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Abstract
Random forests (RF) is a popular tree-based ensemble machine learning tool that is highly data
adaptive, applies to “large p, small n” problems, and is able to account for correlation as well as
interactions among features. This makes RF particularly appealing for high-dimensional genomic
data analysis. In this article, we systematically review the applications and recent progresses of RF
for genomic data, including prediction and classification, variable selection, pathway analysis,
genetic association and epistasis detection, and unsupervised learning.
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1. Introduction
High-throughput genomic technologies, including gene expression microarray, single
nucleotide polymorphism (SNP) array, microRNA array, RNA-seq, ChIP-seq, and whole
genome sequencing, are powerful tools that have dramatically changed the landscape of
biological research. At the same time, large-scale genomic data presents significant
challenges for statistical and bioinformatic data analysis as the high dimensionality of
genomic features makes the classical regression framework no longer feasible. As well, the
highly correlated structure of genomic data violates the independent assumption required by
standard statistical models. Many biological mechanisms involve gene-gene interactions or
gene networks, but it is not realistic to pre-specify the interaction effects, especially high-
order interactions, in statistical models for high-dimensional data. Generally, a small portion
of genomic markers are associated with phenotypes, and performing variable selection for
high-dimensional, correlated, and interactive genomic data is complex and requires
sophisticated methodology.

Regularized statistical learning methods such as penalized regression, tree-based
approaches, and boosting have recently been developed to handle high-dimensional
problems. Random forests (RF) [1] is one of the most popular ensemble learning methods
and has very broad applications in data mining and machine learning. Random forests is a
nonparametric tree-based ensemble approach that merges the ideas of adaptive nearest
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neighbors with bagging [2] for effective data adaptive inference. The greedy nature of one-
step-at-a-time node splitting enables trees (and hence forests) to impose regularization for
effective analysis in “large p, small n” problems and the “grouping property” of trees [3]
enables RF to adeptly deal with correlation and interaction among variables. RF can also be
used to select and rank variables by taking advantage of variable importance measures.
Thus, these properties of RF make it an appropriate tool for genomic data analysis and
bioinformatics research. In this article, we review applications of RF to genomic data,
including prediction, variable selection, pathway analysis, genetic association, and epistasis
detection.

2. Results
2.1. RANDOM FORESTS

The basic unit of RF (the so-called base learner) is a binary tree constructed using recursive
partitioning (RPART). The RF tree base learner is typically grown using the methodology of
CART (Classification and Regression Tree) [4], a method in which binary splits recursively
partition the tree into homogeneous or near-homogeneous terminal nodes (the ends of the
tree). A good binary split pushes data from a parent tree-node to its two daughter nodes so
that the ensuing homogeneity in the daughter nodes is improved from the parent node. RF
are often a collection of hundreds to thousands of trees, where each tree is grown using a
bootstrap sample of the original data. RF trees differ from CART as they are grown
nondeterministically using a two-stage randomization procedure. In addition to the
randomization introduced by growing the tree using a bootstrap sample of the original data,
a second layer of randomization is introduced at the node level when growing the tree.
Rather than splitting a tree node using all variables, RF selects at each node of each tree, a
random subset of variables, and only those variables are used as candidates to find the best
split for the node. The purpose of this two-step randomization is to decorrelate trees so that
the forest ensemble will have low variance; a bagging phenomenen. RF trees are typically
grown deeply. In fact, Breiman’s original proposal [1] called for splitting to purity.
Although it has been shown that large sample consistency requires terminal nodes with large
sample sizes [5], empirically, it has been observed that purity or near purity (small terminal
node sample sizes) is often more effective when the feature space is large or the sample size
is small [6]. This is because in such settings, deep trees grown without pruning generally
yield lower bias. Thus, Breiman’s approach is generally favored in genomic analyses. In
such cases, deep trees promote low bias, while aggregation reduces variance.

The construction of RF is described in the following steps:

1. Draw ntree bootstrap samples from the original data.

2. Grow a tree for each bootstrap data set. At each node of the tree, randomly select
mtry variables for splitting. Grow the tree so that each terminal node has no fewer
than nodesize cases.

3. Aggregate information from the ntree trees for new data prediction such as majority
voting for classification.

4. Compute an out-of-bag (OOB) error rate by using the data not in the bootstrap
sample.

2.2. RANDOM SURVIVAL FORESTS
RF has traditionally been applied to classification and regression settings. Random survival
forests (RSF) [7] is a new extension of RF to right-censored survival data. RSF is derived
using the same principles underlying RF and enjoys all its important properties. As in RF,
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tree node splits are designed to promote homogeneity. In survival settings this corresponds
to maximizing survival differences between daughter nodes. The predictor and key
deliverable of RSF is the ensemble estimate for the cumulative hazard function (CHF). The
ensemble CHF can be calculated for each sample in a data set, and summing this ensemble
over the observed survival times yields the predicted outcome referred to as ensemble
mortality, a measure of mortality for a patient that has been shown to be an effective
predictor of survival.

One of the first popular software implementations of RF was the Breiman and Cutler Fortran
code http://www.stat.berkeley.edu/~breiman/RandomForests. Later this code was ported to
the R-package randomForest [8]. RSF can be implemented using the R-package
randomSurvivalForest [9]. Both RF and RSF are open source and freely available from the
Comprehensive R Archive Network (CRAN). A new R-package randomForestSRC to be
released soon unifies RF and RSF and will enable users to analyze all three settings of
survival, regression and classification. We note that the R-package party [10] also provides a
unified forest treatment, although the approach makes use of conditional trees and is
different than Brieman’s RF.

2.3. MEASURES OF VARIABLE IMPORTANCE: RANKING
An important feature of RF is that it provides a rapidly computable internal measure of
variable importance (VIMP) that can be used to rank variables. This feature is especially
useful for high-dimensional genomic data. Two commonly evaluated importance measures
are node impurity indices (such as the Gini index) and permutation importance. In
classification, the Gini index importance is based on the node impurity measure for node
splitting. The importance of a variable is defined as the Gini index reduction for the variable
summed over all nodes for each tree in the forest, normalized by the number of trees.

Permutation importance (“Breiman-Cutler” importance) is the most frequently applied
importance measure for RF. To calculate a variable’s permutation importance, the given
variable is randomly permuted in the out-of-bag (OOB) data for the tree (the original data
left out from the bootstrap sample used to grow the tree; approximately 1−.632 = .368 of the
original sample), and the permuted OOB data is dropped down the tree. The OOB estimate
of prediction error is then calculated. The difference between this estimate and the OOB
error without permutation, averaged over all trees, is the VIMP of the variable. The larger
the permutation importance of a variable, the more predictive the variable [1].

Modified VIMP measures have been proposed for genomic data. For example, the use of
subsampling without replacement in place of bootstrapping has been proposed for settings
where variables vary in their scale of measurement or their number of categories [11]. A
conditional permutation VIMP was proposed to correct bias for correlated variables [12]. A
maximal conditional chi-square importance measure was developed to improve power to
detect SNPs with interaction effects [13].

Although there are many successful applications using permutation importance, a criticism
is that it is a ranked based approach. Ranking is far more difficult than the variable selection
problem, which simply seeks to select a group of variables that when combined are
predictive, without imposing a ranking structure. Nevertheless, because of the complexity in
biological systems, ranked gene lists based on RF or RSF which consider correlation and
interaction effects are still a vast improvement from univariate ranked gene lists based on t-
test’s or Cox proportional hazard modeling using one variable at a time. However, caution is
needed when interpreting any linear ranking because it is in general likely that multiple sets
of weakly predictive features are jointly predictive. This appears to be an unresolved
problem of ranking and further studies are needed.
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2.4. STEPWISE PROCEDURES FOR VARIABLE SELECTION
Although RF and RSF are capable of modeling a large number of predictors and achieving
good prediction performance, finding a small number of variables with equivalent or better
prediction ability is highly desired because it is not only helpful for interpretation but also
easy for practical usage. Diaz-Uriarte and Alvares [14] described a backward elimination
procedure using RF for selecting genes from microarray data. This method consists the
following steps: (1) fit data by RF and rank all available genes according to permutation
VIMP; (2) iteratively fit RF, and at each iteration remove a proportion of genes from the
bottom of the gene importance ranking list (default 20%); (3) select a group of genes when
RF reaches the smallest OOB error rate; (4) estimate the prediction error rate using the .
632+ bootstrap method [15] to mitigate selection bias. The authors applied their method to
ten microarray data sets and in each instance were able to find a small set of genes yielding
an accurate predictor. The web-based tool GeneSrF and the R-package varSelRF are two
software procedures that can be used to implement the method.

A similar variable elimination procedure based on random forests, named the gene shaving
method (GSRF) [16], was proposed earlier than varSelRF. There are two major differences
between GSRF and varSelRF. First, GSRF re-computes the VIMP after each backward gene
elimination. Second, the best subset of genes is determined by both OOB error rate and the
prediction error rate from an independent test data set. Thus, GSRF needs at least two data
sets for implementation, which may limit its applications for real data.

It was shown that the classification error in varSelRF is not an optimal choice for dealing
with unbalanced samples for SNP data from genome-wide association studies (GWAS).
Calle et al. [17] suggested an improvement for varSelRF by replacing misclassification error
(the default value used in RF classification) with AUC as the measure of predictive
accuracy.

Genuer et al. [18] developed another heuristic strategy of variable selection using RF. It
follows the basic workflow of varSelRF. It first ranks all features by VIMP. However,
instead of eliminating 20% of the genes each time, it directly removes unimportant variables
by setting a threshold for the minimum prediction value from CART fitting. The procedure
keeps m important variables. Then nested RF are implemented, starting from the most
important variable and increasing the number of variables in a stepwise fashion until all m
variables are entered. The final model is selected on the basis of OOB error.

All the variable selection methods described above have good empirical performance, but
one concern is that all implicity adopt a ranking approach, and as mentioned, ranking is a far
more challenging issue than variable selection. Another concern is that each of these
methods rely on VIMP measures, which have two major drawbacks: (1) VIMP is tied to the
type of prediction error used; and (2) developing formal regularization methods based on
VIMP is challenging as it has remained impenetrable to detailed theoretical study due to its
complex randomization.

2.5. MINIMAL DEPTH FOR VARIABLE SELECTION
Recently Ishwaran et al. [3] described a new paradigm for forest variable selection based on
a tree-based concept termed minimal depth. This novel method was designed to capture the
essence of VIMP but without its problems such as the need to rank variables. With forests,
one finds that variables that split close to the root node have a strong effect on prediction
accuracy, and thus a strong effect on VIMP. Noising up test data (as done to calculate
VIMP) leads to poor prediction and large VIMP in such cases because terminal node
assignments will be distant from their original values. In contrast, variables that split higher
in the tree have much less impact because terminal node assignments are not as perturbed.
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This observation motivated the concept of minimal depth, a measure of the distance of a
variable relative to the root of the tree for directly assessing the predictiveness of a variable.

This idea can be formulated precisely in terms of a maximal subtree. The maximal subtree
for a variable v is the largest subtree whose root node is split using v (i.e., no parent node of
the subtree is split using v). The shortest distance from the root of the tree to the root of the
closest maximal subtree of v is the minimal depth of v. A smaller value identifies a more
predictive variable. Figure 1 illustrates this concept. Shown is a single tree highlighting three
variables found to be predictive from an analysis involving cardiovascular disease (the tree
has been inverted with the root node displayed at the bottom). The three key variables are:
peak VO2 (red), BUN (green), and exercise time (orange). Maximal subtrees are indicated
by color; node depth is indicated by an integer located in the center of a tree node. For
example, the root node is split using exercise time; thus its maximal subtree is the entire tree
and its minimal depth is 0. For BUN and peak VO2, there are two maximal subtrees on each
side of the tree. The closest to the root node is on the left side for peak VO2 with minimal
depth, 1. For BUN, both subtrees have depth 2; its minimal depth is 2.

Due to randomization, it is not hard to construct examples where minimal depth could be
misleading in a single tree. For example, if by chance the mtry variables selected for the root
node are all noisy (unrelated to the outcome), then we would end up with a noisy variable
having a minimal depth 0. However, such pathologic scenarios occur infrequently over a
forest of trees and their effects washed out when we aggregate. Hence, when applying
applying minimal depth, the forest averaged depth for a variable is used.

There are several advantages to working with minimal depth. First, it is independent of the
way prediction error is measured. Thus, minimal depth side steps the controversial issue of
selecting the measure used to assess performance. In survival settings, there is controversy
whether the C-index, a ranked based method, is preferable to measures based on the Brier
score [19, 20]. In classification, it is now recognized that misclassification error may be sub-
optimal in RF analyses involving unbalanced samples [17]; a common occurence seen in
many genomic data settings. See [21] for a comprehensive review of methods for comparing
model performance. A second advantage is that unlike VIMP, the minimal depth distribution
can be worked out in closed form and from this a rigorous threshold value for selecting
variables can be computed efficiently in high-dimensional settings. Specifically, one can
rapidly calculate the mean minimal depth under the null of no association with the outcome.
Those variables with forest averaged minimal depth exceeding the mean minimal depth
threshold are treated as noisy and are removed from the final model. In this manner, mean
minimal depth thresholding bypasses the need to rank variables. Finally, because minimal
depth is based on generic tree concepts, it is a general approach that applies to all forests and
not just survival forests. The systematic evaluation of minimal depth using simulation and
real data has been done as well as the comparison with permutation importance [22].

In ultra-high dimensional settings, mean minimal depth thresholding becomes ineffective.
One promising extension is called variable hunting. In this approach, forward stepwise
regularization is combined with minimal depth thresholding. Briefly, the procedure works as
follows. First, the data are randomly subsetted, and a number of variables are randomly
selected. A forest is fit to these data, and variables are selected using minimal depth
thresholding. These selected variables are used as an initial model. Variables are then added
to the initial model in order of minimal depth until the joint VIMP for the nested models
stabilizes. This defines the final model. This whole process is then repeated several times.
Those variables appearing the most frequently up to the average estimated model size from
the repetitions are selected for the final model [3, 22].
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2.6. RF PREDICTION
Prediction is often a primary goal of genomic data analyses. For example, one often needs to
predict disease status such as tumor subtype using genomic markers. RF is a particularly
appropriate tool and has been broadly used to predict clinical outcomes under various high-
throughput genomic platforms.

Wu et al. [23] compared RF with linear discriminant analysis (LDA), quadratic discriminant
analysis (QDA), k-nearest neighbor (KNN) classifier, bagging and boosting classification
trees, and support vector machine (SVM) for separating early stage ovarian cancer samples
from normal tissue samples based on mass spectrometry data. RF outperformed the other
methods in terms of prediction error rate. Lee et al. [24] presented a comprehensive
comparison of RF to LDA, QDA, logistic regression, partial least square (PLS), KNN,
neural network, SVM, and other classification methods using seven microarray gene
expression data sets. RF was shown to have the best performance among all tree-based
methods. RSF displayed favorable results compared with supervised principal components
analysis, nearest shrunken centroids, and boosting for five microarray gene expression data
sets with survival outcomes [3].

These empirical results suggest that RF (and RSF) are capable of accurate prediction; on par
with state-of-the art methods. However, while these results are certainly encouraging, we
believe that the next wave of comparative analyses involving RF should be of a theoretical
nature focusing on rates of convergence. Such studies should look at both traditional large
sample settings, n → ∞, as well as settings in which the feature space is allowed to
increase, p → ∞. The latter setting is especially important as it represents the high-
dimensional scenario of high-throughput genomic data. It is in large p problems that RF is
especially known to excel (in lower dimensional problems, the differences between RF and
conventional methods are less dramatic) and studying the theoretical properties in such cases
could lead to a much deeper understanding of RF, and ways of improving it in genomic
applications.

We note that different modified versions of RF have been proposed to improve prediction
performance, especially for high-dimensional data. “Enriched random forest” assigns
weights to the predictors based on adjusted p-values from t-tests. It has achieved competitive
prediction results on a benchmark experiment involving ten microarray datasets [25]. Chen
et al. [26] proposed pathway-based predictors instead of individual genes for cancer survival
prediction using RSF, and this method had advantages in both prediction accuracy and
interpretations. However, these results are empirical based. Again, we believe that analyses
focusing on theoretical properties such as rates of convergence should lend deeper insight
into ways for improving RF.

RF has broad applications for biological questions from a prediction perspective. Protein-
protein interactions (PPIs) play an essential role for pathway signaling and cell functions.
PPI prediction is an important field in bioinformatics and structure biology. A recent study
demonstrated that RF is more effective at predicting PPIs compared with other methods by
integrating available biological knowledge [27].

Binding sites prediction from sequence annotation is another important area for structural
bioinformatics. RF has been successfully applied to predict protein-DNA binding sites [28],
protein-RNA binding sites [29], protein-protein interaction sites [30], and protein-ligand
binding affinity [31]. Based on sequence information, RF was shown as a promising tool for
predicting protein functions [32].
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MicroRNAs (miRNAs) are post-transcriptional regulators that target mRNAs for
translational repression or target degradation. RF was implemented to classify real or pseudo
miRNA precursors using pre-miRNAs like hairpins, and it achieved high specificity and
sensitivity [33]. Glycosylation is one of the post-translational modifications (PTMs) for
protein folding, transport, and function. Hamby and Hirst [34] utilized RF to predict
glycosylation sites based on pairwise sequence patterns and observed improved accuracy.

Amino acid sequence information can be linked to phenotypes. Segal et al. [35] applied RF
to predict HIV-1 replication capacity based on the amino acid sequence from reverse
transcriptase and protease. One of the two co-receptors CCR5 and CXCR4 is crucial for
HIV-1 to enter the host cells. Prediction of the co-receptor usage by HIV-1 is important in
deciding personalized treatment for patients.

Building computational models for predicting drug responses for cancer cell lines is another
RF application [36]. These procedures include feature selection using RF variable
importance for proteomic or gene expression profiling and the construction of RF regression
for continuous chemosensitivity measurement.

2.7. PATHWAY ANALYSIS
Instead of conducting statistical tests on each individual gene, pathway analysis takes
advantage of prior biological knowledge and examines the gene expression patterns of a
group of genes; for example, genes grouped by metabolic pathways or biological functions.
Gene Set Enrichment Analysis (GSEA) is one of the earliest approaches that tackles this
problem, and it has been widely used by the research community. Although many analytical
strategies have been proposed for pathway analysis and have achieved good power for
detecting association signals, the question of how to properly model both the data
correlation structure and gene interactions within a pathway remains challenging. Because
of its properties, RF is an appropriate tool to capture complex data patterns and biological
activities in pathways.

Pang et al. [37, 38] first applied RF on pathway level gene expression data for categorical
and continuous phenotypes. RF classification and regression was performed for each
pathway using all available samples. The OOB error rate and percent variance explained
were used as metrics to rank pathways for classification and regression respectively. The
pathway ranking list provided based on predictability is informative, but it is difficult to
determine statistical significance for each tested pathway. In another approach, the learner of
functional enrichment (LeFE) algorithm utilizes gene importance scores and a permutation
framework to test pathways [39]. Specifically, LeFE combines each candidate pathway gene
expression matrix with a negative control gene set, in which genes are randomly selected
from outside of the pathway, into a composite gene matrix. A random forest is constructed
from the composite matrix, and gene importance scores are then collected. LeFE runs t-tests
to compare importance scores from candidate pathways and the control gene set. A
permutation-based p-value is given to the pathway by repeating the steps from random
selection of the control set. The authors of LeFE noted that pathway ranking by predictive
power of RF could be biased due to the sample size difference between pathways since
prediction favors large gene sets. LeFE is able to correct size bias through permutation
procedure, but the trade-off is that the method is computationally intensive.

Pathway testing by RF was extended to censored survival outcomes using random survival
forests for both gene expression data and SNP data [40, 38]. An interesting two-stage
application of RF pathway analysis was described in Chang et al. [41]. The first stage is to
apply RF to identify SNP pathways related to glioblastoma multiforme by OOB error rate
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smaller than 50%, and then varSelRF package is used to select a SNP subset within each
pathway that passed the threshold for further validation.

2.8. GENETICS ASSOCIATION AND EPISTASIS DETECTION
Modern genome-wide association (GWA) studies can now test disease association with
common genetic variations using millions of SNPs across the human genome. Employing
large sample sizes, sometimes involving hundreds to thousands of study subjects, GWA
studies have successfully identified new disease loci for complex diseases. However, the
genetic variants identified by single marker association tests account for only a small
proportion of the overall heritability. The rationale and design of GWA studies for common
variants is an explanation for missing heritability of complex diseases, but understanding
genetic architecture of complex diseases needs more efficient statistical modeling techniques
to test joint effects of multiple genetic variants and gene-gene and gene-environment
interactions, which are difficult to study due to the ultra-high dimensionality of genetic
markers, linkage disequilibrium (LD) between SNPs, and small interaction effects. The
capability of RF to prioritize SNPs, considering both marginal and interaction effects, is
especially appealing for GWA data.

The major application of RF for GWA data is to rank SNPs according to VIMP. Permutation
VIMP measures can show a bias when strong linkage disequilibrium exists between SNPs.
For example, when two risk SNPs in LD, including one causal SNP and one surrogate SNP,
are assigned to the same tree, the prediction accuracy of the tree can remain relatively
unchanged when the causal SNP is randomly permuted if the surrogate SNP is higher up
along the branch. The consequence is that the VIMPs of both SNPs will be diminished. One
solution for correcting this bias is permuting a variable conditional on another correlated
variable [12]. Another proposed strategy is revising RF to only include SNPs with LD lower
than the pre-defined threshold in a same tree [42]. Nicodemus et al. [43] performed
simulation studies to compare conditional permutation VIMP with standard permutation
VIMP. The authors suggested that conditional VIMP is more appropriate to identify the
causal SNPs from a group of correlated ones in small-scale studies, while standard
permutation VIMP may be a better choice for large-scale screening studies. Gini VIMP is
more biased on correlation compared with permutation VIMP, and it favors SNPs with large
minor allele frequencies [43, 44]. Thus, Gini VIMP is not recommended for ranking SNPs in
GWA studies.

Epistasis or gene-gene interaction is one of the essential elements in understanding the
genetic architecture of common diseases. The term epistasis can have several different
meanings in genetic studies such as functional epistasis, compositional epistasis, and
statistical epistasis. Wang et al. [45] recently pointed out that interaction parameters in
statistical modeling should be jointly interpreted with main effects for discovering biological
interactions. RF and other tree-based methods have an advantage over traditional parametric
modeling of interactions, which are generally taken to mean the product of two variables in
a model, whereas in trees the notion of an interaction is more broad, meaning the ability to
model the outcome differently over subgroups defined by the partition of the data space
induced by the tree. This more general notion is better suited to handle biological
interactions from pathways and gene networks which are unlikely to be represented in terms
of simple cross product terms of variables. For a more comprehensive review of methods to
detect gene-gene interactions, we refer to the papers of Cordell [46].

Lunetta et al. [47] conducted one of the earliest simulation experiments to evaluate the
power of RF to screen SNPs with interaction effects in genetic association studies. The
simulation results proved that RF VIMP outperformed Fisher’s exact test when risk SNPs
were allowed to interact. When risk SNPs did not interact, the performance of RF and the
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Fisher exact test were comparable. Motivated by GWAS data, a freely available software
package named Random Jungle (RJ) was specifically designed and optimized for large-scale
SNP data [48]. Cordell and Schwarz et al. performed a real data illustration using 89,294
and 275,153 SNPs respectively for Crohn’s disease association studies [46, 48]. Although it
may be computationally feasible to run RJ with whole genome level SNPs, filtering,
dimension reduction, and other regularized methods are still necessary for RF and other
related tree approaches to capture moderately associated SNPs and interactions. Jiang et al.
[49] proposed a two-stage analysis method to identify interactions. A sliding window
sequential forward feature selection algorithm using RF classification error was applied in
the first stage to select a small number of SNPs. Then p-values were generated by a chi-
square distribution test for three-way interactions of the candidate SNPs. De Lobel et al. [50]
also performed RF screening at the first stage. The popular gene-gene interaction detection
method, Multifactor Dimensionality Reduction (MDR), was then applied for an exhaustive
search among the filtered SNPs for two-way interactions.

For interaction detection, RF has been compared with other available algorithms using
simulated and real data. Carcia-Magarinos et al. [51] evaluated RF, CART, and logistic
regression (LR) in 99 simulated scenarios involving different sample size, missing data,
minor allele frequencies, and other factors. RF was more powerful in detecting true
association, especially in pure interaction models. Molinaro et al. [52] compared RF with
Monte Carlo logic regression (MCLR) and MDR. For RF modeling, VIMPs were used as
statistics, with p-values obtained from permutation tests. RF also achieved the best power in
simulation studies.

Although the main purpose of genetic association studies is to discover the functional role of
genetic variants in the etiology of diseases, genetic profile-based disease risk prediction has
become more and more important for personalized medicine. Most SNPs found by GWA
studies are associated with only a small increased risk of disease indicating that each SNP
has only a small predictive value. Integrating the joint and interaction effects of genetic
variants and environmental factors is necessary for assessment of the risk of disease. Bureau
et al. [53] applied RF on 42 SNPs from the asthma susceptibility gene ADAM33 to achieve
44% misclassification rate. Sun et al. [54] used 287 tagged SNPs and 17 risk factors as
predictors and utilized RF to attain a successful prediction for coronary artery calcification.
Xu et al. [55] showed that the prediction performance for severe asthma exacerbations in
children using 160–320 SNPs by RF is better than using top 10 SNPs alone.

2.9. PROXIMITY AND UNSUPERVISED LEARNING BY RANDOM FORESTS
RF proximity is determined by examining the terminal node membership of the data. If
sample i and sample j both fall within the same terminal node of a given tree, the proximity
between i and j is increased by one. Summing over all terminal nodes in a forest produces
the proximity matrix, which represents the degree of similarity between sample points.
Unsupervised learning by RF cannot be implemented without modification, as RF requires
an outcome for tree growing. A proximity solution proposed by Breiman is to artificially
create a two-class problem and then apply two-class RF to the artificial problem. One treats
the original data as class “1” and then a synthetic data set all having class labels of “2” is
created. The synthetic data is created by randomly sampling from the product of the
marginal distributions of the original variables or by uniformly sampling from the hyper-
rectangle containing the observed data. Unsupervised RF learning can be implemented using
the R-package randomForest. After transforming the RF proximity matrix to a dissimilarity
matrix, it opens the door to many clustering and visualization approaches for detecting data
structures.
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Shi et al. [56] successfully used RF unsupervised learning for tumor class discovery based
on immunohistochemical tumor maker expression. A RF dissimilarity matrix obtained from
307 clear renal cell carcinoma patients and eight protein markers was used as input for
partitioning around medoid (PAM) clustering to separate patients into two groups. In terms
of tumor recurrence between the two groups, the RF method was better than Euclidean
distance based PAM clustering. Similar analyses were performed on histone markers of
prostate cancer [57]. Shi and Horvath [58] further investigated the properties of RF
dissimilarity using simulations and recommended that randomly sampling from the product
of the marginal distributions of the variables to generate synthetic data is suitable for general
settings.

Another use of the proximity matrix is for missing data imputation. Data imputation by
weighting the frequency of the non-missing values with proximity values was illustrated in
Breiman and Cutler’s RF manual. Schwarz et al. [59] modified supervised imputation to
unsupervised imputation for SNP data by creating synthetic data for class 2, but the
proposed method is difficult to implement due to the difficulty in accessing phased
haplotype information from public domains such as HapMap. Recently Stekhoven and
Buhlmann introduced another method of imputation by predicting missing values using RF
trained on non-missing data [60]. The RSF software [9] also uses a different approach in
which missing data is sampled randomly as the tree is grown. This approach was found to be
as effective as proximity based imputation, but has the advantage that it can be applied to
test data [7], something that cannot be done with proximity imputation.

3. DISCUSSION
The complexity and high-dimensionality of genomic data requires flexible and powerful
statistical learning tools for effective statistical analysis. Random forest has proven to be an
effective tool for such settings, already having produced numerous successful applications.
However, rigorous theoretical work of RF is still needed. Its effectiveness in the non-
standard small sample size and large feature space setting is still not fully understood and
could reveal many insights into how to improve forests. We believe a theoretical analysis
should focus on asymptotic rates of convergence. The results from such work should seek to
answer practical questions, such as determining optimal tuning values for RF parameters,
such as mtry and nodesize and it should seek to provide ways to modify forests for improved
prediction performance. Furthermore, trees and forests provide a wealth of information
about the data not typically available with other methods. For example, proximity is a
unique way to quantify nearness of data points in high dimensions. Such values could be one
target for further study. Interactions between variables could be explored by studying the
splitting behavior of variables. Ishwaran et al. [3] suggested higher order maximal subtrees
as a way to explore higher order interactions between variables. Such analyses could be a
starting point for peering inside the black-box of RF and discovering ways of utilizing
forests for even more successful applications to genomic data analysis.
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Highlights

• We review the applications and recent progresses of random forests for genomic
data analysis.

• We review the methods for variable selection by random forests and random
survival forests.

• We review the classification and prediction of random forests using high-
dimensional genomic data.

• We review the genetic association and epistasis detection using random forests
on GWA data.
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Figure 1.
Illustration of minimal depth.
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