1G). After 48 h of HSV1 incubation,

followed by 24 h incubation with S. aureus, clusters of S. aureus

adhered to HSV1-infected epithelial cells and to the basement

membrane with invasion into the basement membrane (Figure I).

In a co-infection model of nasal polyp tissue with HSV-1, S. aureus

invaded into the epithelium through the intercellular spaces and

occasionally reached the basement membrane after 24 h of

incubation (Figure 1H); this co-infection resulted in marked

invasion of the lamina propria by both HSV1 and S. aureus after 72

hours accompanied by a significant loss of epithelium (Figure 1J).

In contrast, the epithelium in non-infected (control) tissue of

nasal turbinate mucosa and nasal polyp was intact and undam-

aged after 96 h of incubation under similar culture conditions

(Figure 1K and 1L).

Evaluation of nasal turbinate mucosal invasion scores for HSV1

demonstrated that the invasion of HSV1 was significantly

increased from baseline at 48 and 72 h post inoculation (pi) (after

24 h mock-treatment following 24 and 48 hpi) (p,0.001 for both

time points), and that invasion was significantly greater after

48 hpi compared to invasion after 24 hpi in HSV1 infection group

(p,0.01) and in HSV1+SA infection group (p,0.001). Further-

more, the invasion of HSV1 was not significantly altered by

subsequent infection of the nasal mucosa with S. aureus (Figure 2).

The invasion scores of HSV1 in nasal polyp tissue were similar to

turbinate mucosa, but the scores at 48 and 72 h were significantly

higher than those of turbinate mucosa (p,0.05 and p,0.01

respectively) (Figure 2). We checked interrater reliability using the

Fleiss k coefficient, which was 0.72, showing a good agreement

between the two observers.

Similarly, evaluation of the nasal turbinate mucosal invasion

score for S. aureus demonstrated that in the absence of prior

infection with HSV1, the invasion of the nasal mucosa was not

significantly altered from baseline following either 24 or 48 h post

mock-treatment (Figure 3). Infection of the nasal mucosa with

HSV1 prior to infection with S. aureus, however, significantly

increased the S. aureus invasion scores from baseline following 24

Figure 1. Immunofluorescence-stained sections of nasal mu-
cosa of inferior turbinate (IT) and nasal polyp tissue samples
(NP). HSV1 infection: After 24 h HSV1+24 h medium incubation, HSV1
infects outer epithelial cells of IT focally, without reaching the basement
membrane and results in loss of epithelial integrity (A). In contrast,

HSV1infected the whole epithelium of NP after 24 h of HSV1 incubation
(B). After 48 h HSV1+24 h medium incubation, HSV1 infects basal
epithelial cells, and leads to loss of epithelial structure partly,
penetration of the basement membrane and invasion of the virus into
the lamina propria of IT (C). HSV1 infection leads to the loss of epithelial
structures and invasion of the virus into the lamina propria of NP
diffusively (D). S. aureus infection: After 24 h medium+24 h S. aureus
incubation, S. aureus does not infect or invade the epithelium of IT and
NP (E,F). HSV1+S. aureus infection: After 24 h HSV1+24 h S. aureus
incubation, S. aureus forms clusters and attaches to the residual
epithelial cells infected by HSV1, with S. aureus penetration of
epithelium through inter-epithelial cell spaces (white arrow) (G). In
contrast, cluster-forming S. aureus attached to epithelial cells of NP
when infected by HSV1and penetrated the epithelium down to basal
cells widely; planctonic bacteria invaded into the lamina propria after
24 h combined HSV1and S. aureus incubation (H). After 48 h HSV1+24h
S. aureus incubation, clusters of S. aureus adhere to HSV1-infected
epithelial cells and basement membrane of IT, with subsequent
shedding of epithelial cells and penetration of the basement membrane
(white arrow) (I). Whereas both HSV1 and S. aureus invade into the
lamina propria of NP diffusively, with loss of epithelium(J). Control: The
epithelium is intact and undamaged after 96 h totally in non-infected
control tissues explants of IT and NP (K,L). (All slides viewed at 6630
magnification; red fluorescence demonstrates the presence of HSV1
and green fluorescence the presence of S. aureus in the nasal mucosa;
dotted line indicates the basement membrane. The isotype control
staining for HSV1 was completely negative and is not presented here.).
doi:10.1371/journal.pone.0039875.g001
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and 48 h post HSV1-infection (p,0.001 for both time points).

The invasion of S. aureus was also significantly greater following

48 h post HSV1-infection compared to 24 h post HSV1-infection

(p,0.05) (Figure 3). The invasion scores of S. aureus in nasal polyp

tissue were also similar to those of nasal turbinate musosa, but the

scores of 48 and 72 h after co-infection were significantly higher

than those of turbinate mucosa (p,0.01 or p,0.001, respectively)

(Figure 3).

Epithelial Damage and Correlation with Invasion by HSV1
and S. aureus

Hematoxylin-staining of nasal turbinate mucosa and nasal

polyp tissue explants indicated that the tissue-culture conditions

employed in the present study were suitable for the preservation of

epithelial integrity over a period of 96 h (Figure 4B), as

demonstrated by the presence of an intact and normal epithelium

in non-infected control cultures, that was comparable with

baseline (Figure 4A). Indeed, assessment of epithelial damage

scores demonstrated that the scores were not significantly different

in control culture conditions, where explants were first mock-

treated with medium for 24 or 48 h and subsequently incubated

with medium (mock) for another 24 h until sampling, compared to

baseline scores (Fig 5).

Although infection of the nasal mucosal explants with HSV1

(Figure 4C), but not S. aureus (Figure 4D), led to extensive epithelial

damage after respectively 24 h of mock- and S. aureus-treatment

following 48 h of respectively HSV1- and mock-treatment, the

damage to the epithelium was compounded (Figure 4E) and

complete (Figure 4F) when the nasal mucosa was infected with

HSV1 during 24 and 48 h respectively followed by 24 h of

infection with S. aureus. Assessment of epithelial damage scores

further confirmed these histological findings and demonstrated

that the scores were significantly higher for HSV1 with and

without S. aureus-infected explants, compared to non-infected

control explants and S. aureus only-infected explants (Fig 5).

Moreover, the damage was significantly greater at 72 hpi (48 h of

HSV1+24 h of mock treatment) compared to 48 hpi (24 h of

HSV1+24 h of mock treatment) in HSV1 only-infected explants,

but not in co-infected explants where 24h infection with S. aureus

followed 48 h pre-infection with HSV1 compared to S. aureus-

infection following 24 h of pre-infection with HSV1. In co-infected

explants, high damage scores were already reached for S. aureus-

infection following 24 h of HSV1-infection.

The epithelial damage patterns of nasal polyp tissue after

infection with HSV1, S. aureus, or both resemble those of nasal

turbinate mucosa; however, the damage scores after infection for

24 and 48 h were significantly higher than those in turbinate

mucosa (Fig 5).

Evaluation of correlations between epithelial damage scores and

HSV1 invasion scores demonstrated significant correlations in

both the HSV1-infected explants of turbinate mucosa (R = 0.74,

P,0.001) and nasal polyp tissue (R = 0.706, P,0.001) and the

HSV1+S. aureus-infected explants of turbinate (R = 0.63, P,0.001)

and nasal polyp tissues (R = 0.641, P,0.001).

Discussion

S. aureus is both a human commensal and a frequent pathogen of

clinically important infections; with about one-third of the

population being a permanent carrier of S. aureus [1]. Although

S. aureus has been detected in nasal polyp tissue [11], the

mechanisms underlying S. aureus invasion into the nasal mucosa

are not clearly understood to date. As bacterial infection has been

demonstrated often to be secondary to viral infection [8], it is

tempting to speculate that an interaction between viral and S.

aureus infections is likely, at least in part, to be responsible for the

invasion of S. aureus into the nasal mucosa of these patients.

We used an ex-vivo explant tissue culture model [13] to

investigate the effect of prior infection with HSV1, a prevalent

virus [14–18], on subsequent damage and invasion by S. aureus in

human nasal mucosal tissue. Our study demonstrated that prior

infection of human nasal explants with HSV1 in the absence or

presence of subsequent S. aureus-infection led to focal infection of

epithelial cells after mock/S.aureus-treatment following 24 h of pre-

infection with HSV1 and loss or damage of the epithelium

accompanied by invasion of HSV1 into the lamina propria

following 48 h of pre-infection with HSV1. In contrast, invasion

Figure 2. Invasion of nasal mucosa of inferior turbinate (IT) and nasal polyp tissue samples (NP) by HSV1. Results are presented as
mean scores 6 SEM for IT from 10 patients and NP from 7 patients. Arrows represent differences between HSV1-infection and HSV1+S. aureus-
infection groups or differences between IT group and NP groups. *P,0.05, **P,0.01 and ***P,0.001.
doi:10.1371/journal.pone.0039875.g002
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by S. aureus into the nasal mucosa was noted in explants subjected

to a prior 48 h of HSV1-infection followed by a subsequent S.

aureus-infection, but not in explants subjected to only S. aureus-

infection or in non-infected control explants. Evaluation of graded

mean scores for the invasion of HSV1 and S. aureus into the nasal

mucosa confirmed the immunohistological observations and

demonstrated that HSV1 invasion was significantly increased

from baseline in HSV1-infected explants independent of S. aureus,

whereas invasion by S. aureus was significantly increased from

baseline only after HSV1 pre-incubation. Epithelial damage and

invasion of the mucosa by HSV1 were significantly more extensive

in nasal polyp compared to inferior turbinate tissues, and

consequently, mucosal invasion by S. aureus of nasal polyp tissues

was increased vs. inferior turbinate samples.

Our findings of HSV1 invasion into the lamina propria are in

line with Glorieux et al [13]. However, important to remark is that

the authors observed HSV1 penetration through the basement

membrane from 16 hpi onwards, with 100% of the plaques

penetrating the basement membrane from 24 hpi. This could be

explained by the fact that Glorieux et al [13]. evaluated serial

sections covering the whole plaque of 10 different plaques for 3

different persons, whereas in the present study, 10 sections were

evaluated with 2 sections processed every 300 mm. Herpesvirus

invasion into the lamina propria was shown previously for animal

viruses, such as pseudorabies virus (PRV) [26] and bovine

herpesvirus 1 (BHV1) [27], which show plaquewise spread

through the basement membrane. Equine herpesvirus 1 (EHV1)

plaques remain confined to the epithelium and EHV1 invades

below the basement membrane via EHV1-infected single mono-

nuclear cells [28].

Similarly, graded mean scores for epithelial damage scores were

significantly higher for HSV1 infected explants independent of S.

aureus, compared with control explants or S. aureus infected

explants; epithelial damage scores significantly correlated with

HSV1-invasion scores. Collectively these findings suggest that

HSV1-infection may facilitate the subsequent invasion and

colonisation of the nasal mucosa by S. aureus; possibly by breaking

down the intact epithelium and basement membrane that

normally acts as a barrier to S. aureus. Similar to rhinovirus

[29,30] and adenovirus [31], HSV1 could disrupt cell junctions as

late HSV replication is associated with disruption of cell junctions.

However, the viral factors contributing to this disruption are

unknown so far [32].

To our knowledge this is the first study to investigate the impact

of HSV1 infection on the invasion of S. aureus into human airway

mucosa using explant cultures. A small number of other studies

have reported different aspects of viral infection in human nasal

tissue cultures [33–38]; however, studies describing possible

interactions between viral and bacterial infections/invasion are

limited. Read and colleagues [33] investigated the effect of prior

influenza B virus-infection on subsequent attachment and

penetration of serogroup B Neisseria meningitides in nasopharyngeal

explants from 19 patients. The authors demonstrated that

bacterial association with the surface of explants was time

dependent over 24 h of infection, however, the virus did not

positively or negatively influence bacterial attachment to or

penetration of explant mucosa compared to uninfected controls.

Moreover, the proteins involved in the attachment of N. meningitides

to the epithelial surface were lost over a period of 72 h in the

presence of influenza B virus. A recent study by Wang and

colleagues [39] demonstrated that prior rhinovirus serotype 16

(RV-16) infection significantly increased gene and protein

expression for specific bacterial adhesion proteins in primary

human nasal epithelial cell cultures. However, there was a

differential attachment of S. aureus, Streptococcus pneumoniae, and

Hemophilus influenzae to the epithelial cells, suggesting species-

differences in the mechanisms underlying bacterial adhesion and/

or epithelial invasion. In a separate study, these authors further

demonstrated that although RV-induced expression of bacterial

adhesion molecules was not augmented by incubation with

Figure 3. Invasion of nasal mucosa of inferior turbinate (IT) and nasal polyp tissue samples (NP) by S. aureus. Results are presented as
mean scores 6SEM for nasal turbinate samples from 10 patients and NP from 7 patients. Arrows represent differences between S. aureus-infection
and HSV1+S. aureus-infection groups or differences between IT group and NP groups. ** P,0.01,*** P,0.001.
doi:10.1371/journal.pone.0039875.g003
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staphylococcal enterotoxins A and B, these molecules lead to a

dose-dependent replication of RV in epithelial cell cultures [40],

suggesting that there may be interdependency between viruses and

bacteria with respect to growth, invasion, or colonisation of nasal

mucosa.

In the present study, we found that S. aureus invaded the deeper

epithelial cells and lamina propria only after the mucosal explants

were infected with HSV1, leading to epithelial damage, but not in

the absence of prior HSV1-infection; in which case there was only

occasional attachment of S. aureus to the surface of epithelium.

Furthermore, in the case of HSV1 pre-incubation, S. aureus

attached to the surface of the denuded basement membrane and

formed a thick layer. These observations are in accordance with

others showing that S. aureus attached to damaged or remodelled,

but not to intact airway epithelium [41,42]. Following damage to

the epithelium, it is possible that S. aureus could readily adhere to

basement membrane matrix proteins (collagen types I, IV and VI,

fibronectin and laminin) [41,43–46] before penetrating the

basement membrane and colonising the lamina propria. Interest-

ingly, the epithelial damage scores of the HSV1+S. aureus infected

explants were significantly higher than those of the HSV1 infected

explants. Recent findings have shown that staphylokinases of S.

aureus may activate matrix metalloproteases (MMPs) that may

degrade collagen [47], and MMP9 can cleave airway epithelial

cell-cell junctions and trigger cell death [48], which indicate that

products of S. aureus attaching to epithelial cells and basement

membrane may exacerbate the damage of epithelium and

basement membrane after HSV1 had induced the attachment of

S. aureus.

In the present study, we show that HSV1 has an increased

invasive ability into nasal polyp tissue accompanied with more

serious damage effect of epithelium compared with nasal turbinate

mucosa. It was demonstrated before that nasal polyp tissue is

susceptible to influenza virus infection, associated with an

increased expression of a2,3- and a2,6-linked sialic acid receptor

[49]. Wark et al and Contoli et al demonstrated that epithelium of

asthma subjects was defective in the production of interferon-b
(IFN-b) and IFN-l in response to rhinovirus [50,51]; we may

assume that the same mechanisms are valid in nasal polyps,

characterized by a Th2 inflammation similar as asthma.

In summary, our study has indicated that the human nasal

explant culture model is a suitable and reliable means to

investigate the role of HSV1 and possibly other respiratory viruses

in modulating the invasion by S. aureus of the airway mucosa. This

ex-vivo human mucosal model allows comparing healthy with

diseased mucosa, elucidating the underlying mechanisms of

mucosal invasion, as the normal cell-cell contacts, the crucial

cell-extracellular matrix contacts and consequently, the three-

dimensional structure of the tissue are preserved. Using this model,

we have demonstrated that HSV1 infection significantly damages

the nasal epithelium and induces the attachment of S. aureus, thus

facilitating the invasion of S. aureus into nasal mucosa. Nasal polyp

tissue is more susceptible to the invasion of HSV1 and epithelial

damage by HSV1 compared with inferior turbinate mucosa. We

here studied the facilitating role of HSV1 for the acute invasion of

S. aureus into the mucosa and used GFP-labeled S. aureus. This

allows differentiating between preexisting colonization, either

acute or chronic, and experimental exposure to S. aureus. Future

studies using this model are planned to address the detailed

mechanisms involved in HSV1 and S. aureus invasion of nasal

mucosa and the roles of HSV 1 and S. aureus in the pathogenesis of

nasal polyps.

Figure 4. Hematoxylin-stained sections of inferior turbinate (IT) and nasal polyp tissue samples (NP). The epithelium and basement
membrane (dotted line) are intact and undamaged at baseline of IT (A) and NP (B) respectively and after 96 h totally incubation in uninfected control
explants of IT (C) and NP (D), respectively. Extensive infection and damage to the epithelium is seen in the explants after 48 h HSV1+24h medium of
IT (E) and NP (F) respectively, but not in the explants of IT (G) and NP (H) respectively after 48h medium+24 h S. aureus incubation. Combined HSV1
and S. aureus infection leads to adherence of S. aureus clusters to the epithelium (arrow) and partial damage of the epithelium of IT after 24 h
HSV1+24 h S. aureus incubation (I), and complete loss of the epithelium of NP after 24 h HSV1+24 h S. aureus incubation (J). (All slides viewed at6400
magnification.)
doi:10.1371/journal.pone.0039875.g004

Figure 5. Epithelium damage in nasal mucosa. Results are presented as mean6SEM scores for IT from 10 patients and NP from 7 patients;
*P,0.05, **P,0.01, ***P,0.001 between time points. Control means no infection. Arrows indicate intergroup significance.
doi:10.1371/journal.pone.0039875.g005
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