Skip to main content
. 2012 May;33(2):49–75.

Table 2.

Rules for the evaluation of standard uncertainty through functional relationships with uncorrelated variables.

Rule Notes (below) Function Expression giving standard uncertainty
1 y = x1 + x2 u2(y) = u2(x1) + u2(x2)
2 y = x1x2 u2(y) = u2(x1) + u2(x2)
3 1 y = A + Bx1 + Cx2 … + Nxn u2(y) = B2u2(x1) + C2u2(x2) +... + N2 u2(xn)
4 y = x1/x2 (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2]
5 1 y = Ax1/Bx2 (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2]
6 y = x1 × x2 (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2]
7 1 y = Ax1 × Bx2 (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2]
8 y = (x1 × x2) / (x3 × x4) (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2 + (u(x3)/x3)2 + (u(x4)/x4)2]
9 1 y = xA (u(y) / y) = |A|(u(x) / x)
10 1 y =(x1 / x2)A (u(y)/y)2 = A2 [(u(x1)/x1)2 + (u(x2)/x2)2]
11 1 y = (x1)A × (x2)B (u(y)/y)2 = A2 (u(x1)/x1)2 + B2(u(x2)/x2)2
12 y = ln x u(y) = u(x) / x
13 1 y = A + ln x u(y) = u(x) / x
14 1 y = A + ln Bx1 + ln Cx2 u2(y) = (u(x1) / x1)2 + (u(x2) / x2)2
15 1, 2, 3 y = log10 xA = A log10 x u(y) = |A|(u(x) / x) log10 e
16 1, 2, 3 y = A + log10 x u(y) = (u(x) / x) log10 e
17 1, 2, 3 y = A + log10 Bx1 + log10 Cx2 u2(y) = (log10 e)2 [(u(x1) / x1)2 + (u(x2) / x2)2]
18 1, 2 y = AeBx u(y) / y = |B|u(x)
19 4 y = xw (u(y)/y)2=w2([u(x)x]2+(lnx)2[u(w)w]2)
20 4 y = (x1 / x2)w writing q = x1/x2 for brevity (u(y)/y)2=w2([u(x1)x1]2+[u(x2)x2]2+(lnq)2[u(w)w]2)
21 5 y = f(x1, x2,..., xn) g(x1, x2,..., xn) u2(y) = (gf / ∂x1 + fg / ∂x1)2 u2 (x1) + (gf / ∂x2 + fg / ∂x2)2 u2(x2) +...
... + (gf / ∂xn + fg / ∂xn)2 u2(xn)
22 5 y = f(x1, x2,..., xn) / g(x1, x2,..., xn) u2(y) = (1/ g)4 [(gf / ∂x1fg / ∂x1)2 u2 (x1) + (gf / ∂x2fg / ∂x2)2 u2(x2) +...
... + (gf / ∂xnfg / ∂xn)2 u2(xn)]
23 y = (ln x1 − ln x2) / (x3x4) u2(y) = [1/ (x3x4)2][(u(x1) / x1)2 + (u(x2) / x2)2]+
[(ln (x1 / x2))2 / (x3x4)4][u2(x3) + u2(x4)]
24 1, 4 y = a(bx1)D1 (cx2)D2 (u(y) / y)2 = (D1u(x1) / x1)2 + (D2u(x2) / x2)2 + (u(a)/a)2 + (D1u(b)/b)2 + (D2u(c) / c)2
25 4 y = a(bx1)w1 (cx2)w2 (u(y) / y)2 = (w1u(x1) / x1)2 + (w2u(x2)/ x2)2 + (u(a)/ a)2 + (w1u(b) / b)2 + (w2u(c) / c)2
+ (ln bx1)2 u2(w1) + (ln cx2)2 u2(w2)

Notes:

1.

A, B, C, D, D1, D2 and N (all upper case) are constants with no uncertainty. They may be integers such as 2 or 3, a decimal number, a mathematical constant such as π, negative or positive.

2.

e is Euler’s number and ex is the exponential function. The value of e is approximately 2.7183.

3.

log10e is approximately 0.4343.

4.

a, b, c, w, w1 and w2 (all lower case) are uncorrelated (measured) variables with random uncertainty components.

5.

x, x1, x2, x3, …, xn are all uncorrelated (measured) variables with random uncertainty components.