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Abstract

Atrazine chlorohydrolase (AtzA) and its close relative melamine deaminase (TriA) differ by just nine amino acid substitutions
but have distinct catalytic activities. Together, they offer an informative model system to study the molecular processes that
underpin the emergence of new enzymatic function. Here we have constructed the potential evolutionary trajectories
between AtzA and TriA, and characterized the catalytic activities and biophysical properties of the intermediates along
those trajectories. The order in which the nine amino acid substitutions that separate the enzymes could be introduced to
either enzyme, while maintaining significant catalytic activity, was dictated by epistatic interactions, principally between
three amino acids within the active site: namely, S331C, N328D and F84L. The mechanistic basis for the epistatic
relationships is consistent with a model for the catalytic mechanisms in which protonation is required for hydrolysis of
melamine, but not atrazine.
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Introduction

The evolutionary mechanisms by which new catalytic functions

of enzymes emerge have attracted considerable attention in recent

times. Advances in our understanding of these processes have been

greatly accelerated by developments in laboratory-based evolution

of enzymes [1,2]. Such studies have highlighted the importance of

enzymatic promiscuity [3] and trade-offs between the emergent

activity and the catalytic and non-catalytic properties (e.g.,

stability) of the parent enzyme [4]. Despite these advances, there

have been few studies of natural systems in which evolution of a

new function has been characterized at a molecular level [5,6,7].

An opportunity to study the process that underpins the emergence

of new enzymatic activities in natural systems is presented by

bacterial enzymes that have recently diverged from their ‘natural’

physiological functions to acquire potentially useful roles in

xenobiotic degradation [8,9,10].

Atrazine dechlorinase (AtzA) and its close relative melamine

deaminase (TriA) offer an excellent model system to study the

evolution of new enzyme function. AtzA and TriA were first

described in two different Pseudomonas species; AtzA from atrazine-

contaminated soil (Pseudomonas sp. strain ADP1 [11,12]) and TriA

from effluent from a melamine manufacturing plant (Pseudomonas

sp. strain NRRLB-12227 [13]). These two bacterial species appear

to be well adapted for the use of the respective xenobiotics as

nitrogen and carbon sources. Pseudomonas sp. strain ADP1 is

capable of mineralizing atrazine and its metabolites (but not

melamine) and Pseudomonas sp. strain NRRLB-12227 is capable of

mineralizing melamine and its metabolites (but not atrazine)

[13,14]. The difference in metabolic capability is partly explained

by differences in specificity between AtzA and TriA; AtzA is an

efficient atrazine dechlorinase with no measurable deaminase

activity, and TriA is an efficient deaminase with only a low level of

promiscuous dechlorinase activity (Fig. 1) [15,16,17].

AtzA and TriA are metal-dependent hydrolases with 98%

sequence identity to each other, differing by just 9/475 amino

acids [i.e., F84L, V92L, E125D, T217I, T219P, I253L, G255W,

N328D and S331C, with respect to the AtzA sequence: 17]. At

least five of these substitutions are located within the active site of

the enzyme (Fig. 2), and there are no synonymous differences

between the two genes [17]. It is unclear which of AtzA or TriA

most closely resembles the ancestral vs. derived condition, but it is

assumed that their divergence has been recent [17].

AtzA has now been isolated from geographically and phyloge-

netically diverse bacterial species [18]. Notably, however, little

sequence variation has been found between the atzA gene from

Pseudomonas sp. strain ADP1 and those isolated later. There have

also been no reports of triA and atzA sequences being obtained

from the same organism, or even from the same location.

Raillard et al. [16] randomly recombined the genes encoding

AtzA and TriA by DNA shuffling and screened over 400 variants

for activity against melamine, atrazine, and a range of related

triazine compounds. A high degree of plasticity in substrate usage

was observed in several intermediates between the two enzymes.

This suggests that there may not have been a strong negative
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trade-off of the original activity regardless of the direction in which

evolution proceeded between AtzA and TriA (or related enzymes).

Step-wise transitions, mimicking the possible paths of natural

selection, between closely related naturally occurring enzyme

variants have been constructed elsewhere [5,6,19]. However, a

step-wise transition has not previously been explored for AtzA and

TriA. Here, we have constructed potential evolutionary trajecto-

ries between AtzA and TriA and used these trajectories to examine

the reversibility of evolution between these enzymes, the trade-offs

in their catalytic and biophysical properties, and the constraints

upon the order of amino acid substitutions enforced by

intramolecular epistasis.

Results

Constructing a Step-wise Trajectory from AtzA to TriA
AtzA was used as the template for the sequential introduction of

the nine amino acid substitutions that separate it from TriA. As

Figure 1. Reaction schemes for melamine deaminase (TriA) and atrazine dechlorinase (AtzA). The hydrolytic deamination of melamine to
ammeline by TriA and the dechlorination of atrazine to 2-hydroxyatrazine by AtzA are shown. TriA also possesses a low level of atrazine dechlorinase
activity [17].
doi:10.1371/journal.pone.0039822.g001

Figure 2. Modeled active site of AtzA. A homology model of the active site of AtzA [20] was used to illustrate the positions of five of the nine
amino acid differences between AtzA and TriA. Shown here are the AtzA substrate (atrazine; green), amino acids identical in both AtzA and TriA (Q71,
W87, L88, Q96, N126, M155, A216, A220, E246 and D250; white), and amino acids that differ between AtzA and TriA (positions 84, 217, 219, 328 and
331; purple).
doi:10.1371/journal.pone.0039822.g002
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previously reported [12,20], AtzA had no detectable deaminase

activity with melamine and a kcat/KM value of 14,600 s21.M21 for

atrazine (Table 1). After each round of mutagenesis, the variant

enzyme with the greatest gain in melamine deaminase specificity

(kcat/KM) was used as the template for the next round of these

experiments. Data for the enzyme purifications are given in Fig.

S1, and kinetic data for the variants are in Table 1 and Table S2.

The specificities for each enzyme variant for both substrates are

plotted graphically in Fig. 3.

Among the nine first-step variants, only the S331C substitution

conferred an increase in melamine deaminase activity, with a kcat/

KM value of 50 s21.M21 (Table 1; Fig. 3). This substitution

resulted in a 4.6-fold trade-off in atrazine dechlorinase specificity

(3,200 s21.M21). Despite not increasing the deaminase activity,

the F84L and N328D variants led to 6.1-fold (2,400 s21.M21) and

24.3-fold (600 s21.M21) reductions in atrazine dechlorinase

specificities, respectively. The remaining six first-step variants

(V92L, E125D, T217I, T219P, I253L, and G255W) had no

significant effect on either activity (Fig. 3; Table S2).

The gene encoding the S331C variant of AtzA from

generation 1 was then used as a template for the introduction

of the other eight amino acid substitutions. The kcat/KM values

for melamine increased 18.2-fold and 7.6-fold following the

F84L (910 s21.M21) and N328D (380 s21.M21) substitutions,

respectively (Fig. 3), whereas no substantial increase was

observed for the other six variants (Fig. 3; Table S2). All eight

of the second-step variants significantly reduced atrazine

dechlorinase activities compared with the S331C variant of

AtzA, with kcat/KM values of 4.9- and 2.3-fold decreases for

F84L (650 s21.M21) and N328D (1,400 s21.M21) substitutions,

respectively. There was a positive epistatic interaction between

the S331C substitution and the F84L and N328D substitutions,

as neither of the latter two substitutions had increased the

enzyme’s catalytic activity in relation to atrazine in the AtzA

wild-type background (Fig. 3; Table 1; Table S2).

In the next step (generation 3), the S331C-F84L variant of

AtzA (Table 1) was used as template for the introduction of the

other seven amino acid substitutions, with the only significant

increase in melamine deaminase activity resulting from the

N328D substitution. This S331C-F84L-N328D variant had

a 6.7-fold and 16-fold higher deaminase activity than the

S331C-F84L and S331C-N328D variants, respectively. These

Figure 3. Step-wise laboratory-based evolution of AtzA to TriA. Circles indicate the variants for which the kcat/KM values (s21.M21; values in
Table 1 and Table S2) for atrazine dechlorination and melamine deamination were determined (color coded as follows: AtzA, red (filled); generation 1,
orange (filled); generation 2, green (filled); generation 3, blue (filled); generation 4, violet (filled); generation 5, orange (open); generation 6, red
(open); generation 7, green (open); generation 8, blue (open); and TriA, violet (open)). Lines are used to link variants differing by one substitution
(thick lines link optimal variants; thin lines link the optimal variants to suboptimal variants – suboptimal variants were not used to generate
subsequent variants). Amino acid substitutions discussed in the text have been labelled for clarity, as have the wild-type AtzA and TriA enzymes.
Inset: expansion of the region of Fig. 3 that contains the last four steps of the trajectory.
doi:10.1371/journal.pone.0039822.g003
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increases in deaminase activity resulted in 4.9-fold and 2.3-fold

reductions in the dechlorinase activity. Because the effects of

F84L and N328D substitutions were additive in the S331C

background, it appears that there is no epistatic interaction

between them.

The optimal order of the remaining amino acid substitutions

was E125D T219P T217I V92L G255W I253L.

Each substitution had a relatively small effect on the melamine

deaminase activity but in combination served to greatly reduce the

dechlorinase activity (Fig. 3; Table 1; Table S2).

Construction of a Step-wise Trajectory from TriA to AtzA
The evolutionary trajectory in the direction from TriA to AtzA

was also constructed (Table 1; Fig. 4; Table S2). The strategy for

this experiment was the same as above, except that, in this case,

the selection criterion at each step was the highest level of atrazine

dechlorinase activity.

TriA already exhibited low-level atrazine dechlorinase activity

and the addition of a C331S mutation in the first generation gave

by far the greatest increase in specificity (24.3-fold; i.e., from

70 s21.M21 to 1,700 s21.M21), with a smaller increase observed

as a result of the L84F substitution (11.4-fold). Six of the other

amino acid substitutions yielded no significant increase in

specificity towards atrazine (1.0-1.4 fold for L92V, D125E,

I217T, P219T, L253I and W255G) whereas the seventh amino

acid substitution (D328N) resulted in the loss of all catalytic

activity. Given that the D328N mutant was soluble (Fig. S1), the

loss of detectable activity must result from effects at the active site,

where D328 is predicted to be located.

Notably, the D328N substitution caused an increase in atrazine

dechlorinase activity, with a 5.8-fold increase in specificity

constant when added to the C331S variant (i.e., 9,800 s21.M21

or 67% of wild-type AtzA activity). This C331S-D328N variant

possessed no melamine deaminase activity. On the other hand,

when the D328N substitution was added to the L84F variant of

TriA (made in the following round), it inactivated the enzyme

completely (Table 1; Fig. 4). Interestingly, the C331S-D328N-

L84F variant of TriA was active and had a higher atrazine

dechlorinase activity (kcat/KM value of 12,300 s21.M21) than that

of the C331S- D328N variant of TriA. The atrazine dechlorinase

activity of this triple variant was 84% of that of the wild-type AtzA.

The other six amino acid substitutions increased the catalytic

activity towards atrazine marginally (Fig. 4 and data not shown)

although in combination they bridged the gap between the

catalytic activity of the triple variant and that of the wild-type

AtzA.

Table 1. Second order rate constants for atrazine, melamine and ametryn for the AtzA and TriA variants that comprise the major
trajectories between AtzA and TriA and vice versa.

kcat/KM (s21.M21)

Direction and Generation Variant Atrazine (-Cl) Melamine (-NH2) Ametryn (-OCH3)

AtzATriA

0 A. AtzA 14,6006634 BDL BDL

1 B. A plus S331C 3,2006222 5064 12769

1 C. A plus F84L 2,4006128 BDL ND

1 D. A plus N328D 60063 BDL ND

2 E. B plus N328D 1,4006135 380628 395612

2 F. B plus F84L 650663 910679 ND

3 G. F plus N328D 512643 6,1006573 411627

4 H. G plus E125D 213614 10,8986890 422625

5 I. H plus T219P 9667 18,70161,170 392630

6 J. I plus T217I 8067 18,60461,386 404622

7 K. J plus V92L 5566 19,70061,670 382628

8 L. K plus G255W 5765 20,76061,677 437633

9 M. L plus I253L (TriA) 6066 20,81061,581 425633

TriA AtzA

0 M. TriA 6066 20,81061,581 425633

1 N. M plus C331S 1,6896144 3,2986277 ND

1 O. M plus D328N BDL BDL BDL

1 P. M plus L84F 821668 6,1036821 BDL

2 Q. P plus D328N BDL BDL BDL

2 R. N plus L84F 3,8036275 1,107699 ND

2 S. N plus D328N 9,8126484 0 ND

3 T. S plus L84F 12,3006879 0 ND

The kcat/KM values (6 standard deviation) are shown. The kcat/KM values for the all of the variants shown in Fig. 2 and Fig. 3 can be found in Table S2. The leaving group
for each hydrolysis is shown in parentheses next to the name of the substrate. ND = Not determined; BDL = below detection limit. Each variant has been assigned a
letter and the identity of the each variant’s direct parent is indicated together with the distinguishing amino acid substitution. The letter assignments correspond to
those found in the figures.
doi:10.1371/journal.pone.0039822.t001
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Trade-offs between Physiological and Promiscuous
Activities

Raillard et al. [16] noted significant promiscuity in TriA

(hydrolysis of -SCH3 and -OCH3 moieties from triazine rings) that

was not present in AtzA. We have also observed that TriA can

hydrolyse –SH and –CF3 groups from the 2-position of triazine

rings, whilst AtzA cannot (Table S2).

To study how physiological and non-physiological activities

trade-off with each other, the specificities of the variants along the

trajectory from AtzA to TriA for ametryn (N-ethyl-N9-(1-

methylethyl)-6-(methylthio)-1,3,5-triazine-2,4-diamine; possessing

a –SCH3 leaving group) hydrolysis were therefore also assessed

(Fig. 5). The majority of the increase in ametryn hydrolase

specificity was accounted for by the introduction of the S331C and

N328D substitutions, with little contribution by the remaining

substitutions. S331C and N328D had also been the most

influential substitutions in terms of the acquisition of melamine

deaminase activity in the AtzA-TriA transition.

Activity vs. Stability Trade-off
Conformational stability is frequently observed to trade-off with

activity during the evolution of new enzyme function [4,21,22]. To

investigate the effects of the nine substitutions on stability, the

stabilities of AtzA, TriA, and the intermediates found along the

two trajectories in Figures 3 and 4 were therefore assessed using

residual catalytic activity after heat treatment (30–70uC for 15

minutes) (Fig. 6A).

For the trajectory from AtzA to TriA, the thermal stability

(Tm
app) of AtzA began at 54uC and the successive addition of the

S331C, F84L, N328D, and E125D substitutions successively

reduced the Tm
app of the enzyme, to a final value of 44uC (Fig. 5A).

Conversely, the first three steps in the direction from TriA to AtzA

(C331S, L84F, and D328N) increased the thermal stability of the

enzyme, with the Tm
app increasing from approximately 44uC for

TriA to approximately 54uC for the C331S-D328N-L84F variant

of TriA (Fig. 6B).

Figure 4. Partial step-wise laboratory evolution of TriA to AtzA. Circles indicate the variants for which the kcat/KM values (s21.M21; values in
Table 1 and Table S2) for atrazine dechlorination and melamine deamination were determined, and are color coded as follows: TriA, red; generation 1,
orange; generation 2, green; generation 3, blue; AtzA, violet. Lines are used to link variants differing by one substitution (thick lines link optimal
variants; thin lines link the optimal variants to suboptimal variants – suboptimal variants were not used to generate subsequent variants). Amino acid
substitutions discussed in the text have been labelled for clarity, as have the wild-type AtzA and TriA enzymes.
doi:10.1371/journal.pone.0039822.g004
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Discussion

Intramolecular Epistasis Constrains the Evolutionary
Trajectories

It is becoming clear that intra- and inter-molecular epistasis may

contribute significantly to the availability of evolutionary trajec-

tories by constraining the order and reversibility of amino acid

substitutions [5,6,7,23,24].

The evolution between AtzA and TriA is reversible; however

the preferred orders of events along the two trajectories are not

simply the reverse of one another, owing to strong epistatic effects

between the substitutions at residues 331, 328, and 84 (Fig. 7). The

interaction between amino acids at positions 328 and 331 entails

that substitutions at position 331 must precede those at position

328 in either direction (Fig. 7). Substitutions at position 328 that

precede those at position 331 are deleterious, either reducing (in

the AtzA to TriA direction) or abolishing (in the TriA to AtzA

direction) parental activity, with no enhancement of the alternative

activity. The evolution of TriA from AtzA also requires that the

F84L substitution be preceded by the S331C substitution,

although this constraint is relaxed in the trajectory from TriA to

AtzA. Although the trajectories constructed here are only potential

trajectories, and others are plausible, it is very likely that the order

of the substitutions at positions 84, 328 and 331 are as described

here due to their epistatic interactions.

The molecular basis for these epistatic interactions can be

rationalized using the catalytic models for AtzA and TriA that we

have proposed elsewhere [20] (Fig. 8). Different requirements for

leaving group stabilization in AtzA and TriA give rise to the

epistatic interactions between the residues at positions 328 and

331. With a pKa value of -7 for HCl/Cl2, the Cl2 leaving group of

atrazine will be stable in this form, whereas the melamine leaving

group NH3/NH2
2, with a pKa value of 34, will require

protonation from an NH2
2 to NH3 group for catalysis to be

efficient. Thus, for the TriA reaction, cysteine most likely acts as a

proton donor, a role that cannot be fulfilled by serine. The second

member of the dyad then serves to stabilize the first: in the case of

TriA, C331 can abstract a proton from Asp328 as it donates a

proton to the leaving group of melamine, preventing formation of

a high-energy thiolate.

The epistasis between the two members of the dyad can then be

broken down as follows: for the deaminase activity, if the residue at

position 331 is serine, an N328D mutation has no effect on the

activity since S331 cannot donate a proton to the leaving group

regardless of the other member of the dyad. In contrast, if the

N328D mutation arises after the C331 mutation, it has a positive

Figure 5. Trade-off between atrazine dechlorinase and ametryn hydrolase activity during the transition between AtzA and TriA.
Circles indicate the variants for which the kcat/KM values (s21.M21; values in Table 1 and Table S2) for atrazine dechlorination and ametryn hydrolysis
are shown. Lines are used to link variants differing by a single amino acid. Each variant has been assigned a letter and the identity of the each
variant’s direct parent is indicated together with the distinguishing amino acid substitution. The letter assignments correspond to those found in Fig.
3 and Table 1.
doi:10.1371/journal.pone.0039822.g005
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effect because, unlike asparagine, it is able to shuttle a proton to

C331 as C331 donates its proton to the leaving group. Thus, the

intramolecular epistasis observed in this evolutionary trajectory

can be traced back to the reaction chemistry.

Functional Trade-offs and Evolution
As expected, there is a clear trade-off between the two

enzymatic activities during the transition from AtzA to TriA or

vice versa. The pair-wise plot of the two activities in the AtzA to

TriA direction shows a profile in which the intermediate variants

possess both new and native activities, with the native activity lost

gradually while the new activity is established (Fig. 3). This profile

is strikingly similar to the theoretical model of a weak-negative

trade-off proposed by Khersonsky and Tawfik. [3]. However, the

pair-wise plot of the trajectory from TriA to AtzA (Fig. 4) shows

that there is large trade-off in activities along this trajectory, with

TriA activity totally abolished with the addition of the second

amino acid substitution (a strong negative trade off).

There is also a trade-off between enzymatic activity and protein

stability. However, this trade-off only operates in the AtzA to TriA

direction. The substitutions that confer the greatest increases in

TriA activity along this trajectory (S331C, D328N and F84L) also

have the greatest destabilizing effect on the thermal stability of the

enzyme. Conversely, introduction of substitutions at these

positions in the TriA background substantially improves thermal

stability.

In vitro evolution studies have provided a considerable body of

evidence showing that destabilizing effects almost always accom-

pany mutations that confer new catalytic functions upon enzymes

[4,21], which could suggest that the dechlorinase function is

ancestral in this case. However, we cannot support this conjecture

with a phylogenetic analysis as there are too few informative

sequences available to construct a phylogeny with sufficient

resolution to identify which activity (deaminase or dechlorinase)

has diverged most recently.

Additionally, there is a trade-off between activity (i.e. second-

order rate constant) and specialization. TriA has a large number of

promiscuous activities, whilst AtzA is highly specialized, possessing

hydrolytic activity only against halides. Here, we have demon-

strated that at least one of those promiscuous activities (–SCH3

hydrolysis using ametryn) trades-off with atrazine dechlorinase in a

similar manner as melamine deaminase activity, with the

specificity for ametryn largely influenced again by the identity of

the amino acids at positions 331 and 328. Presumptively, this is

because ametryn and melamine hydrolysis have similar mecha-

nistic requirements.

Promiscuity is considered a major factor in determining the

evolvability of an enzyme [25], and so it may be that TriA is more

evolvable than the more specialized AtzA, despite the two enzymes

having almost identical specificities for their substrates (1.5–

2.06104 M21.s21; Figs 3 and 4). It seems that the reaction

chemistries of these two enzymes determine their potential for

further evolution. These findings suggest that activity and

specialization need not always trade-off, albeit it is unclear by

how much the specificity of TriA for melamine could be increased

without loss of its promiscuous activities.

The roles of functional trade-offs and epistasis in constraining

the evolutionary pathways of proteins have become increasingly

apparent from laboratory-based forced evolution experiments

[2,3,4]. However, there have been few examples in which these

influences have been quantified in a naturally evolved system

[5,19,26]. Herein, we have demonstrated that, for our model

system at least, functional trade-offs and intramolecular epistasis

are themselves reflections of chemical requirements for catalysis

Figure 6. Apparent melting temperatures (Tm
app) of AtzA, TriA and their intermediates. Tm

app of the enzyme variants along the step-wise
trajectories from AtzA to TriA (A) and from TriA to AtzA (B) calculated from residual enzyme activities after heating for 15 minutes at temperatures
between 30uC and 70uC. Each variant has been assigned a letter and the identity of the each variant’s direct parent is indicated together with the
distinguishing amino acid substitution. The letter assignments correspond to those found in Figs. 3 and 4 and Table 1. Error bars indicate 95%
confidence limits.
doi:10.1371/journal.pone.0039822.g006
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Figure 7. Epistatic effects of the C331S substitution in AtzA and the S331C substitution in TriA. The kcat/KM values for atrazine
dechlorination (green) and melamine deamination (blue) in the wild-type (dark) or position 331 variant (light) are shown for the substitutions at
positions 328 and 84 in AtzA (top) and TriA (bottom). The identity of the amino acid at position 331 (cysteine, C, or serine, S) is indicated for clarity.
Error bars indicate standard deviations.
doi:10.1371/journal.pone.0039822.g007
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and not only constrain the availability of evolutionary trajectories

but also potentially impact on the further evolvability of these

recently evolved enzymes.

Materials and Methods

Chemicals
Unless otherwise stated, chemicals were obtained from Sigma

(Australia) and were at least 99% pure.

Bacterial Growth and DNA Manipulation
Escherichia coli JM109 (Promega, USA) was used as the host for

cloning and expression throughout this work. Bacterial cultures

were routinely grown in Luria broth (LB) [27] or at 37uC on LB

mixed with agar (15% w/v). LB was also supplemented with

chloramphenicol (34 mg mL21) where required. Electrocompetent

cells used for the transformation of E. coli JM109 with plasmid

DNA were obtained from Promega, USA.

Plasmid DNA was prepared using Qiagen’s plasmid minikit

(Qiagen, Australia). Site-directed mutagenesis was achieved by

overlap extension PCR [28]. The primers used in this process are

described in Table S1 and were synthesized by GeneWorks,

Australia. For cloning and mutagenesis, amplicons were generated

using Phusion high-fidelity DNA polymerase (Finnzymes, Fin-

land). Amplicons were cloned using NdeI and BamHI into pCS150

[20], which had been modified to include an extension that

encoded an in-frame N-terminal hexa-Histidine tag (Material S1).

Restriction enzymes, calf intestinal alkaline phosphatase (CIP), and

T4 DNA ligase for this cloning were obtained from New England

BioLabs, USA.

DNA sequencing of the individual AtzA variants was done at

the Micromon DNA Sequencing Facility (Melbourne, Australia)

using the vector-specific primers pCS150F and pCS150R (Table

S1).

Protein Purification
AtzA, TriA, and their intermediate variants were produced in

E. coli JM109 transformed with appropriate pCS150-derived

expression plasmids. Bacterial strains were incubated at 28uC in

50 mL LB for 48 h. Cells were harvested by centrifugation at

5,300 rpm at 4uC for 10 min., resuspended in HEPES buffer

(pH 8.0) and then lysed using BugBuster (Novagen, Germany)

according to the manufacturer’s instructions. Lysates were clarified

by centrifugation and the his-tagged enzymes were purified by

metal ion affinity chromatography using TALON resin (Clontech,

USA) following the manufacturer’s instructions.

Figure 8. Roles of Amino Acids at Positions 328 and 331 in AtzA and TriA. In TriA (A) Cys331 donates a proton to the NH22 leaving group of
melamine and abstracts a proton from Asp328. In AtzA (B), the serine hydroxyl group stabilizes the halide of atrazine in the transition state via a
hydrogen bonding interaction and is in turn stabilized by Asn328.
doi:10.1371/journal.pone.0039822.g008
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Protein purity was assessed by SDS-PAGE (Fig. S1) using

NuPAGE Novex 10% Bis-Tris precast gels (Invitrogen, USA)

stained with Coomassie Brilliant Blue (Sigma-Aldrich, USA).

Protein concentrations were estimated by measuring absorbance

at 280 nm using a ND-1000 Nanodrop spectrophotometer

(Thermo Fisher Scientific, Australia). The molar extinction

coefficient of AtzA was estimated at 53,860 M21.cm21 and that

of TriA at 59,360 M21.cm21 using ProtParam [29] (hosted at the

ExPASy server: http://www.expasy.org/tools/protparam.html).

The molar extinction coefficients of the intermediate variants

were estimated by the same method, and yielded values between

those of the parent enzymes.

Enzyme Kinetics
Atrazine and ametryn hydrolyses were monitored by UV-visible

spectroscopy at 265 nm as reported elsewhere [12]. Melamine

hydrolysis was monitored by measuring the increase in absorbance

at 230 nm caused by the accumulation of the hydrolysis product

ammeline, a method validated by HPLC analysis using authentic

ammeline standards (Material S1). UV-visible spectroscopy was

conducted using a SpectraMAX 190 spectrophotometer (Molec-

ular Devices, USA). Enzymes were used at a final concentration of

100 nM in 25 mM MOPS (3-(N-Morpholino)-propanesulfonic

acid) buffer (pH 6.9) with substrate concentrations in the range of

0 mM to 150 mM at 25uC. For all the enzyme variants tested, the

KM for both atrazine and ametryn was much higher than 150 mM,

so the second order rate constant (kcat/KM) was used estimated for

all three substrates (atrazine, ametryn and melamine) under the

assumption that V0< kcat/KM [E][S] when [S] ,, KM.

Thermal Stability
The apparent melting temperatures (Tm

app) of AtzA, TriA, and

selected intermediates were estimated by incubating cell-free

extracts for 15 min. at 30uC to 70uC. Residual activities of the

enzymes were then determined by UV-visible spectroscopy using

atrazine or melamine as substrates.

Supporting Information

Figure S1 Purified enzyme variants. A) SDS-PAGE gel

showing purified AtzA variants from the first generation of the

AtzA to TriA trajectory. M = Marker (Precision Plus Protein

Standards Dual Color, Bio-Rad); 1 = AtzA F84L; 2 = AtzA

V92L; 3 = AtzA E125D, 4 = AtzA T217I; 5 = AtzA T219P; 6 =

AtzA I253L; 7 = AtzA G255W; 8 = AtzA N328D; 9 = AtzA

S331C. B) SDS-PAGE gel showing purified TriA variants from

the TriA to AtzA trajectory. M = Marker (Precision Plus Protein

Standards Dual Color, Bio-Rad); 1 = TriA L84F; 2 = TriA L92V;

3 = TriA D125E, 4 = TriA I217T; 5 = TriA P219T; 6 = TriA

L253I; 7 = TriA W255G; 8 = TriA D328N; 9 = TriA C331S;

10 = TriA L84F-D328N; 11 = TriA L84F-C331S; 12 = TriA

D328N-C331S; 13 = TriA L84F-D328N-C331S.

(DOC)

Table S1 Oligonucleotide primers used in this study.
(DOC)

Table S2 Kinetic data for all variants studied. The

identity of the variants, specificity constants (kcat/KM) and standard

deviations (SD) are shown.

(XLS)

Material S1 Supporting information. The full DNA

sequence of pCS150 (with in frame his-tag), LC-MS validation

of the melamine UV-vis assay and denaturation curves for wild-

type AtzA and TriA are shown.

(DOCX)
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