Table 2.
Rule | Notes (below) | Function | Expression giving standard uncertainty |
---|---|---|---|
1 | y = x1 + x2 | u2(y) = u2(x1) + u2(x2) | |
2 | y = x1 − x2 | u2(y) = u2(x1) + u2(x2) | |
3 | 1 | y = A + Bx1 + Cx2 … + Nxn | u2(y) = B2u2(x1) + C2u2(x2) +... + N2 u2(xn) |
4 | y = x1/x2 | (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2] | |
5 | 1 | y = Ax1/Bx2 | (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2] |
6 | y = x1 × x2 | (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2] | |
7 | 1 | y = Ax1 × Bx2 | (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2] |
8 | y = (x1 × x2) / (x3 × x4) | (u(y)/y)2 = [(u(x1)/x1)2 + (u(x2)/x2)2 + (u(x3)/x3)2 + (u(x4)/x4)2] | |
9 | 1 | y = xA | (u(y) / y) = |A|(u(x) / x) |
10 | 1 | y =(x1 / x2)A | (u(y)/y)2 = A2 [(u(x1)/x1)2 + (u(x2)/x2)2] |
11 | 1 | y = (x1)A × (x2)B | (u(y)/y)2 = A2 (u(x1)/x1)2 + B2(u(x2)/x2)2 |
12 | y = ln x | u(y) = u(x) / x | |
13 | 1 | y = A + ln x | u(y) = u(x) / x |
14 | 1 | y = A + ln Bx1 + ln Cx2 | u2(y) = (u(x1) / x1)2 + (u(x2) / x2)2 |
15 | 1, 2, 3 | y = log10 xA = A log10 x | u(y) = |A|(u(x) / x) log10 e |
16 | 1, 2, 3 | y = A + log10 x | u(y) = (u(x) / x) log10 e |
17 | 1, 2, 3 | y = A + log10 Bx1 + log10 Cx2 | u2(y) = (log10 e)2 [(u(x1) / x1)2 + (u(x2) / x2)2] |
18 | 1, 2 | y = AeBx | u(y) / y = |B|u(x) |
19 | 4 | y = xw | |
20 | 4 | y = (x1 / x2)w writing q = x1/x2 for brevity | |
21 | 5 | y = f(x1, x2,..., xn) g(x1, x2,..., xn) | u2(y) = (g∂f / ∂x1 + f∂g / ∂x1)2 u2 (x1) + (g∂f / ∂x2 + f∂g / ∂x2)2 u2(x2) +... |
... + (g∂f / ∂xn + f∂g / ∂xn)2 u2(xn) | |||
22 | 5 | y = f(x1, x2,..., xn) / g(x1, x2,..., xn) | u2(y) = (1/ g)4 [(g∂f / ∂x1 − f∂g / ∂x1)2 u2 (x1) + (g∂f / ∂x2 − f∂g / ∂x2)2 u2(x2) +... |
... + (g∂f / ∂xn − f∂g / ∂xn)2 u2(xn)] | |||
23 | y = (ln x1 − ln x2) / (x3 − x4) | u2(y) = [1/ (x3 − x4)2][(u(x1) / x1)2 + (u(x2) / x2)2]+ | |
[(ln (x1 / x2))2 / (x3 − x4)4][u2(x3) + u2(x4)] | |||
24 | 1, 4 | y = a(bx1)D1 (cx2)D2 | (u(y) / y)2 = (D1u(x1) / x1)2 + (D2u(x2) / x2)2 + (u(a)/a)2 + (D1u(b)/b)2 + (D2u(c) / c)2 |
25 | 4 | y = a(bx1)w1 (cx2)w2 | (u(y) / y)2 = (w1u(x1) / x1)2 + (w2u(x2)/ x2)2 + (u(a)/ a)2 + (w1u(b) / b)2 + (w2u(c) / c)2 |
+ (ln bx1)2 u2(w1) + (ln cx2)2 u2(w2) |
Notes:
A, B, C, D, D1, D2 and N (all upper case) are constants with no uncertainty. They may be integers such as 2 or 3, a decimal number, a mathematical constant such as π, negative or positive.
e is Euler’s number and ex is the exponential function. The value of e is approximately 2.7183.
log10e is approximately 0.4343.
a, b, c, w, w1 and w2 (all lower case) are uncorrelated (measured) variables with random uncertainty components.
x, x1, x2, x3, …, xn are all uncorrelated (measured) variables with random uncertainty components.