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Introduction
With the adoption of the International Organization 
for Standardization (ISO) laboratory standard Medical 
Laboratories – Particular Requirements for Quality and 
Competence (ISO 15189, Australian Standard AS 4633), 
pathology laboratories in Australia (and elsewhere) have been 
required to provide estimates of measurement uncertainty for 
all quantitative test results. 

Uncertainty of measurement (UM, also referred to as 
measurement uncertainty, MU), traceability and numerical 
significance are inter-related concepts that affect both the 
format and the information conveyed by a quantitative 
result. As every measurement is prone to error, it is often 
stated that a measurement result is complete only when 
accompanied by a quantitative statement of its uncertainty. 
This uncertainty assessment is required in order to decide 

if the result is adequate for its intended purpose (fit for 
purpose) and to ascertain if it is consistent with other 
similar or previous results. A detailed discussion which 
summarises the concepts of uncertainty of measurement in 
quantitative medical testing has been provided previously.1 
The development of strategies for setting quality goals in 
laboratory medicine and procedures for assessing fitness for 
purpose have been well covered in the clinical biochemistry 
literature.2-5 In particular, quality specifications based on 
biological variation have been discussed in detail by Fraser.6 
The accuracy, precision and fitness for purpose of medical 
laboratory results rely on the basic metrological concepts of 
a common system of units, traceability of measured values, 
uncertainty of measurement and commutability of results 
within a calibration hierarchy. Metrological traceability 
in clinical biochemistry is the subject of a recent detailed 
review.7 

Abstract
The Evaluation of Measurement Data - Guide to the Expression of Uncertainty in Measurement (usually referred to as the GUM) 
provides general rules for evaluating and expressing uncertainty in measurement. When a measurand, y, is calculated from other 
measurements through a functional relationship, uncertainties in the input variables will propagate through the calculation to an 
uncertainty in the output y. The manner in which such uncertainties are propagated through a functional relationship provides 
much of the mathematical challenge to fully understanding the GUM. 

The aim of this review is to provide a general overview of the GUM and to show how the calculation of uncertainty in the 
measurand may be achieved through a functional relationship. That is, starting with the general equation for combining uncertainty 
components as outlined in the GUM, we show how this general equation can be applied to various functional relationships in 
order to derive a combined standard uncertainty for the output value of the particular function (the measurand). The GUM 
equation may be applied to any mathematical form or functional relationship (the starting point for laboratory calculations) and 
describes the propagation of uncertainty from the input variable(s) to the output value of the function (the end point or outcome 
of the laboratory calculation). A rule-based approach is suggested with a number of the more common rules tabulated for the 
routine calculation of measurement uncertainty. 
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Uncertainty of measurement is defined by ISO 15189 
(item 3.17) as ‘a parameter associated with the result of a 
measurement that characterises the dispersion of values’ or, 
by the International Vocabulary of Metrology (VIM) - Basic 
and General Concepts and Associated Terms (VIM, item 2.26) 
as a ‘non-negative parameter characterising the dispersion 
of the quantity values being attributed to a measurand’.8 The 
Evaluation of Measurement Data - Guide to the Expression 
of Uncertainty in Measurement (usually referred to as the 
GUM) provides general rules for evaluating and expressing 
uncertainty in measurement.9 For those in the medical sciences 
without a strong background in mathematics, the actual GUM 
procedures and associated mathematical descriptions can 
be a real challenge. In addition to the GUM itself, a number 
of supplements have been proposed which will assist with 
interpretation and enhance the scope and applicability of the 
GUM. The status of these additional documents is available 
on the Joint Committee for Guides in Metrology (JCGM) 
internet site.10 The JCGM also provides an introduction to the 
GUM and proposed GUM supplements. This introduction 
summarises the main features of uncertainty in measurement 
and how implementation of the GUM may be achieved 
within a framework ‘supported by mathematical statistics and 
probability’.11 

The aim of this article is to provide a general review of 
the GUM and to provide a more pragmatic approach to the 
calculation of uncertainty, consistent with the operational 
procedures most often used within a medical testing 
laboratory. The suggested approach is rule-based and is 
defined by the functional relationship (equation) which 
specifies the input variables for calculating the particular 
measurand. That is, starting with the general equation 
for combining uncertainty components as outlined in the 
GUM, we show how this general equation can be applied 
to various functional relationships in order to derive a 
combined standard uncertainty for the output value of the 
particular function (the measurand). The GUM equation 
may be applied to any mathematical form or functional 
relationship (the starting point for laboratory calculations) 
and describes the propagation of uncertainty from the input 
variable(s) to the measurand (the end point or outcome of 
the laboratory calculation). The mathematical procedures 
used for evaluating the propagation of uncertainty in any 
particular situation will depend on the form of the functional 
relationship describing the input and output variables. 
These variations in the form of the functional relationship 
provide ‘rules’ for combining uncertainties in specified 
circumstances. 

Measurand
Measurand is the term that denotes the quantity being 

measured. It replaces previous terms such as analyte or the 
name of the substance being measured which was often 
provided without further definition. VIM defines measurand 
as the ‘quantity intended to be measured’ but provides 
further definition by requiring the inclusion of the measuring 
system and the conditions under which the measurement is 
performed. These conditions are required to fully define 
the measurand, as different measurement procedures may 
determine different properties or attribute of a substance. For 
example, the measurement of serum sodium by a direct ion-
selective electrode procedure provides a measurand which 
should be described as serum sodium activity, while serum 
sodium measured by flame photometry or an indirect ion-
selective electrode procedure provides a measurand which 
should be described as serum sodium concentration.

Further examples and discussion of the term measurand are 
available in several articles1,7,12,13 and recent text books on 
clinical biochemistry.

Uncertainty of Measurement and Measurement Error
The result of any quantitative measurement has two essential 
components: 
•	 A numerical value (expressed in SI units as required 

by ISO 15189) which gives the best estimate of the 
quantity being measured (the measurand). This estimate 
may well be a single measurement or the mean value of 
a series of measurements.

•	 A measure of the uncertainty associated with this 
estimated value. In clinical biochemistry this may 
well be the variability or dispersion of a series of 
similar measurements (for example, a series of quality 
control specimens) expressed as a standard uncertainty 
(standard deviation) or combined standard uncertainty 
(see below).

By definition, the term error (or measurement error) is the 
difference between the true value and the measured value. 
The most likely or ‘true’ value may thus be considered as the 
measured value including a statement of uncertainty which 
characterises the dispersion of possible measured values. As 
the measured value and its uncertainty component are at best 
only estimates, it follows that the true value is indeterminate 
(VIM, GUM). Uncertainty is caused by the interplay of 
errors which create dispersion around the estimated value 
of the measurand; the smaller the dispersion, the smaller the 
uncertainty.

Even if the terms error and uncertainty are used somewhat 
interchangeably in everyday descriptions, they actually have 
different meanings according to the definitions provided by 
VIM and GUM. They should not be used as synonyms. The ± 
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(plus or minus) symbol that often follows the reported value 
of a measurand and the numerical quantity that follows this 
symbol, indicate the uncertainty associated with the particular 
measurand and not the error. 

If repeated measurements are made of the same quantity, 
statistical procedures can be used to determine the uncertainties 
in the measurement process. This type of statistical analysis 
provides uncertainties which are determined from the data 
themselves without requiring further estimates. The important 
variables in such analyses are the mean, the standard deviation 
and the standard uncertainty of the mean (also referred to as 
the standard deviation of the mean or the standard error of 
the mean).

Systematic and Random Errors (Uncertainties)
Experimental errors may be divided into two classes: 
systematic errors and random errors. Three terms which are 
often used in association with laboratory errors are accuracy 
(inaccuracy), bias, and precision (imprecision). Both VIM and 
GUM define accuracy as a qualitative concept which describes 
the closeness of agreement between a measured quantity value 
and a true quantity value of a measurand. As such, accuracy 
includes the effects of systematic error even though it does 
not have a numerical value.8,9 Bias is the term used to describe 
the magnitude of any systematic error, with VIM defining bias 
as ‘an estimate of a systematic measurement error’.8 Precision 
describes the unpredictable (random) variability of replicate 
measurements of a measurand. 

The main distinctions with regard to systematic and random 
errors are that:
•	 Systematic error (bias) can, at least theoretically, be 

eliminated from the result by an appropriate correction. 
•	 Random errors arise from unpredictable variations 

which influence the measurement procedure, are 
associated with the actual measurement (for example, 
failure to properly account for temperature fluctuations 
or measurement pipette variability), or possible 
imprecision in the definition of the measurand itself. VIM 
and GUM refer to such extraneous and environmental 
factors as influence quantities. 

•	 Random errors may be analysed statistically while 
systematic errors are resistant to statistical analysis. 
Systematic errors are generally evaluated by non-
statistical procedures. 

•	 In clinical laboratories, random error (uncertainty) 
is usually evaluated through internal quality control 
procedures. 

•	 The GUM procedures are based on the assumption that 
all systematic errors have been corrected and the only 
uncertainty relating to systematic error is the uncertainty 

of the correction itself. This correction uncertainty and 
its contribution to the uncertainty of the measurand may 
be either Type A or Type B depending on the evaluation 
procedure used (see Type A and Type B uncertainties 
below). 

•	 The uncertainty in the reported value of the measurand 
comprises the uncertainty due to random errors and the 
uncertainty of any corrections for systematic errors. 

Systematic error, often referred to as bias, can be identified as 
a fixed value for a discrepancy and should be corrected at the 
earliest practical opportunity in the measurement process. For 
example, if it is known that a particular set of clinical scales 
has a systematic error or bias of −1.0 gram at a weight of 100 
grams (meaning that it reads a true weight of 100 grams as 99 
grams), then 1.0 gram should be added to any reading when 
the scales measure a weight in the vicinity of 100 grams. 
But, because the bias of −1.0 gram itself has an uncertainty, 
(it might be anywhere between, say −0.9 grams and −1.1 
grams, depending on the quality of the calibration procedure), 
the corrected weight will itself have an uncertainty (in this 
example, the uncertainty in the systematic error is ±0.1 grams, 
or a bias of −1.0 ± 0.1 grams).

Alternatively, random error indicates that the error 
fluctuates over the period of measurement, or from one set 
of measurements to the next. This variation may be caused 
by small continuous fluctuations in the environment, in the 
measuring instrument or at any point in the measurement 
process. For this reason, it is more appropriate to refer to 
random error in the plural, as random errors. For example, 
when an instrument provides a digital reading, random errors 
may manifest themselves by a fluctuation in the least (or least 
two or even more) significant digit(s) in the output display. 
The range of the fluctuations is a measure of the uncertainty 
created by the random errors. 

Today, many clinical laboratories have more than one 
instrument (or analytical module) which can perform the 
same group of tests. Laboratories with automated systems 
which incorporate several analytical modules providing the 
same test capability may provide uncertainty estimates for 
each of the measurands on a system basis irrespective of 
which module actually produced the result. In this type of 
automated testing system, any differences which may actually 
be observed between modules will probably be considered as 
random effects, provided that all systematic errors have been 
correctly identified and appropriately corrected. On the other 
hand, if the uncertainty statement is intended to apply to one 
specific instrument or module, its imprecision relative to the 
group will require separate evaluation, provided again that 
systematic errors have been appropriately corrected. 

Rules for Calculating Uncertainty of Measurement
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In general, while error may refer to a single discrepancy (as 
for a systematic error) or to fluctuations which represent 
many errors (as for random errors), the effect of all these 
errors is the uncertainty. Even after all systematic errors have 
been appropriately corrected, an uncertainty still remains (as 
discussed above), since the correction itself must contain 
random errors and is therefore subject to uncertainty. This 
is why the GUM describes uncertainty as a parameter that 
characterises the dispersion of values that may be attributed 
to the measurand.

Uncertainty of Measurement and GUM Terminology
The definitions of general metrological terms used by the 
GUM are those provided by VIM, with basic statistical terms 
taken mainly from International Standard ISO 3534-1. Basic 
statistical terms and concepts are summarised in Annex C of 
the GUM, with a glossary of the principal symbols provided 
in Annex J. 

Terms which may be specific to GUM but which now form 
part of the uncertainty of measurement vocabulary are defined 
separately within the GUM. The following definitions are 
those provided in section 2.3 of the GUM as ‘terms specific 
to this guide’:
•	 ‘Standard uncertainty: uncertainty of the result of a 

measurement expressed as a standard deviation.’
•	 ‘Type A evaluation (of uncertainty): any method for 

evaluating uncertainty using statistical analysis of a 
series of observations.’

•	 ‘Type B evaluation (of uncertainty): method for 
evaluating uncertainty by means other than the statistical 
analysis of a series of observations.’

•	 ‘Combined standard uncertainty: standard uncertainty 
of the result of a measurement when that result 
is obtained from the values of a number of other 
quantities, equal to the positive square root of a sum 
of terms, the terms being the variances or covariances 
of these other quantities weighted according to how 
the measurement result varies with changes in these 
quantities.’ Combined standard uncertainty may contain 
terms whose components are derived from Type A and/
or Type B evaluations without discrimination between 
types (see below).

•	 ‘Expanded uncertainty: quantity defining an interval 
about the result of a measurement that may be expected 
to encompass a large fraction of the distribution of values 
that could reasonably be attributed to the measurand.’

•	 ‘Coverage factor (k): numerical factor used as a 
multiplier of the combined standard uncertainty in order 
to obtain an expanded uncertainty.’ The coverage factor 
is essentially the same as the Z-score or Z-value in 
statistical terminology.

The coverage factor used in uncertainty of measurement 
calculations and the Z-score or Z-value used in statistics, are 
both terms which indicate the number of standard deviations 
that a particular value may be distant from the mean of the 
distribution. For clinical laboratory applications, a coverage 
factor is typically chosen to include approximately 95% of the 
distribution (k = 1.96) or 95.4% of the distribution (k = 2.0). 
For the Gaussian or normal distribution, a Z-score of ± 1.96 
from the mean will encompass 95.0% of the values within 
the distribution, while a Z-score of ± 2.0 from the mean will 
encompass 95.4% of values. In clinical biochemistry, the 
mean with a Z-score of ± 2.0 (or ± 2.0 standard deviations) is 
often used to designate a range which contains 95% of values. 
From a purist statistical perspective, this is not technically 
correct as ± 2.0 actually represents 95.4% of values within 
the distribution. In a similar manner, there are many articles 
which use a Z-score of 1.96 (to correctly represent 95.0% of 
values). However, section 6.3.3 of the GUM suggests that 
for most measurement situations ‘where the distribution 
characterised by y and u(y) is approximately normal and the 
effective degrees of freedom of u(y) is of significant size … 
one can assume that taking k = 2 produces an interval having 
a level of confidence of approximately 95%’.

Even though the term standard uncertainty has the same 
numerical value and mathematical form as a standard 
deviation, the statistical meaning of standard deviation is not 
the same as standard uncertainty. In statistics, there are many 
situations where the standard deviation does not imply the 
presence of errors or measurement uncertainty. Instead, the 
standard deviation simply describes the dispersion or spread 
of observations. Such examples would include the biological 
reference interval for a measurand or the measurement of the 
height of adult individuals of a particular ethnic background 
and gender. Thus, it would not be appropriate to associate 
the difference between an individual’s height and the mean 
height of the sample as constituting an error and one would 
not normally regard the dispersion of heights as constituting 
some kind of uncertainty. 

The distinction between error and uncertainty should again 
be noted. An error is the discrepancy between a measured 
value and the actual or true value. Uncertainty is the effect of 
many errors. This effect may manifest itself as the variability 
in replicate determinations of the measurand, or, as ‘inherited’ 
variability within a single component of the measurand. These 
two manifestations of uncertainty correspond to the Type A 
and Type B categories to be discussed below.

In addition to specific descriptive terms such as those 
outlined above, Annex J of the GUM provides a glossary of 
the principal symbols used in the various mathematical and 
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statistical expressions. It is important to fully understand the 
symbols used in the GUM, particularly those used to describe 
components of standard deviation, variance and uncertainty. 
For example:
•	 s(x1), s(x2), s(xi), s(xn); as a group of symbols, s(x1) 

should be interpreted as the standard deviation of the 
variable x1, s(x2) as the standard deviation of the variable 
x2, etc, not as two mathematical variables which should 
be multiplied together. 

•	 s2(x1), s
2(x2), s

2(xi), s
2(xn); as a group of symbols, s2(x1) 

should be interpreted as the squared standard deviation 
of the variable x1 or the variance of x1, s2(x2) as the 
squared standard deviation of the variable x2 or the 
variance of x2, etc, not as two mathematical variables 
which should be multiplied together. 

•	 u(x1), u(x2), u(xi), u(xn); in a similar manner to the 
group of symbols which are used to represent standard 
deviation and variance (above), as a group, u(x1) should 
be interpreted as the standard uncertainty in the variable 
x1, u(x2) as the standard uncertainty in the variable x2, 
etc, not as two mathematical variables which should be 
multiplied together. 

•	 u2(x1), u2(x2), u2(xi), u2(xn); as a group of symbols, 
u2(x1) should be interpreted as the squared standard 
uncertainty of the variable x1 or the variance of x1, u

2(x2) 
as the squared standard uncertainty of the variable x2 or 
the variance of x2, etc, not as two mathematical variables 
which should be multiplied together. 

When presented in equations such as those provided in the 
GUM and in Table 2, variance and uncertainty terms need 
to be considered as a descriptive group, not as individual 
characters or symbols. For consistency, the terminology used 
in this review is that used by the GUM, a summary of which 
is provided in Table 1.

Type A and Type B Uncertainties
The GUM describes two types of uncertainties, categorised 
respectively as Type A and Type B. A Type A uncertainty is 
based on the statistical analysis of a series of measurements 
(for example, statistical data obtained from quality control 
results). A Type B uncertainty has been obtained by non-
statistical procedures and may include:
•	 Information associated with an authoritative published 

numerical quantity
•	 Information associated with the numerical quantity of a 

certified reference material
•	 Data obtained from a calibration certificate
•	 Information obtained from limits deduced through 

personal experience
•	 Scientific judgment

The information obtained from Type A and Type B uncertainty 
evaluations is essentially the same; they are given different 
names to emphasise that the data have been obtained by 
different procedures. Type A and Type B evaluations can 
apply to either random or systematic errors.

Both Type A and Type B uncertainties are characterised by 
their respective standard uncertainties (equivalent to standard 
deviations, as described previously) and degrees of freedom 
(see below). The final result of any measurement procedure 
should have an associated standard uncertainty obtained by 
combining the Type A and Type B components. In general, this 
combination is the root-sum-square of the Type A and Type 
B standard uncertainties. It should be noted however, that 
although Type A uncertainties are evaluated using statistical 
methods, once this evaluation is complete and the results 
of the measurements are reported, the Type A’s effectively 
become Type B’s from the perspective of subsequent users of 
the results. Type B uncertainties in many cases may therefore 
be regarded as ‘inherited’ or ‘fossilised’ Type A uncertainties. 
The combined standard uncertainty quoted in a calibration 
report, for example, is effectively a Type B uncertainty for 
subsequent use even though it may contain both Type A 
and Type B components. Very often the combined standard 
uncertainty is multiplied by a factor (the coverage factor) that 
indicates the level of confidence in the measurement result. 
This new value (combined standard uncertainty multiplied by 
a coverage factor) is the expanded uncertainty. The usual level 
of confidence is 95.4% (or 95.0%), in which case it is standard 
practice to use 2.0 (or 1.96) as the multiplying factor. In this 
situation, expanded uncertainty is equal to twice the standard 
uncertainty. For a higher level of confidence the coverage 
factor is obviously higher (for example, for a confidence level 
of 99% the factor is approximately 2.6). 

The introduction to the GUM provides a clear statement as 
to the method for evaluating and combining Type A and Type 
B standard uncertainties. The following points have been 
summarised from the GUM introduction:
•	 Type A components are characterised by an estimate 

of their variances (si
2) or their estimated standard 

deviations (si) and the appropriate number of degrees 
of freedom (see below). A standard deviation (si) is 
numerically identical to a standard uncertainty (ui). 
Covariances should be given where appropriate.

•	 Type B components should be characterised by 
uncertainty quantities (ui), which may be considered as 
approximations to standard deviations. The quantities 
squared (ui

2) may be treated like variances or squared 
standard uncertainties and the quantities themselves 
(ui) like standard deviations or standard uncertainties. 
Covariances should be given where appropriate. 

Rules for Calculating Uncertainty of Measurement
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Table 1. Summary of mathematical terms and symbols.

Symbol or term Description

y Quantity to be determined, or measurand

x, x1, x2, xi, xn Value for a given ‘x’ variable

s Sample standard deviation

σ Population standard deviation

s(x1), s(x2), s(xi), s(xn) Sample standard deviation for a given ‘x’ variable

s2 Sample squared standard deviation or variance

σ2 Population squared standard deviation or variance

s2(x1), s
2(x2), s

2(xi), s
2(xn) Sample squared standard deviation for a given ‘x’ variable

u Standard uncertainty

u2 Squared standard uncertainty, equivalent to variance

u(y) Standard uncertainty in y (measurand)

u2(y) Squared standard uncertainty in y, or variance of uncertainty in y

u(x1), u(x2), u(xi), u(xn) Standard uncertainty in a given ‘x’ variable

u2(x1), u
2(x2), u

2(xi), u
2(xn) Standard uncertainty squared for a given ‘x’ variable

y = f (xi) Functional relationship between output ‘y’ and input variable ‘xi’

r Correlation coefficient

             or Correlation coefficient for the variables x1 and x2

Z-score, Z-value The number of standard deviations that an observation or value is from the mean- a 
standardised variable

k Coverage factor, the number of standard deviations or Z-scores required to include a 
stated proportion of values

ν Degrees of freedom

Error True value – measured value

Population covariance (x1, x2)

Partial derivative of y with respect to xi

log10(y), log10(xi ) Logarithm to the base 10

ln(y), ln(xi) Logarithm to the base e
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•	 The combined standard uncertainty should be 
characterised by the numerical value obtained by 
root-sum-squaring the Type A and Type B standard 
uncertainties. The combined standard uncertainty is 
statistically equivalent to a standard deviation. 

•	 If, for a particular application, it is necessary to multiply 
the combined uncertainty by a factor to obtain an 
expanded uncertainty, the multiplying factor used must 
always be stated (for example × 2.0 or × 1.96).

•	 Once Type A and Type B uncertainties have been 
combined, they are treated in an identical manner and 
subsequently described as Type B uncertainties.

Type A and Type B uncertainties are not the same as type 1 
and type 2 errors as described in many statistical text books. 
The latter have very specific statistical definitions which are 
outside the scope of this review.

Degrees of Freedom and Uncertainty in the Uncertainty
The concept of degrees of freedom is closely linked to the 
process of fitting population values, or parameters, to a sample 
of n observations. It is also linked to the reliability of the 
uncertainties associated with this fitting process. The general 
rule for obtaining the number of degrees of freedom, is the 
number of measurements with error less the number of fitted 
parameters. Both Type A and Type B uncertainties have an 
associated number of degrees of freedom (represented in the 
GUM by ν, the Greek letter ‘nu’). For Type A uncertainties, 
the calculation of ν is usually straightforward and follows 
the examples described in standard statistical textbooks. The 
simplest case involves fitting a single number to a sample 
of n measurements which is used to derive an estimate of 
the population mean. This process yields the sample mean 
which is an estimate (a so-called unbiased estimate) of the 
population mean. For a sample of n measurements to which 
the mean has been fitted, the number of degrees of freedom 
(ν) associated with the uncertainties of this fitting is n–1 
(that is, ν = n−1). The reduction from n (the sample size) to 
n-1 (ν, the degrees of freedom) is a statistical consequence 
of using a sample of n measurements, all accompanied by 
random errors, to obtain just one estimate (of the population 
mean). 

If points representing paired measurements are used to produce 
a scatter graph, their linear association may be summarised by 
fitting two parameters, namely the sample intercept and the 
sample slope. These are then the unbiased estimates of the 
population intercept and population slope. In this case, the 
uncertainties are based on ν = n – 2 degrees of freedom when 
the independent (x axis) variable is assumed to be error free.
If ν is not given explicitly for Type B uncertainties, it may be 
roughly estimated from two items of information: 

1.	 The reported standard uncertainty u (if what has been 
reported is an expanded uncertainty, then this should be 
divided by the appropriate factor for conversion back to 
a standard uncertainty),

2.	 An estimate of the uncertainty Δu in this standard 
uncertainty itself. 

The suggested formula for this approximate calculation is:

The procedures for determining degrees of freedom are often 
complex statistical processes which vary according to the 
particular problem under consideration. Appendix G of the 
GUM discusses in detail a number of the procedures which 
may be used for calculating degrees of freedom. The equation 
suggested above for estimating ν when considering Type 
B uncertainties, is essentially equation G3 as given in the 
GUM. This equation also illustrates a general characteristic 
of ν and its relationship to uncertainty; that is, the smaller 
the ν, the more uncertain we are of the uncertainty itself. 
This statement applies equally to both Type A and Type B 
uncertainties.

The equation suggested for estimating ν (above), may 
also be used to provide an estimate of the uncertainty 
in the uncertainty. Surprisingly, this uncertainty (Δu) in 
an uncertainty (u) can be relatively large. For example, 
suppose a sample of n measurements, all subject to random 
error, are taken in order to estimate the mean of a particular 
population and the standard uncertainty in that mean. If s 
is the standard deviation for the particular sample, then the 
standard uncertainty of the mean is given by s/√n (provided 
the individual results are uncorrelated as outlined in Appendix 
B). If n = 10, therefore implying 9 degrees of freedom, the 
formula can be used to estimate the relative uncertainty in the 
uncertainty (that is, the proportion Δu/u). In this example, the 
relative uncertainty in the standard uncertainty of the mean 
is 24%. 

Functional Relationships, Input and Output Quantities
In many situations, the measurand is not measured directly 
but is calculated from other measurements through a 
functional relationship. From a mathematical perspective, 
a function can be regarded as a quantity whose value can 
be derived from one or more input quantities by applying 
a defined mathematical formula. In general, a functional 
relationship indicates that a mathematical relationship 
exists between the value of the function (output) and the 
input variables, without specifically identifying the exact 
mathematical form of the relationship.

2(1/ 2) ( / )u u 
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The terminology used in mathematical and statistical texts 
to express a function or a functional relationship can vary 
considerably. A summary of the various mathematical terms 
and symbols used in this review is provided in Table 1.

The notation generally used to describe the combination of 
input variables through a functional relationship is y = f (x1, 
x2, x3, …, xn), where x1, x2, x3, … , xn are the input quantities 
upon which the output quantity y depends. In this case, the 
measurand y is not measured directly, but determined from 
n other quantities x1, x2, x3, …, xn, through the functional 
relationship. These input quantities themselves can often 
be viewed as measurands, which may also depend on other 
quantities including corrections and correction factors 
for systematic error. Such interactions may well lead to a 
complicated functional relationship but the general formula 
described in the GUM is applicable to even this type of 
situation. The evaluation of functions which contain many 
input quantities, including correction factors, can be used to 
demonstrate how the combined uncertainty is proportioned 
across the individual input quantities. 

Section 4.1.3 of the GUM describes how a set of input 
quantities may be characterised as:
•	 ‘Quantities whose values and uncertainties are directly 

determined in the current measurement. These values 
and uncertainties may be obtained from, for example, 
a single observation, repeated observations or judgment 
based on experience, and may involve the determination 
of corrections to instrument readings and corrections 
for influence quantities, such as ambient temperature, 
barometric pressure, and humidity.’

•	 ‘Quantities whose values and uncertainties are brought 
into the measurement from external sources, such as 
quantities associated with calibrated measurement 
standards, certified reference materials, and reference 
data obtained from handbooks.’

Propagation of Uncertainty
As indicated previously, a measurand may often be calculated 
using a functional relationship involving other measured 
quantities and their measured uncertainties. If measurand 
y is determined from input variables x1, x2 , …, xn through 
a functional relationship, then uncertainties in the x’s will 
propagate through the calculation to an uncertainty in y. 

There are essentially two types of approach for the estimation 
of uncertainty in a measurand. When a measurand can be 
determined by direct measurement (such as the measurement 
of serum sodium activity), uncertainty may be estimated from 
replicate analysis of the same or similar specimens. In contrast 
to direct measurement, the indirect approach requires the 

measurand to be calculated from other measured quantities 
(for example, the calculation of creatinine clearance or serum 
anion gap1). This latter approach relies on calculations derived 
from the propagation of uncertainty formula and may include 
the following steps: 
•	 Multiple measurements of the various input variables 

in order to provide an estimate of their relevant 
uncertainties.

•	 Calculation of their mean and standard deviation. 
•	 Combining the standard deviations for each of the 

input variables to give a combined standard deviation 
(combined standard uncertainty) using the appropriate 
rule as outlined in Table 2. 

Uncertainty in Measurements With and Without 
Correlation
The manner in which errors (uncertainties) are propagated 
from measured values to a calculated quantity through a 
functional relationship provides much of the mathematical 
challenge to fully understanding the GUM. When the 
individual input quantities x1, x2, x3, …, xn, are subject 
to random uncertainties, the variability in each term will 
usually be considered (for clinical laboratory applications) 
as following a Gaussian or ‘normal’ distribution, with a 
spread or dispersion characterised by standard deviations 
s1, s2, s3, …, sn. These standard deviations are the standard 
uncertainties associated with each of the x’s. The question 
now becomes: what is the distribution of values attributable 
to the measurand y (that is, standard uncertainty u(y)) given 
the known dispersion for each of the measured x values and 
the functional relationship y = f (x1, x2, x3, …, xn) ? 

When considering the overall relationship between the 
various input variables, two situations require consideration. 
Usually, the input variables (that is the various x’s) have no 
relationship with each other, except through their functional 
relationship which defines the measurand y. Under these 
circumstances, the input variables are described as having 
zero covariance or correlation. On the other hand, there are 
situations where a separate relationship may exist between 
two or more of the input variables. For example, if the 
measured value of x1 is related to the measured value of x2 or 
x3, …, or xn, the input variables in question are described as 
correlated or as measurements with covariance. Procedures 
for the propagation of uncertainty arising from both 
uncorrelated and correlated variables can be derived from the 
general expression describing the propagation of uncertainty 
as outlined in the GUM. These procedures are discussed in 
more detail below. 

As the statistical notation for correlation involves correlated 
variables, but not necessarily correlated uncertainties, an 
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example may provide the best explanation: 
•	 Assume that two identical mercury-in-glass 

thermometers have been calibrated and that each has a 
standard uncertainty of 0.5o C within the range 0o C to 
50o C.

•	 They are placed in fixed positions in different rooms in 
a house. Their readings, T1 and T2, are taken once every 
24 hours for a full year. There will thus be 365 pairs of 
values for T1 and T2. 

•	 In this scenario, it is not unreasonable to expect T1 and 
T2 to be highly positively correlated as both will be 
high in summer and both will be low in winter, etc. The 
uncertainties u(T1) and u(T2) however, will not change 
but will remain at 0.5o C throughout the year.

Where correlated inputs require consideration, additional 
information is necessary to ascertain the actual numerical 
correlation between the particular input variables. This is 
usually obtained by calculation of the correlation coefficient. 
For most situations which occur in clinical biochemistry, 
functional relationships which rely on random uncorrelated 
variables and uncertainties are usually applicable.

From a statistical perspective, both covariance and correlation 
are measures of the interdependence between two or more 
random variables. Covariance (‘co-variation’) provides a 
measure of the interdependence of variables that may have 
different units of measurement, while correlation standardises 
the measure of interdependence by providing a dimensionless 
quantity, the correlation coefficient r, which facilitates the 
comparison of different data sets. The two concepts are 
themselves interrelated with the calculation of covariance 
forming an intermediate step in the calculation of correlation 
coefficient.

Correlation coefficient (r) = [covariance (x1, x2)] / [s(x1) × s(x2)]

As a direct consequence of its definition, the correlation 
coefficient r is restricted to the range −1 through zero to +1. 
When r = 0, the correlation is zero, when r = +1, the correlation 
is perfect and positive, and when r = −1 the correlation is 
perfect and negative.

Several sections of the GUM discuss the effect which correlated 
variables may have on the calculation of uncertainty. In 
particular, section 5.2, Annex C (sections C3.4 and C3.6) and 
Annex F of the GUM provide detailed comments with regard 
to covariance and correlation. Uncertainty measurements 
with and without covariance or correlation are discussed in 
more detail below and in Appendix B of this review. 

Uncertainty Components When the Inputs are 
Uncorrelated
A general equation which describes the propagation of 
uncertainty can be derived using standard statistical procedures. 
This general equation is independent of the exact form of the 
functional relationship. It can be simplified significantly for 
particular functional relationships to provide defined ‘rules’ 
for evaluating uncertainties in specified situations. This is the 
basis of the ‘rules’ approach provided in Table 2.

Given the general expression for the measurand y in terms of 
input quantities x1, x2, x3, … , xn (that is y = f (x1, x2, x3, … , xn)), 
a corresponding expression which describes the combined 
standard uncertainty in y (that is u(y)), can be obtained by 
appropriately combining the standard uncertainties of the 
various input estimates (the various x’s). There are two 
versions of this uncertainty expression:
•	 The ‘simpler’ version applies to input quantity 

uncertainties which are relatively small and the input 
variables x1, x2, x3, … , xn are uncorrelated.

•	 The second version applies to input quantity uncertainties 
which are relatively small but where the input variables 
are correlated.

The ‘simpler’ version, which requires the input quantities to 
be uncorrelated, is given by the following general expression,

	
	

(equation 1) 

This is the same equation which describes the combined 
standard uncertainty provided by the GUM as equation 10, 
section 5.1.2. 

		
(equation 2)

These equations and their counterpart for correlated 
input quantities state that the squared combined standard 
uncertainty u2(y) of the measurand y, is a weighted sum of the 
squared standard uncertainties u2(xi) of the input quantities xi 
(where i = 1, 2, 3, … , n). The partial derivatives  are often 
referred to as sensitivity coefficients. They describe how the 
output estimate in y depends on the individual uncertainties 
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Table 2. Rules for the evaluation of standard uncertainty through functional relationships with uncorrelated variables.

Rule
Notes

(below)
Function Expression giving standard uncertainty

1 y = x1 + x2 u2(y) = u2(x1) + u2(x2) 

2 y = x1− x2 u2(y) = u2(x1) + u2(x2) 

3 1 y = A + Bx1 + Cx2 … + Nxn

4 y = x1 / x2

5 1 y = Ax1 / Bx2

6 y = x1 × x2

7 1 y = Ax1 × Bx2

8 y = (x1 × x2) / (x3 × x4)

9 1 y = xA

10 1 y =(x1 / x2)
A

11 1 y = (x1)
A × (x2)

B

12 y = ln x

13 1 y = A + ln x

14 1 y = A + ln Bx1 + ln Cx2

15 1, 2, 3 y = log10 x
A = A log10 x

16 1, 2, 3 y = A + log10 x

17 1, 2, 3 y = A + log10 Bx1 + log10 Cx2

18 1, 2 y = AeBx

19 4

20 4
writing q = x1/x2 for brevity
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in the various x’s, by determining the sensitivity of the output 
to uncertainty in each of the inputs. A brief overview of the 
relevance and use of differential calculus in determining 
uncertainty components and examples of sensitivity are 
provided in Appendix A. Details with regard to the derivation 
and application of the general equation for the propagation of 
uncertainty are provided in Appendix B. 

The expression for the propagation of uncertainties for 
uncorrelated variables described above (equation 1), is 
a special form of the general law for the propagation of 
uncertainty. This law, in its general form, can be applied 
when covariance or correlation exists between the various 
inputs. In this latter situation however, a more detailed 
statistical approach is required. Appendix B provides a 
summary describing the derivation of the general law for 
the propagation of uncertainty for both uncorrelated and 
correlated input variables. 

Uncertainty Components When the Inputs are Correlated
When two or more of the input quantities are correlated, an 
alternative form of the general law of uncertainty propagation 
is required. Section 5.2 of the GUM describes the approach 
when correlated input quantities must be considered. 

An example of the ‘correlated input equation’ describing 
two input quantities (x1 and x2) is shown as equation 3. This 
expression is similar to that given as equation 1, but includes an 
additional term which incorporates the correlation coefficient 
r. It should also be apparent that if there is zero correlation 
(that is, r = 0), the last term in equation 3 becomes zero and 
the expression reverts to the same form as equation 1. 

	

(equation 3)

An example is provided in Appendix B which shows the 
importance of both recognizing and accounting for correlated 
input variables when they occur. This example describes the 
relationship y = x1 x2, where the measurand is the product 
of the two input variables x1 and x2. Initially, these are 
considered as uncorrelated inputs, so equation 1 is appropriate 
for calculating the uncertainty propagated from the two x’s 
through to the measurand y. Then, x1 and x2 are assumed to 
be perfectly positively correlated, with r = +1, where the use 
of equation 3 is now the correct approach. This latter result 
is then compared with the result for y = x1

2, evaluated using 
equation 1. These two results are and should be identical, 
since y = x1

2 , evaluated using equation 1, is equivalent to 

y = x1 x2 with perfect positive correlation (that is, when x1 
= x2 there is perfect correlation, as any quantity is perfectly 
correlated with itself). 

Summary of Procedure for Determining the Propagation 
of Uncertainty
To summarise the steps for determining the propagation of 
uncertainty, assume again that there is a measurand y, and that 
y is a function of n inputs x1, x2, x3, … , xn. The numerical 
values of these n inputs are assumed known, and their standard 
uncertainties u(x1), u(x2), u(x3), … , u(xn) are also assumed 
known. Since there is a functional relationship y = f (x1, x2, 
x3, … , xn) between the input variables and the measurand, 
the numerical value of the measurand (y) can be calculated 
by straightforward algebra without any calculus. The question 
now is how to determine the resulting standard uncertainty 
u(y) in y, into which the component standard uncertainties 
u(x1), u(x2), u(x3), … , u(xn) have all propagated. It is this latter 
calculation where some calculus is necessary and this has the 
following steps:
1.	 Differentiate y with respect to x1, taking all the other 

inputs x2, x3, … , xn as constants. In the language of 
the calculus, we take the partial derivative of y with 
respect to x1. This partial derivative is denoted by ∂y/∂x1.   
Because this partial derivative itself is a function of at 
least some of x1, x2, x3, … , xn, and since these inputs 
all have known numerical values derived from the 
experimental data, the partial derivative itself has a 
known numerical value. As outlined in Appendix A, 
this partial derivative is a measure of the sensitivity of 
y to any changes in x1 and can accordingly be called a 
sensitivity coefficient. 

2.	 Take the square of ∂y/∂x1, obtaining (∂y/∂x1)
2.   Again, 

this expression has a known numerical value derived 
directly from the experimental data.

3.	 Multiply the squared partial derivative in step (2) by the 
squared standard uncertainty u(x1) of x1, obtaining the 
product (∂y/∂x1)

2 u2(x1).
4.	 Repeat steps (1) to (3) for input x2, then for input x3, and 

so on, up to input xn. 
5.	 The resulting n products (∂y/∂x1)

2 u2(x1), (∂y/∂x2)
2 u2(x2), 

(∂y/∂x3)
2 u2(x3), … , (∂y/∂xn)

2 u2(xn), are all summed.  
This sum is the squared standard uncertainty u2(y) in the 
measurand y and is identical to equation 1.

6.	 Equation 1 applies to the case of uncorrelated inputs as 
described above and in Appendix B. If some or all of the 
inputs are mutually correlated, equation 1 has additional 
terms involving correlation coefficients as shown in 
equation 3 and discussed in Appendix B.

7.	 Depending on the exact form of the functional relationship 
y = f (x1, x2, x3, … , xn), it may be more appropriate 
to use the relative uncertainties (that is, u(y)/y and 

         1 2

22
2 2 2
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u(xi)/xi) instead of the absolute uncertainty values (u(y) 
and u(xi)). As a general rule, use relative uncertainties for 
functions which include terms with multiplication and/
or division but not addition or subtraction. Examples of 
expressions that involve relative uncertainties are given 
in Table 2. Relative uncertainty is also referred to as 
coefficient of variation (CV).

Precision Profile and Uncertainty of Measurement
The precision profile of an assay is a convenient way to 
describe the relationship between the concentration of a 
substance and its measured precision. It is usually presented 
as a plot of standard deviation or coefficient of variation 
against measurand value.14 

In clinical laboratories, routine quality control is often 
evaluated at only two or three measurand values. However, 
uncertainty of measurement may vary over the analytical 
range of the method and outside of the range covered by the 
control material. A review of an assay’s precision profile is 
a good way of determining the change in precision at values 
not directly covered by the routine control material. When 
deriving uncertainty of measurement values or using precision 
estimates in calculations, it is important to consider the use of 
the actual precision at the measurand value in question.

Rules for Calculating Uncertainty through Functional 
Relationships 
Table 2 provides a selection of ‘rules’ for calculating 
uncertainty based on functional relationships which contain 
uncorrelated variables. They have been presented in this 
format to give specific examples which can be directly 
applied to many clinical laboratory calculations, without 
the requirement to be fully conversant with the GUM or the 
differential calculus. 

In other scientific applications, many more types of calculation 
may be required. For example, calculations based on 
formulae which include trigonometric functions and/or more 
complicated logarithmic relationships would be common in the 
physical sciences. However, uncertainty associated with any 
measurement and its propagation through a defined functional 
relationship can be evaluated by differentiation (partial 
differentiation) and the application of the general equation for 
the propagation of uncertainty. The formulae for calculating 
the combined standard uncertainty provided in Table 2 have 
been derived using partial differentiation of the corresponding 
functional relationship as outlined in the previous section. 
Some of the simpler and more common functions which could 
well have been provided in a more general mathematical form, 
have been presented as separate expressions in order that visual 
comparison of the various rules may be more easily achieved. 

For example, rule 1 (for y = x1 + x2) and rule 2 (for y = x1 − 
x2) are essentially the same; they are specific cases of rule 3 
with the uncertainty components being calculated in the same 
manner for all three rules. 

Calculations involving other functional relationships and 
analysis of variance procedures may be found in Annex H of 
the GUM. 

Examples: Application of the Rules for Calculating 
Uncertainty through Functional Relationships
There are many examples in laboratory medicine where the 
measurand is calculated from other measurements using 
a functional relationship. Table 3 provides examples of 
laboratory calculations and the rules to be used for evaluating 
uncertainty in their respective output values. These particular 
examples have been chosen to show the variety and form of 
the functional relationships which may be encountered and the 
rules which should be applied in order to calculate the output 
uncertainty in the measurand. In the examples provided in 
Table 3, it has been assumed that the variables in each of the 
equations are uncorrelated. As outlined in more detail below, 
this assumption may not actually be correct but the relevant 
variables are usually considered to be uncorrelated for most 
practical applications. 

In some situations, uncertainty in one or more of the input 
variables may be considered small when compared with 
uncertainty in the other input variable(s). If this can indeed be 
shown, a particular term may be disregarded and a simpler form 
of the function may be applicable. However, any assessment 
of this type and the reason why some types of uncertainty 
may be excluded from a calculation should be recorded in 
the appropriate laboratory standard operating procedure in a 
manner consistent with ISO 15189 / AS 4633 (for example, 
ISO 15189 item 5.5.3). Several of the functions presented in 
Table 3 provide examples of both of these approaches. That 
is, it is appropriate to record both a formal assessment plus a 
simplified version where the uncertainty in one term may be 
considered to contribute a relatively small proportion to the 
combined standard uncertainty. The following comments with 
regard to some of the relationships outlined in Table 3 can be 
considered as general comments, which may be applied to 
all calculations involving the estimation of uncertainty using 
functional relationships.

Table 3, items 1, 2 and 3
These are common equations for calculating serum anion 
gap, serum osmolality and corrected serum calcium.15-20 All 
three equations contain variables which are assumed to be 
uncorrelated. This is typical of their use within a clinical 
laboratory where the output values are calculated assuming 
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the input measurands are uncorrelated. This assumption 
is not strictly correct however, as some variables which 
may be treated as uncorrelated for practical purposes may 
actually show a degree of correlation either physiologically 
or analytically. For example:
•	 In many physiological situations, a decreased serum 

sodium activity is associated with a decreased serum 
chloride activity and vice versa. 

•	 In metabolic alkalosis, an increased serum bicarbonate 
concentration is usually associated with a decreased 
serum chloride concentration (activity).

•	 As serum calcium is bound to serum albumin, these 
two measurands can indeed be shown to have a positive 
correlation. To add further complication, the actual 
correlation of substances such as serum calcium and 
serum albumin is probably both patient and method-
dependent. This is also exemplified by the numerous 
equations which have been proposed for calculating 
corrected serum calcium (that is, serum calcium adjusted 
for the actual patient’s serum albumin concentration). 
A detailed discussion regarding the derivation and 
applicability of such equations is outside the scope of 
this review.20-24

•	 Analytical interference by bicarbonate in some serum 
chloride activity assays has been described as showing 
‘a clear linear increase in chloride with increasing 
bicarbonate …’.25 Analytical interference of this nature 
can therefore be considered as showing a positive 
correlation between the particular measurands. In a 
similar manner, an increased serum sodium activity due 
to glucose interference (by a relatively high glucose 
concentration) has been reported.26 These examples 
show that an observed correlation between two 
quantities that should be uncorrelated is often indicative 
of a potential defect in the particular analytical system.

When correlation is actually taken into account, an additional 
term must be included as described previously and in Appendix 
B. Taking the anion gap equation as a further example, if all 
correlations can be ignored the relevant formula for u2(y) = 
u2(AG), the squared standard uncertainty of the anion gap, 
is given in Table 2, rule 3. If a correlation term is required 
to represent the analytical interference of bicarbonate in the 
chloride assay for example, the squared standard uncertainty 
of the anion gap now becomes:
u2(AG) = u2(Na+) + u2(K+) + u2(Cl¯) + u2(HCO3¯) + 2r(Cl¯, 
HCO3¯) u(Cl¯) u(HCO3¯), where the term r(Cl¯, HCO3¯)
represents the correlation coefficient between chloride and 
bicarbonate for the analytical interference of bicarbonate in 
the chloride assay. 

In addition, items 2 and 3 contain ‘numerical constants’ which 

are assumed (in the functional forms provided in Table 3) 
to be free of inherent uncertainty. Both of these equations 
however, have been derived by regression analysis using 
multiple paired measurements as the input variables. The 
‘numerical constants’ are essentially coefficients derived 
by the regression analysis. Most comparisons of paired 
data, such as the comparison of measured versus calculated 
serum osmolality, will incorporate a degree of variability 
as shown by the scattering of data points in a ‘y’ versus ‘x’ 
data plot (scatter plot). Unless the standard uncertainty in the 
original regression line (curve) and any associated regression 
coefficients are also provided, the full impact on the output 
from the functional relationship which is now applied to new 
input variables cannot be assessed. That is, the ‘numerical 
constants’ shown in items 2 and 3 are not truly constant. They 
contribute an unknown degree of uncertainty which is not 
included in the expressions as stated in Table 3 or as usually 
applied within the clinical laboratory.

Even accepting that the equations for serum anion gap, 
calculated serum osmolality and corrected serum calcium 
may lack strict mathematical correctness, they do provide 
relevant examples of common laboratory calculations. As the 
output values from such calculations are often considered to 
provide only approximate clinical information, the associated 
uncertainty estimates which assume uncorrelated variables 
will also provide only an approximate range of possible 
values.

Table 3, items 7 and 8
An argument similar to that outlined above may well apply 
to the functional relationship given for the Henderson 
Hasselbalch equation. Item 7 provides an equation where it 
is assumed that the acidity constant (Ka) has no uncertainty. 
In practice, this may well have a very low uncertainty value 
which does not contribute to the uncertainty in the output 
measurand (pH) as determined by measurement of the 
concentrations of the two input variables ‘base’ and ‘acid’. 
By contrast, item 8 provides a more general form in which no 
assumption has been made as to the degree of uncertainty in 
the Ka (or pKa). 

Table 3, items 10 and 13 
The universally utilised function which defines the 
International Normalised Ratio (INR) is a good example of 
an equation which includes a power term. The international 
sensitivity index (ISI), the power term in the INR function, 
provides an adjustment to align a given thromboplastin 
reagent and analytical device combination with a World 
Health Organization (WHO) international thromboplastin 
standard. If the given thromboplastin reagent is identical to 
the WHO standard, the ISI equals 1.0. However, depending 

Ta
bl

e 
3.

  E
xa

m
pl

es
 o

f l
ab

or
at

or
y 

ca
lc

ul
at

io
ns

 a
nd

 th
e 

ru
le

s t
o 

be
 u

se
d 

fo
r e

va
lu

at
in

g 
un

ce
rta

in
ty

 in
 th

ei
r r

es
pe

ct
iv

e 
ou

tp
ut

 v
al

ue
s a

s d
es

cr
ib

ed
 in

 T
ab

le
 2

.
A

s d
is

cu
ss

ed
 in

 th
e 

te
xt

, t
he

 v
ar

ia
bl

es
 w

ith
in

 e
ac

h 
of

 th
e 

eq
ua

tio
ns

 a
re

 a
ss

um
ed

 to
 b

e 
un

co
rr

el
at

ed
.

It
em

Fu
nc

tio
n

E
xa

m
pl

e 
eq

ua
tio

n
M

ea
su

ra
nd

R
ul

e

1
y 

= 
x 1 +

 x
2 −

 x
3 −

 x
4

A
G

 =
 N

a+  +
 K

+  −
 C

l¯  −
 H

C
O

3¯
A

G
; a

ni
on

 g
ap

, u
ni

t m
m

ol
/L

.
3

2
y 

= 
Ax

1 +
 x

2 +
 x

3 +
 B

w
he

re
 A

 a
nd

 B
 a

re
 w

ith
ou

t u
nc

er
ta

in
ty

C
 O

sm
ol

 =
 1

.8
6 

(N
a+ )

 +
 u

re
a 

+ 
gl

uc
os

e 
+ 

9
C

 O
sm

ol
; c

al
cu

la
te

d 
se

ru
m

 o
sm

ol
al

ity
,  

un
it 

m
m

ol
/K

g.
 17

,1
8

3

3
y 

= 
x 1 −

 A
(B

 −
 x

2) 
= 

x 1 −
 A

B 
+ 

Ax
2

w
he

re
 A

 a
nd

 B
 a

re
 w

ith
ou

t u
nc

er
ta

in
ty

C
 C

a++
 =

 C
a++

 −
 0

.0
2 

(4
0 

− 
S 

al
bu

m
in

)
C

 C
a++

; c
or

re
ct

ed
 se

ru
m

 c
al

ci
um

 c
on

ce
nt

ra
tio

n,
 

un
it 

m
m

ol
/L

. 19
,2

0
3

4
y 

= 
(x

1 ×
 x

2) 
/ (

x 3 ×
 x

4)
C

rC
l =

 (U
 ×

 V
) /

 (S
 ×

 T
) 

C
rC

l; 
cr

ea
tin

in
e 

cl
ea

ra
nc

e,
 u

ni
t m

l/m
in

 o
r m

l/s
ec

 
(d

ep
en

di
ng

 o
n 

th
e 

un
its

 fo
r T

).
8

5
y 

= 
(x

1 ×
 x

2) 
/ (

x 3 ×
 x

4)
FE

s =
 (U

s ×
 S

C
r)

 / 
(U

C
r ×

 S
s)

FE
s;

 fr
ac

tio
na

l e
xc

re
tio

n 
of

 a
 su

bs
ta

nc
e,

 
di

m
en

si
on

le
ss

 q
ua

nt
ity

.34
8

6
y 

= 
lo

g 10
 x

 a
nd

 y
 =

 lo
g 10

 x
A  =

 A
 lo

g 10
 x

w
he

re
 A

 is
 w

ith
ou

t u
nc

er
ta

in
ty

pH
 =

 −
 lo

g 10
 [H

+ ]
 =

 lo
g 10

 [H
+ ]

−1
pH

 d
efi

ni
tio

n;
 d

im
en

si
on

le
ss

 q
ua

nt
ity

.
15

7
y 

= 
A 

+ 
lo

g 10
 (x

1/x
2) 

= 
A 

+ 
lo

g 10
 x

1 −
 lo

g 10
 x

2
w

he
re

 A
 is

 w
ith

ou
t u

nc
er

ta
in

ty
pH

 =
 p

K
a 

+ 
lo

g 10
 (b

as
e 

/ a
ci

d)
pH

; H
en

de
rs

on
 H

as
se

lb
al

ch
 e

qu
at

io
n 

as
su

m
in

g 
pK

a 
ha

s n
o 

un
ce

rta
in

ty
.

17

8
y 

= 
x 1 +

 lo
g 10

 (x
2/x

3) 
= 

x 1 +
 lo

g 10
 x

2 −
 lo

g 10
 x

3
pH

 =
 p

K
a 

+ 
lo

g 10
 (b

as
e 

/ a
ci

d)
pH

; H
en

de
rs

on
 H

as
se

lb
al

ch
 e

qu
at

io
n 

w
ith

 a
n 

un
ce

rta
in

ty
 e

st
im

at
e 

fo
r p

K
a.

1,
17

9
y 

= 
(ln

 x
1 −

 ln
 x

2) 
/ (

x 3 −
 x

4)
K

d =
 (l

n 
C

1 −
 ln

 C
2) 

/ (
T 2 −

 T
1)

K
d =

 d
ru

g 
el

im
in

at
io

n 
ra

te
 c

on
st

an
t, 

un
it 

tim
e−1

.35
23

10
y 

= 
(x

1 /
 x

2)A

w
he

re
 A

 is
 w

ith
ou

t u
nc

er
ta

in
ty

IN
R

 =
 (P

 / 
N

)IS
I

IN
R

; i
nt

er
na

tio
na

l n
or

m
al

is
ed

 ra
tio

, d
im

en
si

on
le

ss
 

qu
an

tit
y.

 IS
I; 

in
te

rn
at

io
na

l s
en

si
tiv

ity
 in

de
x.

10

11
y 

= 
a(

b 
x 1)D

1  ×
 (c

 x
2)D

2

w
he

re
 D

1 
an

d 
D

2 
ar

e 
w

ith
ou

t u
nc

er
ta

in
ty

eG
FR

 =
 1

75
 (S

C
r ×

 0
.0

11
3)

−1
.1

54
 (a

ge
)−0

.2
03

 
eG

FR
; e

st
im

at
ed

 G
FR

 u
si

ng
 M

D
R

D
/ID

M
S 

fo
rm

ul
a 

fo
r m

al
es

, u
ni

ts
 m

L/
m

in
/1

.7
3m

2 .30
-3

3
24

12
y 

= 
a(

b 
x 1)w

1  ×
 (c

 x
2)w

2

w
he

re
 w

1 a
nd

 w
2 c

on
tri

bu
te

 u
nc

er
ta

in
ty

eG
FR

 =
 1

75
 (S

C
r ×

 0
.0

11
3)

−1
.1

54
 (a

ge
)−0

.2
03

 
eG

FR
; e

st
im

at
ed

 G
FR

 u
si

ng
 M

D
R

D
/ID

M
S 

fo
rm

ul
a 

fo
r m

al
es

, u
ni

ts
 m

L/
m

in
/1

.7
3m

2 .30
-3

3
25

13
y 

= 
(x

1 /
 x

2)w

w
he

re
 w

 c
on

tri
bu

te
s u

nc
er

ta
in

ty
IN

R
 =

 (P
 / 

N
)IS

I
IN

R
; i

nt
er

na
tio

na
l n

or
m

al
is

ed
 ra

tio
, d

im
en

si
on

le
ss

 
qu

an
tit

y.
 IS

I; 
in

te
rn

at
io

na
l s

en
si

tiv
ity

 in
de

x.
20



64  I  Clin Biochem Rev Vol 33 May 2012

Farrance I & Frenkel R

on the particular reagent preparation and the measurement 
equipment employed, ISI values can range from 0.9 to 
approximately 1.8.27,28 

There are several possible ways to evaluate uncertainty in 
the INR functional relationship. One method could be to 
rely on multiple quality control results obtained over many 
operational situations. For this method of assessment, the 
standard deviation of internal quality control results which 
include multiple values from several reagent batches (with 
different ISI values which have been appropriately applied for 
each particular batch of reagent), may well be considered as 
providing a direct measure of INR uncertainty. 

A second method would be to calculate the propagation of 
uncertainty through the INR function using uncertainties 
in the three input variables (measured patient prothrombin 
time (P), average normal prothrombin time (N), and ISI) as 
described in Table 3. In this method, the uncertainty inherent 
in the ISI should be obtained from the reagent certification 
documentation provided by the reagent manufacturer, or 
derived ‘in-house’ using appropriate regression statistics 
which include an assessment of the standard uncertainty of 
the regression plus the uncertainty inherent in the derived 
regression coefficients.27,29 

Table 3, items 11 and 12 
Items 11 and 12 are the Modification of Diet in Renal Disease 
(MDRD) formula for estimating glomerular filtration rate 
(eGFR) in male subjects, with serum creatinine measurement 
standardised against isotope dilution mass spectrometry 
(IDMS).30 A number of similar formulae for the calculation of 
eGFR have been proposed and recently reviewed.31,32 Specific 
differences have been observed for males, females and various 
racial groups. As these differences all add multiplier terms to 
the basic form of the equation, the approach used to evaluate 
uncertainty in the output variable (eGFR) is similar for all 
forms of this equation. 

The equations shown in items 11 and 12 also contain 
‘numerical constants’ as both multipliers and power terms. 
Presented in this manner, it may well be assumed that these 
‘numerical constants’ are free of uncertainty even though 
the original reports clearly indicate this assumption cannot 
be correct. Like many empirical equations which have 
useful applications in medicine, the eGFR equations have 
been derived by stepwise multiple regression procedures to 
determine a set of variables that jointly predict eGFR.30,33 As 
the regression coefficients have been derived from data with 
a wide inherent variability, the actual uncertainty associated 
with each of the numerical terms is also required in order to 
provide a more complete uncertainty estimate of the output 

variable (eGFR). Item 12 provides the rule for estimating 
eGFR uncertainty when all measurements, including the 
empirically derived coefficients and power values have 
associated uncertainty estimates included. As the factor 
0.0113 in the serum creatinine term provides a conversion of 
units from µmol/L, its value is known with sufficient precision 
to be treated as a true numerical constant.

Item 11 provides a simplified version of item 12, where 
the empirically derived coefficient and power values are 
‘incorrectly’ assumed to be uncertainty free. 

Summary
Accreditation of Australian medical testing laboratories under 
ISO 15189 (AS 4633) has been required since July 2005.1 As 
part of this requirement, the uncertainty of quantitative results 
must also be available to demonstrate how well a measured 
value actually represents the quantity being determined. 
The GUM is generally accepted as the master document 
describing the theory and implementation of uncertainty of 
measurement. It is based on sound mathematical theory and 
utilises probability density functions and the general law 
for the propagation of uncertainty. The manner in which 
uncertainties are propagated from measured values to a 
calculated quantity through a functional relationship provides 
much of the mathematical challenge to fully understanding 
the GUM.

This review provides a summary of the major features of the 
GUM with specific application to medical testing (clinical) 
laboratories. The application of the GUM formula to various 
types of functional relationship provides a rule-based approach 
for the calculation of uncertainty estimates. A selection of the 
principal ‘rules’ and their routine application is provided, in 
order that other examples with similar mathematical forms 
may be evaluated by direct comparison.

Even though the aim of this article is to provide an 
overview of the GUM, there are many learned texts which 
provide appropriate information on the theory, derivation 
and application of the general law for the propagation of 
uncertainty.  Many assume a good grasp of mathematics and 
statistical theory, but less complex versions are available and 
thus can provide a good starting point for those wishing to 
investigate this all-important topic in more detail.38,39,40
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Appendix A. Differential Calculus and Uncertainty of 
Measurement 

Overview
Differential calculus provides a mathematical description of 
the ways in which related quantities change. This description 
relies on the concept that a small change in a quantity such 
as x, symbolised by δx, corresponds to a small change in 
the output variable y, symbolized by δy. The Greek letter 
delta (δ) is used to represent this change and does not mean 
δ multiplied by x or δ multiplied y, but is mathematical 
shorthand for ‘a small change in the specified quantity’. For 
example, if x = 10, then δx might be 0.1; that is, δx represents 
a 1% change in x and this change may be either positive or 
negative. This concept of a small change also underlies its 
relevance to the analysis of uncertainties. 

Uncertainties in measurement are created by errors, where 
an error as previously defined may also be described as a 
small departure in a quantity from its true value. An error is 
the discrepancy between a measured value and the actual or 
true value, while uncertainty is the effect of several errors 
or a very large ensemble of errors acting conjointly. As it 
may only be possible to specifically identify and numerically 
estimate a few of these errors, overall statistical variability 
can be used to provide an estimate of the range into which a 
measured value is expected to fall. 

Higher Order Terms in Differential Equations
An important theme that runs throughout the differential 
calculus is that so called higher-order terms are regarded 
as negligible, in a manner to be described more fully in the 
next section. Such higher-order terms are the squares, cubes 
and higher-order powers of δx/x such as (δx/x)2. Consider 
again the example where x = 10 and δx = 0.1. The ratio δx/x 
has the relatively small value of 0.01 or 1% . Higher-order 
terms such as (δx/x)2 or (δx/x)3 have even smaller relative 
values. Continuing with the example where x = 10 and δx = 
0.1, (δx/x)2 = 0.0001 or 0.01% and (δx/x)3 = 0.000001 or one 
part in a million. Thus, when considering δx/x as an indicator 
of relative change, higher-order terms generally contribute 
negligible additional information. 

Suppose we have a linear relationship described by y = 7x + 
3. What defines this type of equation as a straight line is the 
absence of squares or other powers in either x or y, and the 

absence of functional relationships such as square root, sine, 
logarithm, etc. A small change δx in x, will then take the value 
of x to a new value of x + δx and create a small change δy 
in y, taking y to the new value of y + δy. The new functional 
relationship will be y + δy = 7(x + δx) + 3. However, as y = 
7x + 3, we can cancel it from both sides of the equation to 
give δy = 7(δx). Because of the linear relationship, there are 
no higher-order terms such as (δx/x)2. This last equation (δy 
= 7(δx)), may also be written as δy/δx = 7. 

On the other hand, suppose that the relationship was y = 7x2 
+ 3. This is a non-linear relationship as it contains an x2 term. 
Then, if x changes to x + δx, y will change to y + δy = 7(x 
+ δx)2 + 3 = 7(x2 + 2xδx + (δx)2) + 3. Cancelling y = 7x2 + 3 
from both sides of the equation in a similar manner to that 
used above, leaves δy = 14xδx + 7(δx)2. Now, dividing both 
sides of the equation by x2 gives δy/x2 = 14(δx/x) + 7(δx/x)2. 
Using the fact that (δx/x)2 is much smaller than (δx/x) and 
can be ignored, gives δy/x2 = 14(δx/x). Multiplying by x2 
leaves δy = 14xδx, which may also be written as δy/δx = 14x.

In both the linear and non-linear case, the final relationship 
between δy and δx has been written as the ratio δy/δx. The 
reason for this will be discussed in more detail below. 

Differentiation
Figure 1(a) shows a curve of output y against a single 
input x. The point P on the curve represents input x and the 
corresponding output (measurand value) y. The point Q on 
the curve is near P, and at Q the corresponding values of 
input and output are x + δx and y + δy respectively. We may 
imagine Q as approaching P more and more closely (but still 
remaining as a point on the curve), so that δx decreases and 
so of course does the corresponding δy. Thus, in the limit 
(a popular expression in the differential calculus), when 
Q is only an infinitesimally small distance from P (but 
still remaining as a point on the curve), the higher powers 
(squared, cubed, etc) of δx and δy become even more and 
more justifiably negligible. Then, as shown in Figure 1(b), 
the ratio δy/δx, effectively becomes the tangent to the curve 
at the point P with a slope of α (alpha). The universally 
accepted symbol for the ratio δy/δx in this limiting case is 
dy/dx. The differential calculus provides the mathematical 
procedures for calculating dy/dx. Such a calculation is called 
‘differentiating y with respect to x’, or ‘taking the derivative 
of y with respect to x’. 

 
Appendix
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The actual result obtained for dy/dx will naturally depend 
on the particular functional form which describes the 
dependence of y on x. Continuing with the example of a 
single input x, the functional form which relates output y to 
input x is y = f (x). For example, if the curve in Figures 1(a) 
and 1(b) is the curve y = x2, with the input x and output y 
located at P, then at Q we have:

                                                                                 

                                                                                         (A 1)

If we replace y on the left hand side of A1 with its equivalent 
x2, the x2 terms cancel and we are left with:

	

                                                                                         (A 2)

As Q moves closer to P, δx and δy both approach zero but 
the ratio δy/δx remains finite (that is, one small number 
divided by another small number remains a finite or non-zero 
number). On the other hand, δx on the right hand side of A2 
will eventually become zero, thus:

		

                                                                                         (A 3)

which is now the derivative of y with respect to x. 

An alternative approach for obtaining the derivative 
described in A3 relies on the arguments outlined above for 
setting higher order terms of the ratio δx/x to zero. Starting 
again with A1 and cancelling y = x2 from both sides of the 
equation leaves:

	 	
                               (A 4)

and dividing both sides by x2 gives:

	 	
(A 5)

As discussed previously, the second term on the right hand 
side of A6 is negligible relative to the first term on the right 
hand side, so removing the second term (that is, (δx/x)2) and 
rearranging the remaining terms, A3 can again be obtained.

In the simplest case of a linear relationship between y and 
the single input x (that is, y = x), y + δy = x + δx, implying 
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1B 
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Figure 1(a). Points P and Q on the curve y = f (x). Coordinates of P = (x, y), coordinates of Q = (x+δx, y+δy); where δx represents 
a small change in x and δy the corresponding small change in y. Figure 1(b).  As Q approaches P, the distance P to Q along the 
curve approximates a straight line.  When Q is infinitesimally close to P, the tangent line to P and Q makes an angle α (alpha) to 
the x-axis, where tan α equals the derivative dy/dx.  This is the derivative of y with respect to x.
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immediately that δy = δx, or in the limit, dy/dx = 1. In a similar 
manner to the derivation of A3, it can be shown that if y = x3, 
then dy/dx = 3x2; if y = x4 then dy/dx = 4x3. In general, if y = 
Kxm, where m is any number and not necessarily an integer 
and K is a constant, then dy/dx = Kmxm-1. If m = −1, so that y = 
K/x, then dy/dx = −K(1/x2).

Examples of Differentiation and ‘Sensitivity’
Suppose that the measurand y is the circumference of a circle 
with radius r. Here the symbol x is replaced by r and:

		
(A 6)

Thus dy/dr = 2π (in this case, K = 2π and m = 1), and from A6 
it also follows that: 

		
(A 7)

Combining A7 and A6 as a ratio (that is, dividing both sides 
of A7 by y), it follows that:

	 	
(A 8)

From A8 it can now be seen that a 1% change in r (for 
example) also creates a 1% change in y. Still keeping to the 
case of a single input, suppose that the measurand y is now 
the area of a circle with radius r. The input again is r and the 
area is:

		
(A 9)

In this example K = π, m = 2 and dy/dr = 2π r, giving: 
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Combining A10 and A9 in a similar manner to that described 
previously: 

	 (A 11)

In this example, a 1% change in the radius now creates a 2% 
change in the measurand y, the area of the circle. This example 
also shows a more sensitive dependence of y on the input as 
compared to the previous example of the circumference of a 
circle. The factor 2 in A11 is derived from the squared term 
(r2) in A9. 

As a final example of the one input case, if we take y as the 
volume of a sphere with radius r, then: 
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In this case K = (4/3)π, m = 3 and dy/dr = 4π r2, giving:
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As before, combining A13 and A12 gives:
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As might be expected, this example now shows a highly 
sensitive dependence of the volume on the radius. A 1% 
change in the radius creates a 3% change in the volume. 
Summarising these three examples, we see that the increasing 
sensitivity of the measurand to the radius is explained by the 
successive increase in the power which defines the dependence 
of the measurand on the radius: linear for the circumference, 
quadratic for the area and cubic for the volume.

When there are several terms involving the same input 
in the expression for the measurand y, dy/dx is found by 
differentiating each term separately. For example, if y = Ax + 
Bx3 where A and B are constants, then dy/dx = A + 3Bx2.

When there is more than one input, the ordinary derivatives 
become partial derivatives. We now differentiate with respect 
to each input x1, x2, … , xn in turn, where all but the variable of 
interest is held fixed during the differentiation and temporarily 
regarded as constant. The symbol for a partial derivative is  . 
For example, if:

	

(A 15)

Rules for Calculating Uncertainty of Measurement - Appendix
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area of the circle. This example also shows a more sensitive dependence of y on the input as 
compared to the previous example of the circumference of a circle. The factor 2 in A11 is 
derived from the squared term (r2) in A9.  
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As might be expected, this example now shows a highly sensitive dependence of the 
volume on the radius. A 1% change in the radius creates a 3% change in the volume. 

 

In the simplest case of a linear relationship between y and the single input x (that is, y = x), 
y + δy = x + δx, implying immediately that δy = δx, or in the limit, dy/dx = 1. In a similar 
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then dy/dx = 4x3. In general, if y = Kxm, where m is any number and not necessarily an 
integer and K is a constant, then dy/dx = Kmxm-1. If m = −1, so that y = K/x, then dy/dx = 
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As might be expected, this example now shows a highly sensitive dependence of the 
volume on the radius. A 1% change in the radius creates a 3% change in the volume. 

 

Summarising these three examples, we see that the increasing sensitivity of the measurand 
to the radius is explained by the successive increase in the power which defines the 
dependence of the measurand on the radius: linear for the circumference, quadratic for 
the area and cubic for the volume. 
 
When there are several terms involving the same input in the expression for the measurand 
y, dy/dx is found by differentiating each term separately. For example, if y = Ax + Bx3 
where A and B are constants, then dy/dx = A + 3Bx2. 
 
When there is more than one input, the ordinary derivatives become partial derivatives. We 
now differentiate with respect to each input x1, x2, … , xn in turn, where all but the variable 
of interest is held fixed during the differentiation and temporarily regarded as constant. The 
symbol for a partial derivative is  . For example, if: 

 3
1 1 2 2 3 1 2y C x C x C x x    (A 15) 

where all the Cs are constants, we have: 

 2
1 3 2 2 2 3 1

1 2
3andy yC C x C x C x

x x
 

    
 

. (A 16) 

 
 
Some useful derivatives of y with respect to x 
(a) As stated above, if y = Kxm, where K is a constant and m can be positive, negative or 

zero and is not necessarily an integer, then dy/dx = Kmxm−1.  

(b) If y = ln x, where ln is the natural logarithm (to the base e), then dy/dx = 1/x. If y = 
log10x, where log10 denotes log to the base 10, then since log10x = (ln x) (log10e), dy/dx 
= (log10e) (1/x) = 0.4343 (1/x).  

(c) If y is given by the product y = f(x)·g(x), where f(x) and g(x) are themselves both 
functions of x, then dy/dx = f(x) dg(x)/dx + g(x) df(x)/dx . 
For example, if f(x) = x2 and g(x) = x+x3, then y = f(x)·g(x) = x2 (x+x3) = x3 + x5.  
Differentiating this expression using rule (a) above, gives dy/dx = 3x2 + 5x4. 
On the other hand, using rule (c) we have: 
 

2 2 4( ) ( )1 3 ,  so  ( ) 3dg x dg xx f x x x
dx dx

     

and 
2 4( ) ( )2 ,  so  ( ) 2 2df x df xx g x x x

dx dx
    

 
Adding these two expressions gives the same result as obtained with direct 
differentiation. 

(d) If y is given by the ratio ( )
( )

f xy
g x

 , then: 
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( ) ( )( ) ( )

( )

d f x d g xg x f xd y d x d x
d x g x
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where all the Cs are constants, we have:

		
(A 16)

Some Useful Derivatives of y with Respect to x
(a)	 As stated above, if y = Kxm, where K is a constant and m 

can be positive, negative or zero and is not necessarily 
an integer, then dy/dx = Kmxm−1. 

(b)	 If y = ln x, where ln is the natural logarithm (to the base 
e), then dy/dx = 1/x. If y = log10x, where log10 denotes log 
to the base 10, then since log10x = (ln x) (log10e), dy/dx = 
(log10e) (1/x) = 0.4343 (1/x). 

(c)	 If y is given by the product y = f(x)∙g(x), where f(x) and 
g(x) are themselves both functions of x, then dy/dx = f(x) 
dg(x)/dx + g(x) df(x)/dx .

	 For example, if f(x) = x2 and g(x) = x+x3, then y = 
f(x)∙g(x) = x2 (x+x3) = x3 + x5. 

	 Differentiating this expression using rule (a) above,  
gives dy/dx = 3x2 + 5x4.

	 On the other hand, using rule (c) we have:

and

Adding these two expressions gives the same result as 
obtained with direct differentiation.

(d)	 If y is given by the ratio                 , then:

Appendix B. Determining Standard Uncertainty in the 
Measurand

Uncertainty in Measurements With and Without 
Correlation
Given the general expression for the measurand y in terms 
of input quantities x1, x2, x3, … , xn (that is, y = f (x1, x2, x3, 
… , xn)), a corresponding expression which describes the 
combined standard uncertainty in y (u(y)) can be obtained 
by appropriately combining the standard uncertainties of 
the various input estimates (the various u(x)’s). The general 
equation for the propagation of uncertainties for uncorrelated 
inputs as outlined in the GUM and described previously 
(equation 1), is given by the expression:

	
	

(B1)

Equation B1 in effect states that the squared standard 
uncertainty u2(y) of the measurand y is a weighted sum of the 
squared standard uncertainties u2(xi) of the inputs xi (where 
i = 1, 2, 3, … , n), the weights being the squared sensitivity 
coefficients . The input variables (the xi) can be completely 
different physical or chemical quantities and need not be 
measured in the same units. 

Starting with the functional relationship y = f (x1, x2, x3, … 
, xn), a small change δx1 in x1, δx2 in δx2, … , δxn in xn, all 
propagate to produce a small change δy in y in the following 
manner:
 
		

(B2)

Equation B2 is actually an approximation, since any higher 
order terms such as (δx1)

2 have been set to zero as described in 
Appendix A. However, this approximate form is sufficiently 
accurate for most purposes. It is also important to note that 
the derivatives ∂y/∂x1, ∂y/∂x2, etc, are given numerical values 
when evaluated at the actual experimental values of x1, x2, etc, 
and so these derivatives are effectively constants.

Equation B2 may also be recognised as a generalisation of 
the single-input examples given in Appendix A. A further 
example using multiple inputs may help demonstrate that 
this equation is indeed plausible. Suppose that y = 3x1 + x1 x2. 
Then, if x1 changes by a small amount δx1 and x2 by a small 
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Summarising these three examples, we see that the increasing sensitivity of the measurand 
to the radius is explained by the successive increase in the power which defines the 
dependence of the measurand on the radius: linear for the circumference, quadratic for 
the area and cubic for the volume. 
 
When there are several terms involving the same input in the expression for the measurand 
y, dy/dx is found by differentiating each term separately. For example, if y = Ax + Bx3 
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When there is more than one input, the ordinary derivatives become partial derivatives. We 
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Appendix B. Determining standard uncertainty in the measurand 
 
Uncertainty in measurements with and without correlation 
Given the general expression for the measurand y in terms of input quantities x1, x2, x3, … , 
xn (that is, y = f (x1, x2, x3, … , xn)), a corresponding expression which describes the 
combined standard uncertainty in y (u(y)) can be obtained by appropriately combining the 
standard uncertainties of the various input estimates (the various u(x)’s). The general 
equation for the propagation of uncertainties for uncorrelated inputs as outlined in the GUM 
and described previously (equation 1), is given by the expression: 
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Equation B1 in effect states that the squared standard uncertainty u2(y) of the measurand y 
is a weighted sum of the squared standard uncertainties u2(xi) of the inputs xi (where i = 1, 
2, 3, … , n), the weights being the squared sensitivity coefficients 2( / )iy x  . The input 
variables (the xi) can be completely different physical or chemical quantities and need not 
be measured in the same units.  
 
Starting with the functional relationship y = f (x1, x2, x3, … , xn), a small change δx1 in x1, 
δx2 in δx2, … , δxn in xn, all propagate to produce a small change δy in y in the following 
manner:  
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Equation B2 is actually an approximation, since any higher order terms such as (δx1)2 have 
been set to zero as described in appendix A. However, this approximate form is sufficiently 
accurate for most purposes. It is also important to note that the derivatives 1/y x  , 2/y x  , 
etc, are given numerical values when evaluated at the actual experimental values of x1, x2, 
etc, and so these derivatives are effectively constants. 
 
Equation B2 may also be recognised as a generalisation of the single-input examples given 
in appendix A. A further example using multiple inputs may help demonstrate that this 
equation is indeed plausible. Suppose that y = 3x1 + x1 x2. Then, if x1 changes by a small 
amount δx1 and x2 by a small amount δx2, the resulting change δy in y is given by:  
 1 1 1 1 2 23( ) ( )( ).y y x x x x x x          (B3) 
In a similar manner to that described in appendix A, subtracting y = 3x1 + x1 x2 from B3 
leaves: 
 1 1 2 2 1 1 2.3y x x x x x x x          (B4) 
Rearranging B4 and ignoring the small second-order term (δx1δx2) at the end gives:  
 2 1 1 2(3 )y x x x x     . (B5) 
Using some of the concepts outlined in appendix A and differentiating the original equation 
(y = 3x1 + x1 x2) gives: 

 2 1
1 2

a d3 ny yx x
x x
 

  
 
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Substituting the partial derivatives from B6 into B5 then gives the more general expression:  

 1 2
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y yy x x
x x
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 

. (B7) 

The procedures used in obtaining B7 demonstrate the manner in which the general 
expression for the propagation of uncertainty given in B2 has been derived.  
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amount δx2, the resulting change δy in y is given by: 
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In a similar manner to that described in Appendix A, 
subtracting y = 3x1 + x1 x2 from B3 leaves:
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Rearranging B4 and ignoring the small second-order term 
(δx1δx2) at the end gives: 
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Using some of the concepts outlined in Appendix A and 
differentiating the original equation (y = 3x1 + x1 x2) gives:
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Substituting the partial derivatives from B6 into B5 then gives 
the more general expression: 
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The procedures used in obtaining B7 demonstrate the manner 
in which the general expression for the propagation of 
uncertainty given in B2 has been derived. 

We now identify each small change δx1, δx2, … , δxn, as 
random errors in the inputs x1, x2, … , xn. This implies that 
repeated measurements of the particular input will give 
slightly different results. These random errors can be any one 
of a very large, even infinite, set of similar random errors in 
the particular input and may arise from inherent fluctuations 
in the measuring device, imperfect quality control or lack of 
uniformity in any of the associated procedures. If there is any 
bias or systematic error in the measurement of any input, it 
should already have been corrected as described previously. 
This process allows us to assume a zero mean value for all the 
random errors associated with each of the inputs (that is, the 
mean of a large set of random deviations is zero). Even if bias 

does exists or has not been adequately corrected, it will not 
affect the equation for the propagation of uncertainties. 

Each input now has a set of associated random errors each 
with zero mean. Then, since B2 is linear in each of the small 
changes δy, δx1, δx2, ... , δxn, we can replace the deviations 
(δy, δxi) with their mean values (with the mean value of all 
the random errors associated with an input xi (i = 1, 2, 3, … , 
n) being zero) and obtain the correct, but uninteresting result 
that, 
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If instead of averaging the absolute values of the deviations 
however, we use the common statistical technique of taking 
the squared deviations which converts both positive and 
negative numbers into quantities which are all positive, a 
more meaningful outcome is achieved. Squaring both sides 
of B2 we obtain: 
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Equation B9 shows the terms which have been directly squared, 
followed by the cross-product terms which are preceded by 
the factor 2. This expression is simply the generalisation of 
the algebraic identity (A+B)2 = A2 + B2 + 2AB.

Considering for a moment some basic statistics, we recall that 
if a population has a variance σ2, we can estimate this variance 
using a sample of size M which is drawn from the population. 
If the individual sample measurements are represented by zi 
(that is, z1, z2, … , zM) the sample mean is given by:

		
(B10)
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and described previously (equation 1), is given by the expression: 
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Equation B1 in effect states that the squared standard uncertainty u2(y) of the measurand y 
is a weighted sum of the squared standard uncertainties u2(xi) of the inputs xi (where i = 1, 
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Equation B2 is actually an approximation, since any higher order terms such as (δx1)2 have 
been set to zero as described in appendix A. However, this approximate form is sufficiently 
accurate for most purposes. It is also important to note that the derivatives 1/y x  , 2/y x  , 
etc, are given numerical values when evaluated at the actual experimental values of x1, x2, 
etc, and so these derivatives are effectively constants. 
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in appendix A. A further example using multiple inputs may help demonstrate that this 
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The procedures used in obtaining B7 demonstrate the manner in which the general 
expression for the propagation of uncertainty given in B2 has been derived.  
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Equation B1 in effect states that the squared standard uncertainty u2(y) of the measurand y 
is a weighted sum of the squared standard uncertainties u2(xi) of the inputs xi (where i = 1, 
2, 3, … , n), the weights being the squared sensitivity coefficients 2( / )iy x  . The input 
variables (the xi) can be completely different physical or chemical quantities and need not 
be measured in the same units.  
 
Starting with the functional relationship y = f (x1, x2, x3, … , xn), a small change δx1 in x1, 
δx2 in δx2, … , δxn in xn, all propagate to produce a small change δy in y in the following 
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Equation B2 is actually an approximation, since any higher order terms such as (δx1)2 have 
been set to zero as described in appendix A. However, this approximate form is sufficiently 
accurate for most purposes. It is also important to note that the derivatives 1/y x  , 2/y x  , 
etc, are given numerical values when evaluated at the actual experimental values of x1, x2, 
etc, and so these derivatives are effectively constants. 
 
Equation B2 may also be recognised as a generalisation of the single-input examples given 
in appendix A. A further example using multiple inputs may help demonstrate that this 
equation is indeed plausible. Suppose that y = 3x1 + x1 x2. Then, if x1 changes by a small 
amount δx1 and x2 by a small amount δx2, the resulting change δy in y is given by:  
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Using some of the concepts outlined in appendix A and differentiating the original equation 
(y = 3x1 + x1 x2) gives: 
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Substituting the partial derivatives from B6 into B5 then gives the more general expression:  
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The procedures used in obtaining B7 demonstrate the manner in which the general 
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We now identify each small change δx1, δx2, … , δxn, as random errors in the inputs x1, x2, 
… , xn. This implies that repeated measurements of the particular input will give slightly 
different results. These random errors can be any one of a very large, even infinite, set of 
similar random errors in the particular input and may arise from inherent fluctuations in the 
measuring device, imperfect quality control or lack of uniformity in any of the associated 
procedures. If there is any bias or systematic error in the measurement of any input, it 
should already have been corrected as described previously. This process allows us to 
assume a zero mean value for all the random errors associated with each of the inputs (that 
is, the mean of a large set of random deviations is zero). Even if bias does exists or has not 
been adequately corrected, it will not affect the equation for the propagation of 
uncertainties.  
 
Each input now has a set of associated random errors each with zero mean. Then, since B2 
is linear in each of the small changes δy, δx1, δx2, ... , δxn, we can replace the deviations (δy, 
δxi) with their mean values (with the mean value of all the random errors associated with an 
input xi (i = 1, 2, 3, … , n) being zero) and obtain the correct, but uninteresting result that,  
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If instead of averaging the absolute values of the deviations however, we use the common 
statistical technique of taking the squared deviations which converts both positive and 
negative numbers into quantities which are all positive, a more meaningful outcome is 
achieved. Squaring both sides of B2 we obtain:  

22 2
2 2 2 2

1 2
1 2

( ) ( ) ( ) ... ( )n
n

y y yy x x x
x x x

   
      

               
 

 1 2 1 3 2 3
1 2 1 3 2 3

2 2 ... 2 ...y y y y y yx x x x x x
x x x x x x

     
              

                          
. (B9) 

 
Equation B9 shows the terms which have been directly squared, followed by the cross-
product terms which are preceded by the factor 2. This expression is simply the 
generalisation of the algebraic identity (A+B)2 = A2 + B2 + 2AB. 
 
Considering for a moment some basic statistics, we recall that if a population has a variance 
σ2, we can estimate this variance using a sample of size M which is drawn from the 
population. If the individual sample measurements are represented by zi (that is, z1, z2, … , 
zM) the sample mean is given by: 
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The unbiased estimate of the variance (σ2) for the population of z’s is given by the variance 
(s2) as defined in B11: 
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Equation B11 is a general statistical result for estimating the unbiased variance of a 
population by using sample statistics. B11 shows a summation over M terms, but then a 
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The unbiased estimate of the variance (σ2) for the population 
of z’s is given by the variance (s2) as defined in B11:

	

(B11)

Equation B11 is a general statistical result for estimating the 
unbiased variance of a population by using sample statistics. 
B11 shows a summation over M terms, but then a division 
by M−1. It is this division by M−1 (the degrees of freedom 
associated with the sample mean) rather than by M, that gives 
the unbiased estimate of the population variance. B11 is 
applicable for both small and large M. 

If we now identify the z’s as the random errors δx in any of the 
inputs x1, x2, … , xn (with a different collection of z’s for each 
input), each with a mean of zero (z = 0) as outlined above, 
then M is the number of random errors in each of the inputs 
and B11 becomes:
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The operation described in B12 of summing over M and then 
dividing the sum by M−1, is now applied to each term on 
the right side of B9 and to the single term on the left side of 
B9. We assume for the moment that the mean of each term 
with a cross-product such as δx1δx2, δx1δx3, etc, is also zero (as 
this amounts to asserting that the various inputs are mutually 
uncorrelated; see below). Equation B9 now becomes: 
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Another term for the ‘estimate of population variance’ which 
is associated with an uncertainty is u2, the ‘squared standard 
uncertainty’. Equation B13 now becomes the basic statement 
for the law for the propagation of uncertainty with independent 
(uncorrelated) inputs x1, x2, ... , xn, and output (measurand) y:
	
	

(B14)

Strictly speaking, the general equation for the propagation of 
uncertainty (B9) has been derived for population variances 
expressed as squared standard uncertainties u2(y), u2(xi), with 
i = 1, 2, 3, … , n. In practice, a population variance is usually 
an estimate derived from a ‘small’ sample of relatively few 
laboratory measurements. Depending on the particular 
situation, M could well be as low as 10 or greater than 100. 
For routine high throughput laboratory tests such as serum 
sodium activity or blood haemoglobin concentration, M, 
which now represents the number of internal quality control 
specimens, may well be greater that 1000. Whether M is large 
or small, the population variance is obtained as an unbiased 
estimate using the standard formula given in B12 for a sample 
with M items and a divisor of M−1 degrees of freedom. 

Uncertainty Components with Covariance or Correlation
The procedure described above of taking the mean of 
the cross-product terms as zero when input values are 
uncorrelated requires additional comment. As discussed 
further below, the mean value of δx1δx2 is equivalent to the 
covariance and can be written as r1,2 u(x1) u(x2), where r1,2 
is the correlation coefficient between x1 and x2. Thus, when 
there is significant correlation between any two or more of 
the inputs, say between x1 and x2, the product δx1δx2 will not 
be zero even though both δx1 and δx2 have zero mean values. 
Conversely, if the mean of the product δx1δx2 is zero, the input 
variables x1 and x2 are uncorrelated (see below, ‘A further note 
on correlation’). 

When there is correlation therefore, B14 has additional terms 
in which the means of the cross-products (the covariances) 
have been replaced by their equivalent expressions with 
correlation coefficients and uncertainties. That is:
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Equation B11 is a general statistical result for estimating the unbiased variance of a 
population by using sample statistics. B11 shows a summation over M terms, but then a 
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Equation B11 is a general statistical result for estimating the unbiased variance of a 
population by using sample statistics. B11 shows a summation over M terms, but then a 
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The operation described in B12 of summing over M and then dividing the sum by M−1, is 
now applied to each term on the right side of B9 and to the single term on the left side of 
B9. We assume for the moment that the mean of each term with a cross-product such as 
δx1δx2, δx1δx3, etc, is also zero (as this amounts to asserting that the various inputs are 
mutually uncorrelated; see below). Equation B9 now becomes:  
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Another term for the “estimate of population variance” which is associated with an 
uncertainty is u2, the “squared standard uncertainty”. Equation B13 now becomes the basic 
statement for the law for the propagation of uncertainty with independent (uncorrelated) 
inputs x1, x2, ... , xn, and output (measurand) y: 
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Strictly speaking, the general equation for the propagation of uncertainty (B9) has been 
derived for population variances expressed as squared standard uncertainties u2(y), u2(xi), 
with i = 1, 2, 3, … , n. In practice, a population variance is usually an estimate derived from 
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Strictly speaking, the general equation for the propagation of uncertainty (B9) has been 
derived for population variances expressed as squared standard uncertainties u2(y), u2(xi), 
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a “small” sample of relatively few laboratory measurements. Depending on the particular 
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which now represents the number of internal quality control specimens, may well be greater 
that 1000. Whether M is large or small, the population variance is obtained as an unbiased 
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We now identify each small change δx1, δx2, … , δxn, as random errors in the inputs x1, x2, 
… , xn. This implies that repeated measurements of the particular input will give slightly 
different results. These random errors can be any one of a very large, even infinite, set of 
similar random errors in the particular input and may arise from inherent fluctuations in the 
measuring device, imperfect quality control or lack of uniformity in any of the associated 
procedures. If there is any bias or systematic error in the measurement of any input, it 
should already have been corrected as described previously. This process allows us to 
assume a zero mean value for all the random errors associated with each of the inputs (that 
is, the mean of a large set of random deviations is zero). Even if bias does exists or has not 
been adequately corrected, it will not affect the equation for the propagation of 
uncertainties.  
 
Each input now has a set of associated random errors each with zero mean. Then, since B2 
is linear in each of the small changes δy, δx1, δx2, ... , δxn, we can replace the deviations (δy, 
δxi) with their mean values (with the mean value of all the random errors associated with an 
input xi (i = 1, 2, 3, … , n) being zero) and obtain the correct, but uninteresting result that,  
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If instead of averaging the absolute values of the deviations however, we use the common 
statistical technique of taking the squared deviations which converts both positive and 
negative numbers into quantities which are all positive, a more meaningful outcome is 
achieved. Squaring both sides of B2 we obtain:  
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Equation B9 shows the terms which have been directly squared, followed by the cross-
product terms which are preceded by the factor 2. This expression is simply the 
generalisation of the algebraic identity (A+B)2 = A2 + B2 + 2AB. 
 
Considering for a moment some basic statistics, we recall that if a population has a variance 
σ2, we can estimate this variance using a sample of size M which is drawn from the 
population. If the individual sample measurements are represented by zi (that is, z1, z2, … , 
zM) the sample mean is given by: 
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The unbiased estimate of the variance (σ2) for the population of z’s is given by the variance 
(s2) as defined in B11: 
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Equation B11 is a general statistical result for estimating the unbiased variance of a 
population by using sample statistics. B11 shows a summation over M terms, but then a 
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B11 is applicable for both small and large M.  
 
If we now identify the z’s as the random errors δx in any of the inputs x1, x2, … , xn (with a 
different collection of z’s for each input), each with a mean of zero ( 0z  ) as outlined 
above, then M is the number of random errors in each of the inputs and B11 becomes: 
 

 
2

1
2 2 2

2 2 1 2
1
...estimate of   

1
 

M
Mii

M M
z z zs

z
 



  
 




 . (B12) 

 
The operation described in B12 of summing over M and then dividing the sum by M−1, is 
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Another term for the “estimate of population variance” which is associated with an 
uncertainty is u2, the “squared standard uncertainty”. Equation B13 now becomes the basic 
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Strictly speaking, the general equation for the propagation of uncertainty (B9) has been 
derived for population variances expressed as squared standard uncertainties u2(y), u2(xi), 
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Uncertainty components with covariance or correlation 
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Example – the Propagation of Uncertainty Equation
To illustrate a particular use of the full propagation equation 
(B15) where correlations are taken into account, suppose that 
the measurand y is given simply by the product of two inputs 
x1 and x2 which have standard uncertainties u(x1) and u(x2) 
respectively. That is:
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Suppose first that x1 and x2 are uncorrelated (r1,2 = 0).  Then, 
since ∂y/∂x1 = x2 and ∂y/∂x2 = x1, we obtain using B14 for 
uncorrelated inputs:
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Now suppose that x1 = x2, the same single input. Input x1 is 
now perfectly correlated with input x2, as any quantity is 
perfectly correlated with itself. Then B16 is simply:
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Combining equations B14 and B18 gives:
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This same result (B19) is also obtained if we keep the notation 
for x1 and x2 separate, but use the propagation equation which 
involves correlation. If we start with B17, an additional 
general correlation term is now required. That is:
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In B20 we now put x1 = x2 and therefore r = +1. This gives:
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This is the same result as obtained using B19 and demonstrates 
the consistency of the full propagation equation.

Standard Uncertainty of the Mean
Another interesting application of the full propagation 
equation (B15) provides a proof of the well known formula 
for calculating the standard uncertainty of the mean (also 
referred to as the standard deviation of the mean or standard 
error of the mean). Suppose that the inputs x1, x2, x3, … , xn all 
have the same units and are simply repetitions or replications 
of the same measurement. In this situation, we may assume 
the inputs as drawn from the same population with variance 
u2(x), where now there is no need for the subscript i on the x 
of u2(x). The usual purpose of replicated measurements is to 
obtain the mean y of the n inputs, so the measurand y is simply 
the mean of the inputs. The functional relationship y = f (x1, x2, 
x3, … , xn) becomes:
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In this particular case, the partial derivatives are given by
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All the partial derivatives are equal at the value of 1/n, so B15 
gives the standard uncertainty u2(y) of the measurand as:

	
	

(B24)

Rules for Calculating Uncertainty of Measurement - Appendix

 

where r1,2 is the correlation coefficient between x1 and x2. Thus, when there is significant 
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δx1δx2 will not be zero even though both δx1 and δx2 have zero mean values. Conversely, if 
the mean of the product δx1δx2 is zero, the input variables x1 and x2 are uncorrelated (see 
below, ‘A further note on correlation’).  
 
When there is correlation therefore, B14 has additional terms in which the means of the 
cross-products (the covariances) have been replaced by their equivalent expressions with 
correlation coefficients and uncertainties. That is: 
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This is the same result as obtained using B19 and demonstrates the consistency of the full 
propagation equation. 
 
Standard uncertainty of the mean 
Another interesting application of the full propagation equation (B15) provides a proof of 
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All the partial derivatives are equal at the value of 1/n, so B15 gives the standard 
uncertainty u2(y) of the measurand as: 
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All the partial derivatives are equal at the value of 1/n, so B15 gives the standard 
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where M is the sample size and x1 and x2 are the sample 
means of the variables x1 and x2 respectively.  Combining 
the expressions in B28 and B29 gives the more usual form 
of B27:
	
	

(B30)
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In B20 we now put x1 = x2 and therefore r = +1. This gives: 
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This is the same result as obtained using B19 and demonstrates the consistency of the full 
propagation equation. 
 
Standard uncertainty of the mean 
Another interesting application of the full propagation equation (B15) provides a proof of 
the well known formula for calculating the standard uncertainty of the mean (also referred 
to as the standard deviation of the mean or standard error of the mean). Suppose that the 
inputs x1, x2, x3, … , xn all have the same units and are simply repetitions or replications of 
the same measurement. In this situation, we may assume the inputs as drawn from the same 
population with variance u2(x), where now there is no need for the subscript i on the x of 
u2(x). The usual purpose of replicated measurements is to obtain the mean y of the n inputs, 
so the measurand y is simply the mean of the inputs. The functional relationship y = f (x1, 
x2, x3, … , xn) becomes: 
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All the partial derivatives are equal at the value of 1/n, so B15 gives the standard 
uncertainty u2(y) of the measurand as: 
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where M is the sample size and 1 2and x x are the sample means of the variables 1 2andx x  
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There are four important points to be noted with respect to B30: 
• The range of r is −1 through zero to +1. These values correspond to perfect negative 

correlation, complete absence of correlation and to perfect positive correlation 
respectively. 

• The correlation between x1 and x2 is exactly the same as between x2 and x1; that is r1,2 = 
r2,1.  

• The same equation would be obtained if either M or M−1 were to be used in the 
denominators of equations B28 (the covariance) and B29 (the variances). That is, the 
correlation coefficient is the same whether population parameters or their estimates, 
sample statistics, are being used. 

• The correlation coefficient is a dimensionless quantity. This can be seen from B30, 
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There are four important points to be noted with respect to B30: 
• The range of r is −1 through zero to +1. These values correspond to perfect negative 

correlation, complete absence of correlation and to perfect positive correlation 
respectively. 

• The correlation between x1 and x2 is exactly the same as between x2 and x1; that is r1,2 = 
r2,1.  

• The same equation would be obtained if either M or M−1 were to be used in the 
denominators of equations B28 (the covariance) and B29 (the variances). That is, the 
correlation coefficient is the same whether population parameters or their estimates, 
sample statistics, are being used. 

• The correlation coefficient is a dimensionless quantity. This can be seen from B30, 

where the dimensions of r are 1 2x x  divided by 2 2
1 2x x . 

 

 
As outlined in appendix A, uncertainties in measurement are created by errors, where an 
error may be described as a small departure in a quantity from its “true” or actual value. If 
we assume that an estimate of the actual value is provided by the sample mean obtained 
from a set of replicate measurements xi (i = 1, 2, 3, … , n), the error δxi is given by: 
 
 ( )i ix x x   . (B31) 
 
This implies that for variable x1 with mean 1x , the small error or departure δx1,i from the 
mean may be written as: 
 1, 1, 1( )i ix x x   , (B32) 
and similarly for variable x2:  
 2, 2, 2( )i ix x x   . (B33) 
 
Equation B30 may therefore be written: 
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From their definitions in B32 and B33, the deviations (errors) δ1,i and δ2,i have zero means. 
If the mean value of their product (δ1,i δ2,i) which appears in the numerator of B35 is also 
zero, then r1,2 = 0. That is, if the covariance is zero, the correlation coefficient is zero. 
Conversely, if r1,2 = 0, then the mean value of the product δ1,i δ2,i is zero. This now verifies 
the statement in the first paragraph under the heading “Uncertainty components with 
covariance or correlation.”  
 
When a small number of data items have been used to determine a correlation, it is not 
expected that r1,2 will be exactly zero for uncorrelated variables, due to inherent sampling 
variation. It is expected however that r1,2 will be small. From a practical perspective, any 
assessment of the correlation between two variables should only be attempted with a 
substantial number of measurements. A suggested minimum would be 30 measurement 
pairs.  
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exactly zero for uncorrelated variables, due to inherent 
sampling variation. It is expected however that r1,2 will be 
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correlation between two variables should only be attempted 
with a substantial number of measurements. A suggested 
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