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Summary
Case–parent trio studies concerned with children affected by a disease and their parents aim to
detect single nucleotide polymorphisms (SNPs) showing a preferential transmission of alleles
from the parents to their affected offspring. A popular statistical test for detecting such SNPs
associated with disease in this study design is the genotypic transmission/disequilibrium test
(gTDT) based on a conditional logistic regression model, which usually needs to be fitted by an
iterative procedure. In this article, we derive exact closed-form solutions for the parameter
estimates of the conditional logistic regression models when testing for an additive, a dominant, or
a recessive effect of a SNP, and show that such analytic parameter estimates also exist when
considering gene–environment interactions with binary environmental variables. Because the
genetic model underlying the association between a SNP and a disease is typically unknown, it
might further be beneficial to use the maximum over the gTDT statistics for the possible effects of
a SNP as test statistic. We therefore propose a procedure enabling a fast computation of the test
statistic and the permutation-based p-value of this MAX gTDT. All these methods are applied to
whole-genome scans of the case–parent trios from the International Cleft Consortium. These
applications show our procedures dramatically reduce the required computing time compared to
the conventional iterative methods allowing, for example, the analysis of hundreds of thousands of
SNPs in a few minutes instead of several hours.
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1. Introduction
As an alternative to population-based case–control studies considering unrelated individuals,
family-based designs are frequently employed to test for association between genetic
markers such as single nucleotide polymorphisms (SNPs) and a disease. While family-based
studies might be more expensive than comparably powered population-based case–control
studies, they have a key advantage in being robust against spurious findings caused by
population stratification. In addition, they also enable the simultaneous assessment of
association and linkage (Spielman and Ewens, 1996; Gauderman, Witte, and Thomas, 1999;
Laird and Lange, 2006).

The transmission/disequilibrium test (TDT) proposed by Spielman, McGinnis, and Ewens
(1993) is one of the most popular tests for association in the analysis of case–parent trio
data, an often utilized family-based design in which children affected by a disease and their
parents are considered. This test (which is usually referred to as the allelic TDT) aims to
detect departure from Mendelian expectations, i.e., alleles of an observed marker
preferentially transmitted from the parents to the affected offspring reflecting linkage and
association between this marker and an unobserved causal gene. It is equivalent to
McNemar’s test (McNemar, 1947) applied to a 2 × 2 table summarizing the transmitted and
nontransmitted alleles from heterozygous parents.

A prominent alternative procedure to this allelic TDT is the genotypic transmission/
disequilibrium test (gTDT), in which both the genotype of the offspring and the Mendelian
genotype realizations not transmitted from the parents are considered to test for association,
assuming a specific genetic mode of inheritance (e.g., an additive, dominant, or recessive
mode). At each marker, one of four possible pairs of parental alleles is transmitted to the
affected offspring, and the other three unobserved genotype realizations are used as artificial
controls (usually referred to as pseudo-controls). The resulting matching structure can be
accounted for using a conditional likelihood (Self et al., 1991; Schaid, 1996). This gTDT
can be more powerful than the allelic TDT (Schaid, 1999b). It considers individuals instead
of chromosomes as units of the analysis, and enables the direct assessment of the relative
risks. Thus, in contrast to the allelic TDT, the gTDT yields parameter estimates, standard
errors, and confidence intervals, in addition to p-values. Further, the gTDT can also be used
to model specific risk relationships, whereas for the allelic TDT multiplicative effects have
to be assumed (Fallin et al., 2002). Another advantage of the gTDT over the allelic TDT is
that it allows testing for gene–environment interactions, which makes this test particularly
attractive for case–parent trio studies, in which the detection of interaction effects of SNPs
with any of several environmental factors may also be of great interest.

The allelic TDT can be applied to hundreds of thousands of SNPs in several minutes, as its
test statistic is based on the off-diagonal elements of the 2 × 2 table summarizing the
transmitted and nontransmitted alleles from heterozygous parents. By contrast, genome-wide
computations of test statistics such as the gTDT statistic based on the parameters in
(conditional) logistic regression models are much more time-consuming, as these parameters
usually need to be estimated numerically using an iterative procedure, because in general no
closed-form solutions for the parameter estimates exist. One exception to this occurs in an
ordinary logistic regression setting with a single binary predictor (e.g., when testing for a
recessive or a dominant effect in a population-based case–control study). In this situation,
the slope parameter estimate is simply the log-odds ratio, and the conventionally used
iteratively reweighted least squares procedure can thus be avoided.

Such an analytic solution does not exist for a conditional logistic regression with a 1:3
matching, i.e., a matching of one case with three (pseudo-)controls, when arbitrary
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predictors are considered. However, we show in Section 2 how Mendel’s laws impose a
structure on the possible genotypes in the child, which allows derivation of closed-form
solutions for the parameter estimates when testing for dominant or recessive effects, as well
as additive effects.

Such analytic estimates also exist for parameters in conditional logistic regression models
when analyzing interactions between SNPs and binary environmental factors, which are the
by far most common type of nongenetic variables additionally considered in genetic
association studies (see Section 3).

Since the underlying genetic mode of inheritance is usually unknown, it might be beneficial
to not just consider one of the three genetic effects of a SNP, as an incorrectly chosen model
can lead to a substantial reduction in statistical power (Freidlin et al., 2002). This issue can
be addressed by employing the maximum over the test statistics for an additive, a dominant,
and a recessive effect of a SNP as test statistic. Thus, for example, Zheng, Freidlin, and
Gastwirth (2002) propose such a MAX test based on a TDT-type approach suggested by
Schaid and Sommer (1993), while Yan, Zheng, and Li (2008) consider a group sequential
MAX test based on the score test statistics of Li, Gastwirth, and Gail (2005) for nuclear
families with both affected and unaffected offsprings.

In Section 4, we describe how the MAX test can be adapted for the gTDT. Because the null
distribution of the MAX gTDT statistic is unknown and neither the iterative procedure
conventionally used for a gTDT nor the closed-form solutions derived in Section 2 would
allow in genome-wide association studies a recomputation of the parameter estimates for a
sufficiently large number of permutations in any reasonable amount of time, we also
propose a procedure to enable a genome-wide determination of permutation-based p-values
for this MAX gTDT. This approach essentially builds upon the ideas behind the analytic
parameter estimates and the specific permutation scheme used for case–parent trio data.

Afterward, we briefly discuss in Section 5 that—with one exception—no closed-form
solutions for the gTDT exist when testing gene–gene interactions. A more comprehensive
discussion of gTDTs for testing two-way interactions is presented in Web Appendix C.

All these procedures are applied in Section 6 to the whole-genome SNP data from the case–
parent trio study conducted by the International Cleft Consortium (Beaty et al., 2010) to
compare the proposed procedures with both the conventional approach to test SNPs with a
gTDT and related score tests.

2. Closed-Form Estimates for the Genotypic TDT
In a gTDT for testing whether a particular SNP is associated with disease, the genotypes of
the pseudo-controls are derived for each of n case–parent trios as the possible pairs of
parental alleles not transmitted to the affected child. A conditional logistic regression is then
applied to these strata, each consisting of genotypes of the affected offspring and the three
matched pseudo-controls, using the SNP as predictor and the case–pseudocontrol status as
response. Denoting genotypes at the SNP for the case (k = 0) and the matched pseudo-
controls (k = 1, 2, 3) in trio i = 1, …, n, by xi k, the genotype is either given by the number
mi k ∈ {0, 1, 2} of minor alleles present in the respective case or pseudocontrol when testing
under an additive model, by xi k = I (mi k > 0) when testing a dominant effect, or by xi k = I
(mi k = 2) when testing a recessive effect. The parameter β of this conditional logistic
regression model can be estimated by maximizing the likelihood
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(1)

(see Breslow et al., 1978). To test for association, β̂ is squared and divided by its estimated
variance to give the gTDT statistic, which under the null hypothesis is asymptotically χ2-
distributed with one degree of freedom.

Typically, the likelihood (1) needs to be maximized numerically in an iterative procedure.
However, the complexity of this maximization problem can be substantially reduced in
case–parent trio studies by noticing only 10 possible genotype combinations exist in the 1:3
matching of cases and pseudo-controls (see Table 1) and all case–parent trios with the same
combination contribute equally to the maximization of the likelihood (1).

If we test for an additive effect, the corresponding log-likelihood can thus be written as

(2)

where the numbers aj, j = 1, …, 10, of trios with the same combination of genotypes for the
case and the three matched pseudo-controls, and the corresponding weights wj (βadd) are
summarized in Table 1. Setting the first derivative

of the log-likelihood (2) to zero and solving it for βadd yields a closed-form solution for the
maximum-likelihood estimate, namely,

(3)

This estimate is thus given by the logit of the ratio of the weighted number cmax of children
showing at least as many minor alleles as their parents to the total number phet of
heterozygous parents. Hence, the analytic parameter estimate (3) can be computed without
specifying pseudo-controls. Using these notations, the variance of (3) can be estimated by
plugging β̂add = logit(cmax/phet) into the negative inverse of the second derivative

leading to the variance estimate
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Thus, the gTDT statistic for testing an additive effect of a SNP is given by

In a similar way, closed-form solutions for parameter estimates in the conditional logistic
regression models testing for either a dominant or a recessive effect can be derived. In both
models, six case–pseudocontrol combinations exist in case–parent trios, of which only four
influence the maximization of the likelihood (see Tables 2 and 3).

With the numbers of trios and weights for the dominant model presented in Table 2, the first
derivative of the log-likelihood of this model is given by

leading to the maximum-likelihood estimate

where

(see Web Appendix A). Analogously, the parameter estimate in a recessive model can be
derived as

with

3. Testing Gene–Environment Interactions
Besides testing individual effects of SNPs, it is often of great interest to also test for gene–
environment interactions. For this purpose, a conditional logistic regression model

Schwender et al. Page 5

Biometrics. Author manuscript; available in PMC 2012 September 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(4)

can be fitted, where X codes for the considered effect of a SNP (as defined in Section 2),
and E is an environmental variable. Because conditioning is based on the family status, the
value of the environmental variable is identical for the affected offspring and the three
matched pseudo-controls (cf. Maestri et al., 1997; Schaid, 1999a). Thus, the main effect of
the environmental variable is not identifiable from the conditional likelihood, and hence, not
included in model (4). However, in genetic association studies the effect of an
environmental variable is typically only of interest in conjunction with the genotypes, i.e., as
gene–environment interaction.

Many of the usually examined environmental variables, for example, gender or maternal
smoking, are binary, and can thus be coded with values zero and one. In this situation, it is
possible to derive estimates for the parameters βG and βGE in model (4) based on the
parameter estimate from the main effect model discussed in Section 2 that considers the
same genetic effect of the SNP. Denoting the estimate of this main effect model by β̂(0),
when this conditional logistic regression model is fitted only using the case–parent trios with
children not exposed to the environmental variable (e = 0), and by β̂(1), when only the trios
with exposed offsprings (e = 1) are analyzed, then the maximum-likelihood estimate of βG
and βGE can be determined by

For a derivation of these estimates, see Web Appendix B. Consequently, the gTDT statistic
for testing a gene–environment interaction is given by

(5)

Besides this traditional case–parent trio design, there also exist other family-based study
designs in which a conditional logistic regression can be used to test gene–environment
interactions. Chatterjee et al. (2005), for example, propose a conditional logistic regression
model βGX + βEE + βGE(X × E) for a discordant sib-design in which a case is matched with
a sibling (or a cousin) not affected by the disease and two pseudo-controls, where they
assume genetic susceptibility and environmental exposure are independently distributed
within each family. Since this model also employs a 1:3 matching and in particular because
Chatterjee et al. (2005) show that this design can lead to an increased power compared to the
traditional case–parent trio design, we have investigated whether also closed-form solutions
for the estimates of the parameters βG, βE, and in particular, βGE exist. As we discuss in
detail in Web Appendix D, such analytic solutions cannot be derived, even for a binary
environmental variable E, mainly because of the weights in the corresponding log-likelihood
that are much more complex than the ones for the case–parent trio design.

4. Permutation-Based p-Values and the MAX gTDT
Instead of considering an additive, a dominant, and a recessive model separately, the
maximum gmax over the three gTDT statistics gadd, gdom, and grec for these models can be
used as test statistic when the underlying genetic model is unknown. The p-value of this
MAX gTDT can be computed by a procedure in which the case–pseudocontrol status is
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permuted B times. Because this requires accounting for the 1:3 matching, all trios need to be
considered separately, and in each permutation the case-status in each trio is randomly
assigned to one of the four Mendelian realizations possible given the parents’ genotypes.

However, the structure of possible case–pseudocontrol combinations allows us to avoid
separate permutations for each trio, and the repeated recomputation of the numbers of trios
showing different combinations. If, for example, we consider the a1 + a2 trios in which one
of the parents has no variant allele and the other parent is heterozygous (see Table 1), then
under the null hypothesis of no association, the probability that the offspring inherited one
variant allele is 0.5. Thus, instead of permuting the case–pseudocontrol status within each of
these a1 + a2 trios separately, we can simply obtain the numbers a1b and a2b of trios showing
the corresponding case–pseudocontrol combination in permutation b = 1, …, B by drawing
B values a2b from a binomial distribution with a1 + a2 observations and success probability p
= 0.5, and by setting a1b = a1 + a2 − a2b. The same approach applies to the a3 + a4 trios in
which one parent carries one variant allele, and the other parent is homozygous for the
variant allele, yielding a3b and a4b. For the a5 + a6 + a7 trios in which both parents are
heterozygous, permuted numbers can be determined by B random draws from a multinomial
distribution with probabilities p(a5) = p(a7) = 0.25 and p(a6) = 0.5.

Using these numbers, the B permuted values of the parameter estimate (3) and the

corresponding gTDT statistic  for testing an additive effect can be determined, and only
the numerator in the logit term of the estimate (3) needs to be computed in each permutation,
as the denominator phet is constant throughout all permutations. The numbers aj b can then

also be employed to calculate B values of both the gTDT statistic  and  for testing a
dominant and a recessive effect of a SNP, respectively (see Tables 2 and 3, respectively) so
that the empirical p-value of the MAX gTDT for this SNP can be determined based on the

maximum  over the values , and , b = 1, …, B.

Analogously, the MAX gTDT statistic for testing a gene–environmental interaction can be
computed as the maximum over the gTDT statistic (5) determined under each of the three
genetic modes of inheritance. Empirical p-values can then be obtained by considering the
trios with children not exposed to the binary environmental variable, and trios with exposed
children separately when randomly drawing the numbers from the corresponding binomial
and multinomial distributions. An extension to gTDTs for testing gene–gene interactions
discussed in Section 5 is also possible (see Web Appendix C.3).

5. Testing Gene–Gene Interactions
An analytic solution, which reduces the computing time substantially, would be even more
desirable when testing gene–gene interactions than for testing individual SNPs or gene–
environment interactions, as there are m(m − 1)/2 two-way interactions when analyzing m
SNPs. Such interactions might be tested either with a simple conditional logistic regression
model containing only one term representing the interaction, with a model also including
two parameters for the main effects of the two SNPs, or most sophisticatedly with a
likelihood ratio test such as the one proposed by Cordell (2002) for epistatic interactions
comparing the maximized log-likelihoods of a model composed of factors for the two main
effects and a model additionally comprising interaction terms.

As we discuss in detail in Web Appendix C, there do not exist analytic solutions for the
parameter estimates in any of these models—with one exception: When considering a
conditional logistic regression model βGG × (Xs Xt), where Xs and Xt code for recessive
effects of SNPs s and t, then the first derivative of the log-likelihood can be rewritten as a
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polynomial of fourth degree, and the roots of this polynomial can be analytically determined
by a standard procedure (see Web Appendix G). Because this approach and the closed-form
solutions are rather complex, they are not presented here, but in Web Appendix C.2.

Because all other models for testing gene–gene interactions are even (much) more complex,
there do not exist analytic solutions for the parameter estimates in these models (for details,
see Web Appendix C). However, as we will show in Section 6, rewriting the log-likelihoods
analogously to (2) and numerically maximizing these log-likelihoods can also lead to an
immense gain in computing time compared to the conventional approach of determining the
15 pseudo-controls per trio (there exist 4 × 4 pairs of genotype realizations, given the
parents’ genotypes at the two loci) and fitting a conditional logistic regression model with a
1:15 matching based on the likelihood (1).

6. Application to a Genome-Wide Association Study
To investigate the computational gains in performing a gTDT achieved by the closed-form
estimates derived in Sections 2, 3, and 5, as well as the numerical solutions based on the
reformulated log-likelihood (2) for testing gene–gene interactions (see Section 5 and Web
Appendix C) compared to the conventional approach to the gTDT (i.e., setting up the
pseudo-controls for each trio, and then fitting a standard conditional logistic regression
model), we reanalyzed the case–parent trio data provided by the International Cleft
Consortium (Beaty et al., 2010). DNA samples of children with an oral cleft (cleft lip, cleft
lip and palate, or cleft palate) and their parents were genotyped at the Center for Inherited
Disease Research using the Illumina Human610-Quadv1_B Beadchip, and processed using
the Illumina BeadStudio Genotyping Module. Extensive quality control was carried out,
excluding samples and SNPs of low quality (see Beaty et al., 2010, for details).

In our comparison, we considered 569,187 autosomal markers for 1925 case–parent trios
from this study in the applications of the gTDT to single SNPs and gene–environment
interactions, and a data set consisting of 1000 SNPs randomly drawn from the 569,187
markers when testing all 499,500 two-way interactions comprised by this data set. Both the
analytic and the conventional approach to the gTDT were implemented in R (R
Development Core Team, 2010) and are available in the R package trio at http://cran.r-
project.org. All computations were performed on 2.7 GHz machines.

Additionally, we performed score tests related to the gTDTs. Score tests are often used to
screen for interesting SNPs, gene–environment or gene–gene interactions, as they are
usually less computationally expensive than Wald tests. These score tests were implemented
using our reformulated log-likelihood (2). Implementations based on the logarithm of the
original likelihood (1) have an about seven to nine times larger computing time—mainly due
to the required generation of pseudo-controls—and are therefore not considered in our
comparison.

In our comparison, we focus our interest on the computing times summarized in Table 4.
More general results of the analysis of the data from the International Cleft Consortium can
be found in Web Appendix E and in Beaty et al. (2010).

In any of our applications of the gTDTs, the analytic estimates and the conventional iterative
procedure yielded virtually identical results. When, for example, testing SNPs under an
additive model, the maximum difference between the two estimates for βadd for any SNP
was less than 2 × 10−6, and the two values of the gTDT statistics differed at most by 8 ×
10−7.
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While the median computing time over 10 applications of the iterative fitting procedure to
all 569,187 SNPs was 12.03 CPU hours when testing for an additive effect, the gTDT
approach based on the closed-form estimates took on average a total of just 8.74 minutes,
and was thus 83 times faster than the conventional gTDT procedure. The gain in computing
time was even larger when testing dominant and recessive effects. More precisely, testing all
SNPs for a dominant or a recessive effect took on average in both cases about 11.87 hours
when using the iterative fitting procedure, and about 7.90 minutes, when employing the
analytic approach, leading to an about 90 times faster computation (see Table 4).

To further investigate which situations yielded the largest gain in computing time, we
applied both approaches to the gTDT to several randomly drawn subsets of these genome-
wide data, consisting of between 100 and 20,000 SNPs and between 500 and 1925 trios. In
these comparisons, the computing time of the gTDT based on the analytic maximum-
likelihood estimates was always 75 times, usually 90 to 100 times, and frequently more than
100 times lower than the time required by the iterative approach for an application to the
same data set, with a slight decrease in relative computational gain as the number of trios
increased. For details on this simulation study and its results, see Web Appendix F.

For the application of the gTDT to gene–environment interactions, gender—which might be
considered as a surrogate for several unmeasured exogenous and endogenous risk factors—
was employed as environmental variable. While the conventional procedure required more
than 14 hours of CPU time for genome-wide tests of each of the three genetic models,
analyzing these gene–environment interactions with the analytic gTDT took on average 9.1
minutes when considering an additive effect and 7.6 minutes under an dominant or recessive
model, resulting in a 95 (additive), 114 (dominant), or 117 (recessive) times faster
computation (see Table 4).

While under a recessive or dominant model the genome-wide application of the score test
was a little faster than applying the analytic gTDT to individual SNPs (in the case of an
additive model, the computing times were virtually identical), its application was slightly
slower when testing gene–environment interactions. Only in the analysis of gene–gene
interactions, the score test showed a moderate gain in computing time compared to the
gTDT. Its application was 1.50 – 1.65 times faster when compared with the numerical
solution for the gTDT based on the log-likelihood (2), whereas this gain decreased to a
factor of 1.18 when the analytic solution of the gTDT for a recessive × recessive model was
used.

Employing the numerical solutions for a gTDT for testing gene–gene interactions based on a
log-likelihood of the form (2) reduced the computing time of the conventional approach
based on the likelihood (1) by a factor of 107 (additive × additive model), 251 (dominant ×
dominant), or 265 (recessive × recessive). Compared to this reduction, further gain in
computing time achieved by using the analytic solution for the recessive × recessive model
was (with a factor of 1.4) only relatively small, as computing the different numbers of trios
requires most of the computing time and the procedure for determining the maximum-
likelihood estimate β̂GG analytically is quite complex (see Web Appendices C.2 and G).

Finally, we also applied a MAX gTDT to all autosomal SNPs. Using the analytic parameter
estimates, calculation of all 569,187 MAX gTDT statistics required on average 11.5
minutes, which was about 187 times faster than computation with the conventional
procedure. This additional gain in computing time is because in the latter approach the three
genetic models must be fitted separately, while in the analytic procedure the numbers aj of
trios are computed once and the three gTDT statistics are then determined based on them.
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Because one determination of the MAX gTDT statistic for all SNPs in this case–parent trio
study took 11.5 minutes, the standard method for computing permutation-based p-values,
i.e., shuffing the response B times and recomputing the test statistic for each permutation,
would require about 115,000 minutes, i.e., about 80 days, when considering just 10,000
permutations. By contrast, employing the algorithm described in Section 4 took about 185
minutes for 10,000 permutations (additionally to the 11.5 minutes for computing the
observed MAX gTDT statistics and thus the numbers aj), reducing the computing time by a
factor of 620 compared to the standard permutation method.

Because actually much more than 10,000 permutations should be used in genome-wide
association studies, an approach similar to the one of Sladek et al. (2007) might be employed
to further accelerate computation and enable the usage of millions of permutations. Sladek et
al. (2007) first determined empirical p-values for the MAX statistic of Freidlin et al. (2002)
for all SNPs in a genome-wide population-based association study based on 10,000
permutations, and then computed p-values for the 57 most significant SNPs from the first
analysis based on 10 million permutations to obtain better estimates of the empirical p-
values.

Here, we followed a similar, but less strict strategy. We started with computing empirical p-
values for all 569,187 SNPs based on 10,000 permutations. In the original analysis, Beaty et
al. (2010) called a SNP genome-wide significant if its empirical p-value was smaller than 5
× 10−8. When considering 108 permutations, this would mean that a SNP would only be

called genome-wide significant, if five or less of the  values were larger than or equal to
gmax. Because we were also interested in getting improved estimates for the p-values of
SNPs that show large gmax scores, but are not necessarily genome-wide significant, we
chose a less strict cutoff and considered in a second step all SNPs for which 50 or less of the

10,000  values were larger than or equal to the corresponding gmax value. For these
3832 SNPs, empirical p-values based on one million permutations were determined, which
took 1.5 hours. In a final step, which was by far the most time-consuming step (requiring
about 21 hours), 100 million permutations were used to compute p-values for the 357 SNPs

for which 50 or less of the one million  values were larger than or equal to the
corresponding gmax value in the second step, and to detect the 185 genome-wide significant
SNPs among these 357 markers by correcting these p-values for multiple comparisons with
a Bonferroni adjustment, i.e., by multiplying these p-values with 569,187, and identifying all
SNPs with an adjusted p-value smaller than or equal to 0.05.

7. Discussion
A major goal of SNP association studies in case–parent trio design is to detect alleles
preferentially transmitted from parents to an affected offspring. Associations between SNPs
and disease are often assessed with the gTDT based on a conditional logistic regression
model, which is applied to data from the affected children and their three matched pseudo-
controls.

In this article, we have derived closed-form solutions for the parameter estimate in this
conditional logistic regression model when testing for an additive, dominant, or recessive
effect. These analytic estimates avoid the iterative numerical optimization conventionally
used when fitting conditional logistic regression models, and thus, lead to a huge reduction
in the required computing times typically seen in genome-wide association studies.

In an application to the case–parent trio data from the International Cleft Consortium (Beaty
et al., 2010), we have shown a genome-wide analysis can be carried out in a few minutes,
instead of several hours. Using these closed-form estimates, it would thus also be possible to
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test the millions of SNPs comprised by the latest types of SNP microarrays in less than an
hour, and all SNPs measured in whole-genome sequencing studies in a few hours.

These closed-form solutions become even more beneficial when interactions between SNPs
and any of several environmental variables should be analyzed in a genome-wide
association study, as they can be adapted to the estimation of the parameters in a conditional
logistic regression model testing for interactions of SNPs with binary environmental
variables or other binary covariates.

Such analytic estimates would also be of great interest when testing gene–gene interactions.
With the exception of the simplest model including only one parameter representing the
interaction effect of two SNPs both under a recessive mode of inheritance, closed-form
solutions for the gTDT do not exist when testing gene–gene interactions. However, our
reformulation (2) of the conditional log-likelihood also allows in these situations a large
reduction in computing time compared to the conventional approach.

We have also compared computing times of the gTDTs and related score tests, which—
because of their comparably low computational costs—are often used in genome-wide
association studies to screen for interesting SNPs. Because our solutions to the gTDT are
only a bit more complex to determine than the corresponding score test statistics, both
approaches have about the same computing time. Thus, for about the same computational
costs, the gTDT not only provides scores and p-values, but—in contrast to the score test—
also estimates of genotypic relative risks, standard errors, and confidence intervals. The
resulting parameter estimates and their standard errors can be used in ranking procedures
such as approximate Bayes factors (Wakefield, 2009) or Bayesian optimal percentiles (Louis
and Ruczinski, 2010) to provide a better assessment and ranking of SNPs in association
studies than p-values, as these approaches—in contrast to p-values—also take the statistical
power into account.

We have also introduced a procedure for computing permutation-based p-values for a MAX
test based on the gTDT statistics, which is robust against the underlying genetic mode of
inheritance. Our approach makes it possible to calculate genome-wide empirical p-values
based on tens of thousands of permutations in a few hours, as compared to months. Along
with a simple strategy for selecting potentially interesting SNPs, this procedure was applied
with up to 100 million permutations to the case–parent trio data of the International Cleft
Consortium in about a day on a single processor. This computing time might be further
reduced by choosing more strict selection criteria or parallelizing the computation.

All gTDT procedures (as well as the corresponding score tests) are implemented in the R
package trio version 1.2.6 or later, available at http://cran.r-project.org.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

The 10 possible combinations of genotypes for an affected child and the three matched pseudo-controls given
the parents’ genotype, their contribution wj (βadd) to the likelihood of a conditional logistic regression for
testing an additive effect, and the symbols for the numbers of trios exhibiting these genotypes. The genotypes
are coded by the numbers of minor alleles. The genotype combinations below the dashed line do not
contribute to the likelihood, and thus, do not influence the parameter estimation

Parents Offspring Pseudo-controls Weight wj (βadd) in likelihood Number aj of trios

0, 1 0 0, 1, 1 a1

0, 1 1 0, 0, 1 a2

1, 2 1 1, 2, 2 a3

1, 2 2 1, 1, 2 a4

1, 1 0 1, 1, 2 a5

1, 1 1 0, 1, 2 a6

1, 1 2 0, 1, 1 a7

0, 2 1 1, 1, 1 a8

2, 2 2 2, 2, 2 a9

0, 0 0 0, 0, 0 a10
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Table 2

The six possible combinations of genotypes that an affected children and the three matched pseudo-controls
can show when testing for a dominant effect, their weight in the conditional likelihood, and the symbols
representing the numbers of trios having these genotypes, where the symbols in the parenthesis refer to the
numbers from Table 1

Affected child Pseudo-controls Weight wj (βdom) in likelihood Number dj of trios

0 0, 1, 1 d1 (= a1)

1 0, 0, 1 d2 (= a2)

0 1, 1, 1 d3 (= a5)

1 0, 1, 1 d4 (= a6 + a7)

0 0, 0, 0 0.25 d5 (= a10)

1 1, 1, 1 0.25 d6 (other aj)
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Table 3

The six possible combinations of genotypes that an affected children and the three matched pseudo-controls
can show when testing for a recessive effect, their weight in the conditional likelihood, and the symbols
representing the numbers of trios having these genotypes, where the symbols in the parenthesis refer to the
numbers from Table 1

Affected child Pseudo-controls Weight wj (βrec) in likelihood Number rj of trios

0 0, 1, 1 r1 (= a3)

1 0, 0, 1 r2 (= a4)

0 0, 0, 1 r3 (= a5 + a6)

1 0, 0, 0 r4 (= a7)

1 1, 1, 1 0.25 r5 (= a9)

0 0, 0, 0 0.25 r6 (other aj)
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Table 4

Average computing times (in seconds) over 10 (in the case of gene–gene interactions, 5) applications of the
gTDT based on both analytic (or numerical) parameter estimates using log-likelihoods of the form (2) and the
conventional iterative fitting procedure as well as score tests based on (2) to the 569,187 autosomal SNPs from
the case–parent trio study of the International Cleft Consortium (Beaty et al., 2010), interactions of each of
these SNPs with gender, and all 499,500 interactions between two of 1000 randomly selected SNPs
(considering a model consisting of one parameter for the interaction term)

Individual SNPs

Additive Dominant Recessive MAX

Analytic 525 474 472 690

Score 525 437 435 698

Conventional 43,318 42,740 42,726 128,784

SNP–Gender Interaction

Additive Dominant Recessive

Analytic 545 455 454

Score 556 465 462

Conventional 51,600 51,834 53,237

SNP–SNP Interaction

Additive Dominant Recessive

Analytic – – 335

Numerical 1,182 497 469

Score 785 324 283

Conventional 126,748 124,753 124,425
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