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INTRODUCTION
An individual’s normal gait speed is a straightforward performance measure with powerful
predictive capacity. Numerous studies show that a decline in gait speed is highly associated
with greater mortality [1,2], greater functional disability [3], poorer quality of life [4],
diminished cognition [5,6], increased health care spending [3,7], and thus, increased loss of
independence. Critically, there are defined interventions to increase gait speed in at-risk
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community dwelling individuals [8,9]. Improved gait speed may lower the risk of the above
health-related outcomes [10].

In the above studies, gait speed typically is measured in clinic, with individuals timed while
walking a short, predetermined distance (e.g. 4–16 m). This approach is straightforward, and
can be done with little clinical disruption or subject inconvenience. However, in older
individuals, gait speed (and other aspects of physical performance) decline over long time
periods [11], and thus require repeated assessments. Physical activity is also subject to
ultradian, circadian, and seasonal changes that cannot be assessed during brief clinical visits
[12], yet may be vital to interpret activity status. For example, activity measured over one
week in a group of healthy Canadian seniors showed that while most subjects achieved an
age-appropriate target for total daily activity count, only a minority of subjects had activity
bouts that were ten minutes or longer, as recommended by the Canadian Physical Activity
Guide [13]. Finally, these sorts of measures are too imprecise to provide effective feedback
for subjects engaged in interventions designed to improve gait speed and physical activity.
These limitations justify new approaches to continuously measure gait speed in a
noninvasive, inexpensive, robust, and easily adopted manner.

A promising way to accomplish the above task is to repurpose widely used personal
electronics to measure gait speed. This “ubiquitous computing” approach has been
successfully used to create “smart stretchers” [14], heart rate monitors [15], personal
diabetes management systems [16], and a variety of related healthcare devices from
inexpensive, widely available technologies. Cellular telephones are particularly appealing
devices for ubiquitous healthcare computing. Inexpensive smartphones are routinely
equipped with a three-dimensional accelerometer. With appropriate software, these phones
can function as actimeters. In fact, many software companies offer downloadable pedometer
applications that use this functionality. None of these applications or devices, however, has
been validated against any standard measure of gait or activity.

Here, we provide the first steps toward validation of cell-phone accelerometer measures of
gait speed. The purpose of this study was to determine if physical activity counts as
measured by cell phones correlate with treadmill gait speeds. We also determined where to
place the cell phone (ankle, hip, wrist, or chest) to obtain the most accurate measures of
treadmill gait speed. Determining whether cell phones can accurately predict treadmill gait
speed is a waypoint on the path toward cell phone prediction of gait speed in naturalistic
conditions, and has the advantage that gait speed for this study is under investigator control.

METHODS
Subjects

This study’s protocol was approved by the UNMC Institutional Review Board (IRB). All
participants provided informed consent. We recruited a total of 55 young, middle-aged, and
older individuals. This convenience sample included UNMC students and employees, who
constituted most of the younger and a sizeable minority of middle-aged subjects. Older
adults (or their spouses or children) who received primary care from the UNMC Home
Instead Center for Successful Aging constituted most of the older and a majority of the
middle-aged subjects. We also recruited and enrolled interested members of the Omaha/
Council Bluffs metropolitan area community (through UNMC-approved social media).
Overall, we recruited 17 young (20–35 years old, 8 male, 9 female), 19 middle-aged (36–65
years old, 8 male, 11 female), and 19 older (65+ years old, 5 male, 14 female) subjects.
Table 1 lists major subject demographic criteria. To be included in the study, subjects had to
be ≥19 years of age and community-dwelling. Exclusion criteria included any self-reported
abnormalities of gait, uncontrolled medical or psychiatric illness, and inability to walk on a
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treadmill. Subjects were also required to have the ability to provide informed consent. One
subject (male from older group) was removed from analysis because he entered an assisted
living facility shortly after completion of treadmill testing. All of the other enrolled subjects
retained sufficient functional capacity to remain independent in the community.

Data acquisition
Activity was measured using Nokia N79 cell phones. These phones have an intrinsic 3D
accelerometer (sourced from STMicroelectronics, LIS302DL, by Nokia) with a dynamic
range of ± 2 g. The accelerometer was sampled using Python for S60 version 1.9.7 (sensor
framework) running on the Symbian V3FP2 operating system. This software sampled the
accelerometer at approximately 12 Hz; 1–2 epochs of data loss (always <6 s, usually <2 s)
occurred every 500–600 minutes of data collection. This data loss represents an operating
system interrupt process. Time series from the multiple phones used for data collection were
synchronized to one another through the GSM network signal. We chose physical activity
(PA) counts [17] as our outcome measure. PA counts provide a graded measure of
accelerometer magnitude over a broad variety of movements. The algorithm to determine
PA counts [18] is straightforward and well-accepted (which is currently not the case for
more complex accelerometer measures, such as footfalls or gait speed). Briefly, raw
accelerometer data was conditioned by calculating the acceleration magnitude (x, y, and z
axes), bandpass filtering the signal using a 48 component finite impulse response filter
(Nyquist frequency of 0.5 Hz, bandpass cutoffs at 0.1 Hz and 0.4 Hz, respectively),
normalizing the filtered time series by resampling at 1 Hz, and then integrating over one
minute bins [per 18] to obtain PA counts. We used a classical windowed linear phase
impulse response filter (implemented by the fir1 MATLAB function). Figure 1 provides an
example of both raw accelerometer traces and the resulting PA counts for a representative
subject.

Protocol
Subjects were allowed to change into clothing comfortable for walking and (if desired)
jogging. Subjects were weighed while fully dressed. For some subjects, we used the weight
from their most recent clinical encounter. Cell phones were set for data acquisition, and
placed next to the left ankle (held by an elastic sweatband or sock), right ankle, left hip
(placed in the pocket), right hip, left hand (held by an elastic sweatband or manually
gripped), right hand, and chest (placed in a pendant). We chose our cell phones from a pool
of 10 identical phones, and assigned specific phones to different sites (ankle, hip, etc.) in a
randomized manner. A video camera recorded footfalls at 30 frames/s. The subject climbed
onto the treadmill and straddled the belt. We used treadmills located at either the UNMC
Center for Cardiac Rehabilitation (Quinton MedTrack CR-60, Bothel WA) or the Home
Instead Center for Successful Aging (SciFit AC5000, Tulsa OK). The subject made three
short jumps in place to synchronize accelerometer time series to video. The subject then
alternated one minute periods of inactivity (straddling the treadmill belt) with five minute
periods of walking at different, defined speeds. Subjects were asked to walk or jog at speeds
that they would normally achieve during their day-to-day routines. Figure 1 shows results
from a typical trial. Subjects were clearly instructed not to attempt treadmill speeds that
were in any way strenuous. For most subjects, we evaluated 5 minutes of treadmill
locomotion at a minimum speed of 0.3 to 1 km/hr (0.2–0.6 mi/hr), a maximum speed per
their tolerance, and multiple intermediate speeds. For most subjects, we replicated the
starting speed (usually between 1.6 and 5.6 km/hr; 1.0 and 3.5 mi/hr) at the end of the trial.
When subjects wanted to be tested at higher speeds, we alternated trials of a higher speed
(e.g. 9.7 km/hr; 6.0 mi/hr) with trials at a lower speed. No individuals were tested at faster
than 11.3 km/hr (7.0 mi/hr). Usually, older individuals could be tested to speeds of about 4
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km/hr (2.5 mi/hr); in these cases, we evaluated treadmill gait at finer speed increments. No
adverse events occurred during testing, and all subjects tolerated the protocol well.

Data quality control and analysis
Some of our older subjects held the treadmill grip bars, rather than let their arms swing
freely. Wrist data from these individuals was removed from analysis. Custom MATLAB
(Mathworks, Natick, MA) software was created to ensure that all time series were
continuous; we segmented and separately filtered each segment for any trials showing more
than 5 sec of data loss. For all subjects, activity count time series were inspected to identify
the bouts of walking occurring between the 1 minute rest bouts. These 5 values (one for each
minute spent walking at that speed) are repeated measures for the specific subject at the
given treadmill speed.

Statistical analysis
Our primary goal for this validation study was to determine (1) if cell phone derived PA
counts correlated with treadmill gait speed, (2) optimum location (if any) for placing the
sensors, (3) if our technology (e.g. specific cell phone used) or subjects (e.g. age, weight)
introduced important confounding factors, and (4) if the performance of cell phone
accelerometers was linear over our anticipated operating ranges. We created a linear
regression model of PA counts versus study independent variables for each of the seven
locations where we placed study cell phones. For example, the (dependent) variable of PA
counts was statistically modeled on the (predictor) variables treadmill speed while adjusting
for the covariates weight, age, gender, location, cell phone ID, and operator. Predictor
variable treadmill speed was limited to no more than 6.4 km/hr (4.0 mi/hr), because the
linearity assumption was not met for higher speeds. Calculated models were then inverted to
determine treadmill speed as a function of PA counts.

The statistical model used was a linear regression mixed model (aka repeated measures
ANOVA) because the data were longitudinal repeated measures. Linear regression mixed
models also avoid biasing results by accounting for the within-subject correlation [19].
Table 2A presents the models determined for all cell phone locations. The Bayesian
Information Criterion (BIC) was used to select the model that best fit the data (smaller BIC
indicates better model). For cases where we created distinct models for gender, BIC was
calculated from a combined dataset to ensure that all BICs were derived from datasets with
approximately the same n. Since the data were non-normal, we transformed them before
analyses by the van der Waerden inverse rank transformation,

(1)

where Y is the Van der Waerden transformed cell phone activity counts, Φ(z) is the
cumulative distribution function of the standard normal distribution N(0, 1), Φ−1(p) is its
inverse function (a.k.a. the probit function, e.g. Φ−1 (0.975) = 1.96), r is the rank of the
respective value of the cell phone counts, n is the size of the sample of cell phone counts
used to build the statistical model, and r/(n+1) is the percentile of the cell count value. For
example, if a person’s chest cell phone PA count is 80, that would correspond to the 60th

percentile (Table 2B), which yields Φ−1 (.60) = 0.25335 using, e.g., function normsinv() in
MS Excel or norminv() in MATLAB, among others. The level of significance α (for
individual predictor variables and the overall models) was always kept at 0.05. The
statistical package SAS 9.2 (SAS Inst, Cary, NC) was used for this analysis.

To validate the calculated models (for the hip) against observed treadmill gait speeds, we
generated 10 “jackknifed” data sets 20% the original data set size by resampling with
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replacement (MATLAB randsample). Observed treadmill gait speed was then plotted
against predicted treadmill gait speed. Regression with 95% confidence intervals on
observations was determined (Supplemental Figure 1 shows representative analysis for one
jackknifed data set). Of note, the regression line slope was not significantly different from
unity. This analysis suggested that changes in hip cell phone activity counts had equal
sensitivity to detect changes in treadmill gait speed when compared to changes in treadmill
gait speed evoked by the investigator manually programming in a new treadmill speed.

RESULTS
Dataset characteristics

Since study participants all had significantly differing capacities for physical activity, it is
not surprising that different age cohorts contributed different amounts of data over tested
treadmill speeds. Figure 2 shows the cumulative walking time over three different speed
ranges, and the percentage that each group contributed to that total. Young subjects clearly
contributed a majority of physical activity data (75% of dataset) for gait speeds >4 mi/hr.
Older individuals contributed slightly more physical activity data for gait speeds <2 mi/hr
(in the interest of time, younger subjects were not exhaustively evaluated at the slower
treadmill speeds). Gait speeds of 2.35 km/hr (1.46 mi/hr) and 4 km/hr (2.5 mi/hr) (dashed
lines) correspond to well-demonstrated clinical cutoffs of 0.6 m/s (1 ft/s) and 1.0 m/s (3.3 ft/
s). Middle-aged and older individuals contribute a majority of the activity count values for
speeds immediately surrounding these critical values.

Treadmill gait speeds estimated from cell phone accelerometer are robust to individual
cell phone placement

Figure 3 shows the relationship between activity counts and treadmill gait speed for phones
placed on the left and right wrist (panel A, B), left and right hip (panel C, D), left and right
ankle (panel E, F), and chest (panel G). Table 2A provides the results of the maximum
likelihood regression models of treadmill speed as a function of study independent variables,
and their respective inversions to obtain a formula predicting treadmill gait speed from cell
phone activity counts. In this table, Y denotes the van der Waerden inverse rank transformed
raw cell phone activity count, whereas Speed denotes the variable treadmill speed. If the
same model is valid for both sexes, then sex is shown as M/F; otherwise, a separate formula
is provided for each sex. Since our major development focus at this time is to develop
appropriate technology to assess and treat older, frailer individuals, we focus further
analyses on treadmill speeds of 6.4 km/hr (4 mi/hr) or less.

Regardless of where we placed the cell phone, all predictor models are highly significant
(p<0.0001), and relatively equivalent in terms of performance. By BIC, cell phones placed
on the wrists had models with the poorest performance predicting treadmill speed, while cell
phones worn in the hip pocket had models with the best performance. Cell phones worn at
the chest and ankles had models with slightly poorer performance compared with cell
phones worn at the hip.

We also note that neither the testing location, individual who performed the testing, or the
specific cell phone used to collect data were found significant by this analysis. Furthermore,
when examining the models of Table 2A, we find that activity counts are by far the most
significant predictive factor for treadmill speed. While some of the models find age (chest,
left and right wrists, left and right hips in females), weight (left hip in females) or gender
(left and right hip) to be significant predictors, the weight of these factors is far less than that
of activity counts.
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The above models can be used to estimate treadmill speed from cell phone activity counts as
follows. When a one-minute-bin activity count is generated, that count is ranked relative to
our dataset of the respective counts (on which we have built the particular model). Next, the
so-obtained rank is substituted into the formula for the van der Waerden inverse rank
transformation. Finally, the obtained value is substituted in the formula for treadmill speed,
as suggested by the respective model.

DISCUSSION
This study is the first to validate cell phone accelerometers as tools for accurate, easy, and
inexpensive treadmill gait speed measures across a broad population of community dwelling
adults. These gait speed measures are precise even if the subjects wear the cell phone
casually (loose in pocket, in a neck pendant, etc.). Much of our validation dataset evaluated
treadmill gait speeds around the critical range of 2.4 to 4 km/hr (1.5 to 2.5 mph). Prior
studies have demonstrated that individuals unable to walk faster than 2.35 km/hr (1.46 mi/
hr) are at a higher risk for a variety of adverse health-related outcomes; this risk is no longer
present in persons able to walk faster than 4 km/hr (2.5 mi/hr, [20,7]). These findings further
justify our ubiquitous computing approach using cell phones to measure individual
functional status [21].

Gait speed is a critical performance measure to assess an individual’s functional status. A
recent review of high-quality studies determined that slow gait speed is a significant risk
factor for disability, cognitive impairment, loss of independence, falls, and mortality [22].
Tools that allow non-invasive and pervasive gait speed measures offer promise to screen
large populations for early functional status loss [23]. Efficacy of interventions designed to
preserve functional status may also be determined with high face validity by measuring
improvements in gait speed [24]. The ubiquitous computing approach we describe would be
an inexpensive and appropriate manner to implement these large-scale gait-based
interventions.

While the concept of using cellular telephones to measure activity in community-dwelling
adults is new, the underlying semiconductor-based accelerometer technology is well-
established and has been validated in a number of contexts. Activity quantification from
early, unidimensional semiconductor accelerometers had good agreement with both trained
observers and earlier generation mechanical accelerometers [25]. Physical activity
measurements with accelerometers also had less bias and more validity than survey-based
instruments [26]. Further validation studies demonstrated that accelerometers could readily
differentiate activity levels across different groups of older adults, including persons
residing in a Veteran’s Administration nursing home, persons receiving in-home nonaerobic
therapy, and persons attending an aerobic exercise program at a community center [27].
Similarly, activity counts strongly correlated with pedometer counts (and weakly correlated
with the Zutphen Physical Activity Questionnaire) in older adults [28]. These and many
more studies imply that current accelerometer technologies have strong face validity for
measuring physical activity in many differently-abled groups.

We recognize that the process of validating cell phones to measure activity in independent,
community-dwelling adults is at its earliest stages. There remain limitations to our current
analysis. We suspect that walking in regions with significant built infrastructure (e.g.,
sidewalks, paved roads, shopping centers, homes, and other structures with relatively
smooth, flat walking surfaces) or extensive grading (e.g., golf courses) may yield arm, hip,
and limb acceleration profiles similar to those obtained from an exercise treadmill (since the
walking path under these conditions has been significantly smoothed and leveled). Studies
are ongoing to test this hypothesis. Our cell phone-based approach must also be validated
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against standard survey and performance battery based instruments that assess gait.
Furthermore, many outdoor activities, such as hiking and gardening, occur over rougher
terrain. Sporting activities (tennis, softball, basketball, etc.) require irregular bursts of
movement interspersed with side-to-side movements. Under these conditions, our current
cell phone derived measures of gait speed will be less accurate. Inclusion of additional
independent measures of gait speed, including those derived from high temporal resolution
GPS coordinates, hold additional promise for refining our model to provide gait speed
predictions for individuals, as well as groups. Finally, even the healthiest individuals spend a
relatively small percentage of time each day in active ambulation. Automated classification
of nonlocomotor behaviors (e.g., per [29–32]) has the potential to provide a more nuanced
representation of individual physical activity over long time periods, and may provide better
tools to evaluate features of energy balance currently difficult to measure, such as non-
exercise activity thermogenesis [33,34].

In summary, we demonstrate that cell phones provide a validated, inexpensive, accurate,
noninvasive, and highly robust way to continuously measure treadmill gait speed. This
finding justifies future efforts to validate cell phones measurements of naturalistic gait speed
in ambulatory, community dwelling, independent adults.

Highlights

Trial primary outcome was to determine if measurements from cell phone accelerometers
correlated with treadmill walking speed.

Trial secondary outcome was to determine if the location where the subject kept the cell
phone (ankle, hip, wrist, etc.) affected the results.

Enrollment: 17 young (age 19–35), 19 middle-aged (36–65), 17 aged (66+) community
dwelling, independent adults with no functional gait deficits.

Physical activity counts derived from cell phone accelerometer strongly correlated with
gait speed.

The hip was the best location to place the cell phone; however, all positions yielded
suitable models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Activity counts from cell-phone accelerometers provide an accurate measure of
treadmill gait speed regardless of where the sensor is worn
The top 4 traces depict raw data from a representative trial (43 y/o man) showing
acceleration magnitude versus time for sensors worn at the chest, right arm, right hip, and
right ankle (1st through 4th traces from top, respectively). For all traces the baseline is
centered at 64 (midscale between sensor output of 0 for −2g, and 128 for +2g), the amount
of deflection from this baseline is per the common scale provided left of these traces. The
bottom 4 traces show activity counts versus time for the sensors worn at the chest, right arm,
right hip, and right ankle, respectively. Counts were calculated over one minute
nonoverlapping bins. Treadmill speed is given at the top of each epoch bar.
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Figure 2. Relative contributions of each age cohort to the study data
At each tested speed, the average (over all tested sensors) total duration of locomotion is
shown. A. Contributions to all treadmill speeds (leftmost bar) and to walking versus jogging/
running speeds (right most pair). B. Contributions to treadmill speeds by 0.5 mph increment.
The 0.5–1.0 bin, for example, covers all speeds above 0.5 and up to 1.0 mph. Green shading
indicates young (19–35 y/o) cohort, blue shading indicates middle-aged (36–65 y/o) cohort,
and red shading indicates aged (65+ y/o) cohort. Error bars are ± 1 standard error of the
mean for the given treadmill speed range and given cohort.
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Figure 3. Activity count versus treadmill speed relationships for all sensor locations
For all figures, the solid red line shows the linear regression between treadmill speed and
activity counts (fit for all data between 0.0 and 6.4 km/hr (0–4 mph) gait speeds); the thin
surrounding black lines are 95% confidence boundaries on this regression. The thick black
line connects mean activity count values for each of the evaluated treadmill speeds; bars
surrounding this point are ± 1 standard error of the mean. Individual observations of activity
counts are shown as open colored circles. Subject age is color coded as circle color; refer to
colorbar at right side for key. The dashed lines at gait speeds of 2.35 km/hr (1.46 mph) and 4
km/hr (2.5 mph) highlight system performance at two critical functional thresholds. These
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relationships come from cell phones placed at the right wrist (A), left wrist (B), right hip
(C), left hip (D), right ankle (E), left ankle (F), and neck (G).

Carlson et al. Page 13

Gait Posture. Author manuscript; available in PMC 2013 June 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Carlson et al. Page 14

TABLE 1

Study demographic characteristics

Cohort

Characteristic Measurement Type Young Middle-aged Aged

Sample size n 17 19 18

Age (yrs) mean ± SEM
median, IRQ [1st qrt, 3rd qrt]

27 ± 1.0
27, [25, 30]

48.9 ± 1.9
49, [41, 55]

74.9 ± 1.5
75, [70, 80]

Female Gender n (%) 9 (53) 11 (58) 14 (70)♦

Weight (kg) mean ± SEM
median, IRQ [1st qrt, 3rd qrt]

73.9 ± 3.1
72.6, [65.8, 79.4]

80.7 ± 4.3
77.6, [63.5, 90.7]

68.3 ± 3.8
67.6, [57.1, 72.1]

Tested at HICSA n (%) 5 (30)♦ 11 (58) 17 (95)♦

SEM = standard error of the mean.

IRQ = Inter-Quartile Range, i.e. the middle 50% of the data, b/n the 1st and 3rd quartiles
HICSA = UNMC Home Instead Center for Successful Aging.

♦
= null hypothesis that samples came from population with 50% male, 50% female gender (row 3), or 50% UNMC Center for Cardiac

Rehabilitation, 50% Home Instead Center for Successful Aging (row 5) rejected (p<0.05) by binomial distribution.
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