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Abstract

The current hypothesis postulates that NFAT5 activation in the kidney’s inner medulla is due to hypertonicity, resulting in
cell protection. Additionally, the renal medulla is hypoxic (10–18 mmHg); however there is no information about the effect
of hypoxia on NFAT5. Using in vivo and in vitro models, we evaluated the effect of reducing the partial pressure of oxygen
(PO2) on NFAT5 activity. We found that 1) Anoxia increased NFAT5 expression and nuclear translocation in primary cultures
of IMCD cells from rat kidney. 2) Anoxia increased transcriptional activity and nuclear translocation of NFAT5 in HEK293 cells.
3) The dose-response curve demonstrated that HIF-1a peaked at 2.5% and NFAT5 at 1% of O2. 4) At 2.5% of O2, the time-
course curve of hypoxia demonstrated earlier induction of HIF-1a gene expression than NFAT5. 5) siRNA knockdown of
NFAT5 increased the hypoxia-induced cell death. 6) siRNA knockdown of HIF-1a did not affect the NFAT5 induction by
hypoxia. Additionally, HIF-1a was still induced by hypoxia even when NFAT5 was knocked down. 7) NFAT5 and HIF-1a
expression were increased in kidney (cortex and medulla) from rats subjected to an experimental model of ischemia and
reperfusion (I/R). 7) Experimental I/R increased the NFAT5-target gene aldose reductase (AR). 8) NFAT5 activators (ATM and
PI3K) were induced in vitro (HEK293 cells) and in vivo (I/R kidneys) with the same timing of NFAT5. 8) Wortmannin, which
inhibits ATM and PI3K, reduces hypoxia-induced NFAT5 transcriptional activation in HEK293 cells. These results demonstrate
for the first time that NFAT5 is induced by hypoxia and could be a protective factor against ischemic damage.
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Introduction

Concentration of urine by the mammal kidney requires an

osmolality gradient from cortex to medulla. In conditions of free

access to water, the renal cortex has an osmolality of about

300 mOsm, while osmolality in the renal papilla osmolality is

approximately 800 mOsm. During maximal antidiuresis, medul-

lary osmolality can reach 1200–1800 mOsm. Such high osmolality

threatens renal papillary cells, and protective mechanisms are

required for their survival [1–3].

NFAT5 (Nuclear factor of activated T-cells) is a member of the

Rel family of transcriptional activators, which includes nuclear

factor kB (NFkB). This factor has been identified as the

transcription factor necessary for survival of renal cells in the

challenging conditions of renal medulla [4–6]. NFAT5-knockout

mice are embryonically lethal, and the surviving NFAT5-null mice

have profound and progressive atrophy of the renal medulla [7].

Transgenic (Tg) mice overexpressing NFAT5dn (dominant

negative form of NFAT5) show impaired urine concentration,

progressive atrophy of the renal medulla, cortical thinning, and

severe hydronephrosis [8].

NFAT5 is rapidly activated by hypertonicity. In cells cultured at

300 mOsm, NFAT5 is present in the nucleus and cytoplasm, but a

change to hypertonic medium triggers NFAT5 translocation to the

nucleus and upregulation of NFAT5 gene expression [9–13]. In

the rat kidney, nuclear localization of NFAT5 decreases after

water loading and increases after dehydration [14]. The activation

of NFAT5 by hypertonic stress results in the induction of several

genes implicated in osmotic tolerance, such as aldose reductase

(AR) [15,16]. The NFAT5 target genes contain at least one

osmotic response element (ORE) consensus [17,18] and AP-1 site

[19].

There are positive and negative upstream molecular regulators

of the tonicity-dependent activation of NFAT5 transactivating

activity: RNA helicase A [20]; epidermal growth factor receptor

(EGFR) [21]; cAMP-dependent kinase (PKA) [22]; p38 mitogen-

activated protein kinase (MAPK) [23]; Fyn, a member of the SRC

family of non-receptor, cytoplasmic protein tyrosine kinases [23];

Ataxia Telangiectasia Mutated (ATM) [24]; phosphatidyl 3-kinase

Class IA (PI3K-IA) [25]; eNOS-NO system [26]; and PLCc1 [27].

Experiments using HEK293 and Jurkat cells suggest that PI3K

class IA is upstream of ATM in high NaCl-induced activation of

NFAT5 [25].
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In addition to the corticomedullary osmolality gradient, the

kidney has a corticomedullary oxygen gradient: the renal cortex

has an arterial partial pressure of oxygen (PaO2) of 45–50 mmHg,

while the deepest zones of the renal medulla have a pressure of

only 10–18 mmHg [3]. In fact, the renal papilla receives less than

1% of total renal blood flow [2]. Therefore, medullary cells must

also have a protective response to hypoxia.

The current hypothesis postulates that NFAT5 presents

tonicity-dependent activation stimulated by oxidative stress

[28,29]. The urine concentrating mechanism in the kidney implies

an increased osmolality, associated with low PO2, allowing

reactive oxygen species (ROS) to increase [30]. Moreover, there

is evidence suggesting that ATM and PI3K (activators of NFAT5)

are activated during hypoxia in cancer cells [31,32]. We

hypothesize that low oxygen concentration induces NFAT5

activation. To study the effect of anoxia/hypoxia (0–5% O2) on

NFAT5 expression and activity, we used primary cultures of inner

medullary collecting duct (IMCD) and HEK293 cells, growing in

isotonic and hypertonic media. We also analyzed the effect of

hypoxia on cell death in NFAT5-knockdown cells. Pharmacolog-

ical inhibition of NFAT5-activators (ATM and PI3K) was used to

study the role of these kinases on NFAT5 induction by hypoxia.

Additionally, we tested the in vivo effect of ischemia and reperfusion

(I/R) on NFAT5 activity in an experimental model of renal I/R in

the rat. In I/R kidneys, we measured mRNA and protein

abundance of NFAT5, HIF-1a, one of its downstream genes

(aldose reductase, AR), and two of its upstream activators (ATM

and PI3K). Our results showed that NFAT5 is activated in vitro and

in vivo by hypoxia and ischemia/reperfusion.

Results

Effect of hypoxia on NFAT5
We analyzed the effect of anoxia (0% of O2) on the NFAT5

protein abundance in primary cultures of inner medullary

collecting duct (IMCD) cells from rat kidney and HEK293 cells.

We used the hypertonic condition as a positive control for

NFAT5 activation [19]: 640 mosmol for primary IMDC cells

(similar to the condition in kidney medulla of rats with free

access to water) [1]. IMCD cells were cultured in isotonic

(300 mOsM) or hypertonic (640 mOsM) media for 24 hrs. As

expected, hypertonicity increased NFAT5 abundance in primary

IMCD cells (Figure 1A, 0 hrs anoxia). In isotonic media, anoxia

induced NFAT5 protein abundance to 120–250% over the

control, after 8 and 16 hrs of anoxia, respectively (Figure 1A). In

the hypertonic condition (24 hrs), 8 hrs of anoxia caused an

additional induction of NFAT5 protein abundance (Figure 1A,

8 hrs anoxia).

We tested the effect of anoxia on NFAT5 activation. First, we

evaluated its nuclear translocation in primary IMCD cells under

anoxia. Using fluorescence microscopy, we observed that NFAT5

nuclear localization was induced after 2 hrs of anoxia (Figure 1B).

Next, we evaluated the transcriptional activity of NFAT5 using

HEK293-OREX cells (stably expressing the reporter gene

OREX) [19]. As in our previous studies with HEK293 cells

[19], we used 500-mosmol hypertonic medium as a positive

control for NFAT5 activation. In an isotonic medium, 16 hrs of

anoxia increased the transcriptional activity of NFAT5 4.6-fold

(Figure 1C). In hypertonic medium, anoxia (16 hrs) increased the

transcriptional activity of NFAT5 9.6-fold as compared to the

normoxia condition (21% oxygen and 500 mosmol; Figure 1C).

In anoxia, we observed 25% of LDH release during 16 hrs of

anoxia, suggesting cell death by necrosis (data not shown). These

results suggest that anoxia induced the NFAT5 transcriptional

activity independently of tonicity. Using Western blot analysis of

nuclear and cytosolic proteins fractions obtained from HEK293

cells, we corroborated nuclear translocation of NFAT5 induced

by anoxia (Figure 1D), similar to what we observed in IMCD

cells (Figure 1B).

To gain some insight into the potential mechanisms leading to

NFAT5 activation by low oxygen, we exposed HEK293 cells to

several hypoxia conditions (1.0, 2.5, 5.0 or 21% O2). In these

experiments, we evaluated the gene expression of NFAT5 and

Hypoxia-inducible factor-1 alpha (HIF-1a; Figure 2A). HIF-1a
induction was observed starting from 5% O2, peaking at 2.5% O2.

However, NFAT5 protein abundance induction was observed only

when O2 concentration was decreased to 2.5% and was maximal

when cells were at 1% O2 (Figure 2A).

Due to HIF-1a peaking at 2.5% O2, we decided to use this

oxygen condition to evaluate the time course of NFAT5 and HIF-

1a induction by hypoxia. The mRNA and protein of HIF-1a were

induced from 4 hrs of hypoxia, with a maximum at 8 hrs

(Figure 2B). However, the induction of NFAT5 mRNA and

protein started only after 8 hrs of hypoxia and continued to

increase at 16 hrs (Figure 2B). The earlier induction of HIF-1a
suggested a potential regulatory role of HIF-1a on NFAT5

activation by hypoxia. To answer this question, we used siRNA

against NFAT5 or HIF-1a in HEK293 cells. Knocking down the

expression of HIF-1a did not affect the induction of NFAT5 in

response to hypoxia (Figure 3A). Furthermore, siRNA knockdown

of NFAT5 did not prevent the induction of HIF-1a by low oxygen

(Figure 3B). These results establish that hypoxia can activate these

two transcription factors by independent signalling pathways.

Next, we studied potential signalling pathways that could

modulate the activation of NFAT5 by hypoxia. In previous

studies, we demonstrated that ATM and PI3K (p110a) are two

positive regulators of NFAT5 in response to high NaCl [24,25].

HEK293 cells exposed to hypoxia showed a time-dependent

activation of ATM, as shown, by increased ATM phosphorylation

after 8 and 16 hrs of hypoxia (2.5% O2) (Figure 4A). In addition to

ATM, PI3K was activated by hypoxia in HEK293 cells. We

observed a significant rise in the abundance of the p110a protein

and AKT-308 phosphorylation after 8 hrs of hypoxia (Figure 4B

and 4C). These results suggested that both kinases could be

implicated in the activation of NFAT5 by hypoxia. However, in

HEK293 cells transfected with HRE-luciferase reporter, the

pharmacological inhibition of ATM and PI3K with 1 uM of

Wortmannin did not prevent the protein induction of NFAT5 by

hypoxia (Figure 5A). In contrast, Wortmannin reduced the HRE

activation by hypertonicity, hypoxia or combined stimuli

(Figure 5B). Knocking down NFAT5 we validate the participation

of NFAT5 in the HRE activation (Figure 5C).

Since NFAT5 is a pro-survival factor in osmotic stress, we

investigated the role of NFAT5 in cell tolerance to hypoxia. The

transient transfection of HEK293 cells with siRNA against

NFAT5 decreased the abundance of this transcription factor, as

compared with cells transfected with scrambled siRNA (Control,

Figure 6A). We evaluated cell death by measuring lactate

dehydrogenase (LDH) activity in the culture media. LDH activity

was increased in hypoxic cells (2.5% O2, Figure 6B). The

knockdown of NFAT5 by siRNA increased LDH activity

(Figure 6B). To estimate apoptosis induced by hypoxia in

HEK293 cells transfected with NFAT5/scrambled siRNA, we

measured cleaved caspase-3 and M-30 in HEK293 cells. Active

caspases 3 and 9 target the K8/18 proteins of the cellular

intermediate filaments network, and the M30 CytoDeath mono-

clonal antibody recognizes a neo-epitope exposed after the

cleavage of K18 by caspases. In the apoptotic cascade, these

NFAT5 Is Activated by Hypoxia
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events precede the loss of membrane asymmetry and DNA

fragmentation. Cleaved caspase-3 and M-30 were increased after

8 hours of hypoxia in control-transfected cells; when NFAT5 was

knocked down and cells were exposed to hypoxia, these two

apoptotic markers were induced (Figure 6C, D). These results

suggest that NFAT5 has a protective role against cell death

induced by hypoxia.

NFAT5 expression in kidney exposed to experimental I/R
We used morphological and functional analysis to evaluate

kidney injury in an experimental model of I/R in rat. Kidney

sections stained with PAS showed alterations in kidney

morphology from 24 hours after I/R (Figure 7A). The most

evident alterations were brush border flattening of the epithelia

and a higher number of cells undergoing mitosis. These

alterations were almost undetectable at 96 hours after I/R (data

not shown). The I/R animals had higher serum creatinine levels

than sham animals after 24 h hours of I/R (1.2 mg/dl;

Figure 7B), which recovered after 96 hrs. Urine concentration,

as estimated by determination of the U/P osmolality ratio,

showed that experimental I/R animals excreted less concentrated

urine than sham animals from 24 to 96 hrs of I/R (Figure 7C).

The hypoxia response activation was demonstrated previously,

using the same model of experimental I/R in rat kidney (2-

pimonidazole and HIF-1a) [33]. NFAT5 expression was evaluated

in kidneys from sham and experimental I/R animals by

immunohistochemistry, qRT-PCR and Western blot. Immuno-

Figure 1. Anoxia increases NFAT5 protein abundance and promotes nuclear translocation. A. Rat primary IMCD cells in isotonic
(300 mOsM) or hypertonic (640 mOsM) medium were exposed to anoxia (replacement of O2 by N2) for 0, 8, or 16 hrs. We prepared total protein
homogenates and determined NFAT5 protein abundance by Western blot. A representative picture is shown in the upper section and the graph
shows mean 6 SEM. * or & P#0.05; n = 5. (*vs. 300 mosmol/normoxia and & vs. 640 mosmol/normoxia). B. NFAT5 cellular distribution after 2 hrs of
anoxia evaluated in primary IMCD cells by immunofluorescence. Green = NFAT5 labelling (Alexa488); blue = nuclei (Hoechst 33258). C. HEK293 cells
stably expressing ORE-X cultured at 300 mosmol or 500 mosmol by 16 hrs; during this time the cells were exposed for 0, 8 or 16 hrs to anoxia, and
luciferase reporter assay was used to evaluate transcription activity; Bar graph represents Mean 6 SEM. (* or &, P,0.05; n = 5). D. HEK293 cells
cultured at 300 mosmol were exposed by 2 hrs to anoxia (a) or normoxia (n). Nuclear and cytoplasmatic fractions were separated by NE-PER and
NFAT5 abundance was determined by Western blot. Bar graph represents Mean 6 SEM. (* P,0.05; n = 5).
doi:10.1371/journal.pone.0039665.g001
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histochemical analysis of NFAT5 showed higher immunoreactivity

in the renal medulla of I/R animals as compared with sham

(Figure 8A). The signal was increased in the nuclei of tubular and

blood vessel cells (Figure 8A; see arrows), suggesting NFAT5

activation in the kidney induced by ischemia and reperfusion.

Using qRT-PCR and Western blot, we studied the time-course

activation of NFAT5 in the kidneys of sham and I/R animals. At

24 hrs, kidneys of experimental I/R animals did not have

differences in NFAT5 mRNA and protein abundance, as

compared with sham animals. However, after 48 hours of

reperfusion the abundance of NFAT5 protein (Figure 8B) and

mRNA (Figure 8C) was significantly increased in cortex and

medulla. We also evaluated HIF-1a protein abundance in kidneys

from experimental I/R and the results showed significant

induction of HIF-1a, both in cortex and medulla (Figure 8C),

peaking after 24 hrs of reperfusion. HIF-1a induction was earlier

than NFAT5. To evaluate NFAT5 activity in kidneys of

experimental I/R animals, we analysed the NFAT5-target gene,

Aldose Reductase (AR). In basal conditions AR mRNA and

protein abundance was higher in the medulla than the cortex of

sham animals (Figure 9). I/R increased AR expression, both in the

cortex and medulla of kidneys with similar NFAT5 induction

timing (Figure 8).

Finally, we studied ATM and PI3K (p110a) protein abun-

dance in vivo (experimental I/R). Kidneys from I/R animals

showed increased ATM and p110a protein abundance in the

cortex and medulla (Figure 10). Both proteins were increased

from 48 hrs of I/R according with the NFAT5 induction

(Figure 8B, C). However, p110a was weakly detectable in renal

cortex (Figure 10).

Discussion

Upregulation of NFAT5 by low PO2

Our results showed that anoxia/hypoxia (0–2.5% oxygen)

induced NFAT5 protein abundance in IMCD and HEK293 cells.

NFAT5 induction under hypoxia was observed when epithelial

cells were cultured in isotonic (300 mOsM) and hypertonic media

(500 or 640 mOsM). We observed that hypertonicity and hypoxia

Figure 2. Hypoxia induces NFAT5 in cell culture. A. HEK293 cells
cultured at 300 mosmol were subjected to dose-response curve of
hypoxia (21, 5, 2.5 and 1% O2). NFAT5 (A1) and HIF-1a (A2) protein
abundance was determinate by Western blot. B. Using 2.5% of PO2, cells
were exposed for 0, 4, 8, and 16 hrs to analyse the HIF-1a gene
expression by qRT-PCR (B1) and Western blot (B3). NFAT5 gene
expression was also determined by qRT-PCR (B2) and Western blot (B4).
Protein abundance and mRNA were normalized by tubulin (Tub) and
18S, respectively. Bar graph represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g002

Figure 3. NFAT5 and HIF-1a are independently up-regulated by
hypoxia. HEK293 cells cultured at 300 mosmol were transfected with
control (C), NFAT5 or HIF-1a siRNA. 48 hrs after transfection the cells
were cultured in normoxia (N) or 8 hrs of hypoxia (H). A. Protein
abundance of NFAT5 and HIF-1a were studied by Western blot in cells
transfected with siRNA against NFAT5. B. Protein abundance of NFAT5
and HIF-1a were studied by Western blot in cells transfected with siRNA
against HIF-1a. A representative picture is shown in the upper section.
Bar graph represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g003
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had additive effects in the induction of NFAT5. All these data

suggest that low PO2 is a positive regulator of NFAT5 expression,

independent of the hypertonicity.

In addition to the increased abundance of NFAT5 caused by

anoxia (0% O2) in cultured IMCD cells, we observed the nuclear

translocation of NFAT5. Similarly, using HEK293 cells, we

found that hypoxia (2.5% O2) induced nuclear translocation and

activation of transcription activity of NFAT5 (OREX and HRE-

luciferase). The activation of NFAT5 by hypoxia was indepen-

dent of HIF-1a. All these results indicate that low PO2 not only

increased the protein abundance of NFAT5, but also triggered its

transcriptional activity without the participation of HIF-1a.

Our studies in HEK293 cells showed that knocking down the

expression of NFAT5 did not affect cell death in isotonic-normoxic

conditions. However the reduction in NFAT5 expression caused

an important increase in apoptosis and necrosis after 8 hours of

hypoxia. These data indicate that NFAT5 has a previously

unidentified protective role against hypoxia. Medullary hypoxia is

a price that the mammalian kidney pays for efficient urinary

concentration [34,35], and NFAT5 in renal medulla may improve

tolerance for hypertonicity in a hypoxic context. Further studies

will be required to test this hypothesis, and to establish the

potential protective role of NFAT5 against hypoxic insults in other

cells and tissues.

Upregulation of NFAT5 in experimental I/R
To test if hypoxia is a positive regulator of NFAT5 in vivo, we

used experimental I/R, induced by temporary bilateral renal

ischemia for 30 min. Experimental I/R animals have significantly

increased plasma creatinine levels and reduced U/P osmolality,

indicating acute kidney injury (AKI) (Figure 7). Our results showed

a strong upregulation of NFAT5 protein expression in both cortex

and medulla of post-ischemic kidneys (Figure 8). The induction of

NFAT5 was slower than the induction of HIF-1a, but persisted up

to 72 hours post-ischemia. The impairment of urinary concentra-

tion ability (reduced U/P osmolality) in experimental I/R animals

has been associated with a decreased level of aquaporins (both in

the proximal tubule and collecting duct of post-ischemic kidneys)

Figure 4. NFAT5-regulators protein, ATM and PI3K, were
induced in HEK293 cells by hypoxia. HEK293 cells cultured at
300 mosmol were exposed for 0, 4, 8 and 16 hrs to hypoxia (2.5% of
PO2). A. Time course response of ATM phosphorylation (normalized by
total ATM) was measured by Western blot. B. Time course response of
PI3K activation was measured by Western blot of HIF-1a protein
abundance (normalized by tubulin: Tub). C. AKT-308 phosphorylation
(normalized by total AKT) was measured by Western blot. A
representative picture is shown in the upper section. Bar graph
represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g004

Figure 5. Wortmannin inhibited the NFAT5 activation by
hypertonicity and hypoxia in HEK293 cells. A. Cultures at
300 mosmol were incubated with DMSO (D) or Wortmannin (W) by
1 hour. Then the cells were cultured in normoxia (N) or 8 hrs of hypoxia
(H) and NFAT5 abundance was studied by Western blot. B. Cells
cultured at 300 mosmol were transfected with HRE-Luciferase and
24 hrs after transfection the cells were incubated with DMSO (D) or
Wortmannin (W) by 1 hour. After this treatment, the cells were cultured
in normoxia (300 or 500 mOsM) or 8 hrs of hypoxia (300 or 500 mOsM)
and the luciferase activity was assayed. C. Cells cultured at 300 mosmol
were cotransfected with HRE-Luciferase and siRNA (control or NFAT5).
48 hrs after transfection the cells were cultured in normoxia or 8 hrs of
hypoxia (300 or 500 mOsM) and the luciferase activity was assayed. Bar
graph represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g005

NFAT5 Is Activated by Hypoxia
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[36] and sodium transporters [Na, K-ATPase, rat type 1

bumetanide-sensitive Na-K-2Cl cotransporter (BSC-1), Na/H

exchanger type 3 (NHE3), and thiazide-sensitive sodium chloride

cotransporter (TSC)] [37]. Our in vivo data indicate that transient

hypoxia up-regulated NFAT5 expression in isotonic conditions

(cortex) and in the medulla of I/R kidney. The induction of

NFAT5 under hypoxic conditions in vitro and in vivo observed in

the present study supports the conclusion that low PO2 is an

independent upregulator of NFAT5 in kidney cells and that it

could have a protective role.

Consistent with our studies in cultured cells, immunoreactivity

of NFAT5 was found in the nucleus of tubules of post-ischemic

kidneys, suggesting that NFAT5 protein up-regulation is associat-

ed with increased transcriptional activity. Furthermore, the

NFAT5 up-regulation in post-ischemic kidneys was associated

with increased expression of AR (mRNA and protein) (Figure 9),

indicating increased NFAT5 activity.

Mechanism of NFAT5 activation by hypoxia
In the present study, exposure of HEK293 cells to hypoxia

caused a rapid increase in HIF-1a and NFAT5 (mRNA and

protein), but HIF-1a was induced early. However, NFAT5 was

translocated to the nucleus at 2 hrs of hypoxia, suggesting early

activation of NFTA5, independent of the induction of its gene

expression. Moreover, severe hypoxia (1% oxygen, Figure 2A)

produced the highest levels of NFAT5, but not for HIF-1a.

Sorbitol-treated AT2 cells demonstrated induction of HIF-1a by

hypertonicity [38], suggesting that both NFAT5 and HIF-1a could

respond to hypoxia and hypertonicity. Despite this information we

did not find HIF-1a induction by 500 mosmol (4–16 hrs) in

HEK293 cells (data not shown). Although the analysis of 3000 bp

upstream to the initiation site of the NFAT5 gene (human, homo

sapiens, gene ID: 10779) showed one hypoxia-response element

(HRE) consensus site, our experiments using siRNA knockdown of

NFAT5 or HIF-1a suggest that hypoxia induces both transcription

factors by different signalling pathways.

Our results in post-ischemic kidneys demonstrated that both

ATM and PI3K (p110a) were induced in I/R kidneys (Figure 10).

We also found ATM and PI3K activation in HEK293 cells

exposed to hypoxia (2.5% oxygen) (Figure 4). Using pharmaco-

logical inhibition (Wortmannin), we found a potential role of these

kinases in the NFAT5 activation by hypoxia (Figure 5). ATM

activation has also previously been described during exposure to

Figure 6. NFAT5 has a protective role against hypoxia. HEK293
cells cultured at 300 mosmol were transfected with control and NFAT5
siRNA. 48 hrs after transfection the cells were exposed for 8 hrs to 2.5%
PO2. A. Western blot of NFAT5. B. LDH activity was assayed in cell
culture media and cell lysate by spectrometric determination of NADH.
C. Western blot of M30. D. Western blot of Cleaved caspase-3. Bar
graph represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g006

Figure 7. Kidney function after experimental I/R. A. Tissue
damage evaluated by PAS staining. Brush border, epithelial flattening
and mitosis were present in kidneys from I/R animals (arrows). B. Serum
creatinine (mg/dl) of sham and 24–96 hrs post-ischemia. C. Urine and
plasma ratio (U/P) of osmolality of sham and 24–96 hrs post-ischemia.
Bar graph represents Mean 6 SEM. *, P,0.05; n = 5.
doi:10.1371/journal.pone.0039665.g007

NFAT5 Is Activated by Hypoxia
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hypoxia [31,39,40]. Recent studies in cancer cells demonstrate

alternate mechanisms for activating ATM under hypoxic condi-

tions, including the increase of radical oxygen species, oxidative

stress and DNA breaks [41]. In cancer cells exposed to hypoxia,

ATM remains diffuse throughout the nucleus, as does phosphor-

ylated ATM [32]. This localization pattern is reminiscent of that

seen in response to high salt [32], indicating that hypoxia and

osmotic stress may share a similar mechanism of ATM activation.

So, our results and others demonstrate ATM and PI3K activation

by hypoxia, suggesting its participation in NFAT5 activation by

this stimulus.

NFAT5 belongs to the nuclear factor of activated T-cells

(NFAT). NFAT proteins were originally defined as calcium/

calcineurin-dependent regulators of cytokine gene transcription in

T lymphocytes. NFAT5 can be induced in both primary quiescent

T lymphocytes and differentiated Th1 and Th2 cell populations

upon mitogen- or antigen receptor-dependent activation [42].

However, induction of NFAT5 by a hyperosmotic stimulus in

cultured epithelial cells is not blocked by the inhibition of

calcineurin [42] Further studies are needed to clarify if hypoxia

activates calcineurin-dependent mechanisms for NFAT5 induc-

tion/activation in kidney cells.

Recently studies have shown that nitric oxide is increased in I/R

in kidneys [43–45] and some reports suggest that NO could

counteract NFAT5 activation. It is possible that NO could

participate in this phenomena. We did not measure the nitric

oxide concentration.

In summary, the present study showed sufficient evidence to

propose NFAT5 activation by hypoxia in kidney epithelial cells

and its potential protective role against hypoxia. Our results

encourage further study of the role of this transcription factor in

hypoxia-induced kidney damage induced as well as its contribu-

tion in other tissues exposed to hypoxia and ischemia/

reperfusion.

Materials and Methods

Animals
Adult male Sprague-Dawley rats (250 g, n = 5 for each I/R

group: 24 h, 48 h, 72 h and 96 hrs) were housed in a 12 h light/

dark cycle. Animals were weighed at the time of initiation of

bilateral ischemic injury and after completion of experiments. The

animals had food ad libitum and controlled water and were

maintained at the University animal care facility. All experimental

procedures were in accordance with institutional and international

standards for the humane care and use of laboratory animals

(Animal Welfare Assurance Publication A5427-01, Office for

Protection from Research Risks, Division of Animal Welfare, The

National Institutes of Health). The Committee on the Ethics of

Animal Experiments of the University de Los Andes number

1908–09 approved the protocol.

Figure 8. NFAT5 and HIF-1a are induced in post ischemic kidneys. A. Kidney sections of sham and I/R animals (72 hrs) were incubated with
rabbit anti-NFAT5. Representative pictures of medulla from sham and I/R animals are shown. Preimmune serum did not stain significantly (data not
shown). Scale bar = 100 mm. The arrows indicate the localization of the corresponding marker for NFAT5. B. NFAT5 mRNA abundance in cortex and
medulla of kidneys were determined by qRT-PCR. C. NFAT5 protein abundance in cortex and medulla of kidneys were determined by Western blot D.
HIF-1a (protein abundance in cortex and medulla of kidneys was determined by Western blot. A representative picture is shown in the upper section.
Bar graph represents Mean 6 SEM. * or & indicates P,0.05; n = 5 (* vs sham medulla and & vs sham cortex).
doi:10.1371/journal.pone.0039665.g008
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Renal ischemia/reperfusion injury
Animals were anesthetized with ketamine:xylazine (25:2.5 mg/

kg, ip), maintaining a body temperature of 37uC. Both kidneys

were exposed by a flank incision, and both renal arteries were

occluded with a non-traumatic vascular clamp for 30 minutes.

After 30 minutes of clamping, clamps were removed, renal blood

flow was re-established, both incisions were sutured, and rats were

allowed to recover in a warm room. Rats were euthanized under

anesthesia (ketamine:xylazine) 24, 48, 72 and 96 hrs after

reperfusion; both kidneys were removed and processed for

immunohistochemistry, real- time PCR and Western blotting

[27,33]. A group of sham animals were included; the kidneys of

these animals were exposed by a flank incision, but they did not

receive renal artery occlusion.

Cell Culture and Treatment
Primary cultured cells were obtained from the inner renal

medulla of male Sprague-Dawley rats (120–150 g body weight).

The papillary tissue was finely minced with a surgical blade under

sterile conditions. The tissue was digested into a 10 ml culture

medium (DMEM/Ham’s F12, 5 mg/ml transferring, 5 mg/ml

human insulin, 50 nM hydrocortisone, 5 pM triiodothyronin,

50 UI/ml penicillin and 50 mg/ml streptomycin) plus 20 mg

collagenase and 7 mg hialuronidase at 37uC in a shaker for

90 minutes. After the tube was centrifuged at 1000 rpm for

1 minute, the supernatant was discarded and the pellet was

suspended in DMEM/Ham’s F12. This procedure was repeated 3

times. Finally, the pellet was suspended in culture medium with

10% fetal bovine serum (FBS) and cultured in a 30 mm culture

dish. Cells were incubated at 37uC in a 5% CO2 atmosphere.

HEK293 cells and HEK293 cells stably expressing ORE-X

(HEK293-OREX) [27] were cultured in a 300 mosmol/kg

medium according to ATCC (American Type Culture Collection,

Manassas, VA) instructions. Wortmannin was dissolved in DMSO

and the cells were incubated with 1 mM by 1 hr.

Hypoxia in cell cultures
Cultured cells were incubated in isotonic (300 mOsM) or

hypertonic (500 or 640 mOsM) media for 24 hrs at normoxic

condition (21% O2). NaCl was added to the isotonic culture media

to make the solutions hypertonic. During the 24 hrs of culture in

isotonic or hypertonic media, cells were incubated in anoxic/

hypoxic (0–5% O2) conditions for time course experiments (0, 4, 8

or 16 hours at 37uC). Hypoxic conditions were obtained by

replacing oxygen with N2, using a Heracell 150i CO2 incubator

(Thermo Scientific). To test the oxygen percentage in the

incubator, we used the Multi-Gas Detector, model Dräger X-

amH 2000 (Lübeck, Germany).

Plasmids and siRNAs
The ORE-X Luciferase reporter construct contains two copies

of human ORE-X, within a minimal IL-2 promoter [17]. The

HRE-Luciferase is a pGL2 vector containing three hypoxia

response elements from the Pgk-1 gene [46]. The siRNAs were

designed as a synthetic dsRNA Dicer substrate to enhance the

RNA interference potency and efficacy. The control and NFAT5

siRNAs have been described previously [26,47]. The siRNA

against to HIF-1a Duplex sequences were: sense, 59-Phos-

GAAGGAACCUGAUGCUUUAACUUdTdG-39 and antisense

59- CAAAGUUAAAGCAUCAGGUUCCUUCUU-39 (Integrat-

ed DNA Technologies, Coralville, IA).

Figure 9. Experimental I/R induced renal Aldose Reductase
(AR) expression. A. AR protein abundance in protein homogenates
from cortex and medulla of rat kidney determined by Western blot. A
representative picture is shown in the upper section. B. AR mRNA
abundance in kidney cortex and medulla measured by qRT-PCR. Bar
graph represents Mean 6 SEM. * or & indicates P,0.05; n = 5 (*vs sham
medulla & vs sham cortex).
doi:10.1371/journal.pone.0039665.g009

Figure 10. NFAT5-regulators protein, ATM and PI3K, were
induced in post-ischemic kidneys. ATM and PI3K (p110a) protein
abundance was measured by Western blot in cortex or medulla from rat
kidney. A. A representative picture is shown in the upper section (n = 5).
B. Relative ATM abundance. C. Relative p110a abundance. Bar graph
represents Mean 6 SEM. * or & indicates P,0.05; n = 5 (* vs sham
medulla & vs sham cortex).
doi:10.1371/journal.pone.0039665.g010

NFAT5 Is Activated by Hypoxia

PLoS ONE | www.plosone.org 8 July 2012 | Volume 7 | Issue 7 | e39665



Luciferase Assays
HEK293 cell were cultured as described above. The culture

solution was harvested and the supernatant was recovered by

centrifugation at 12000 rpm. HEK293-OREX cells [19,24,25]

and HEK293 cells transient transfected with HRE [46] were

cultured in isotonic (300 mOsM) or hypertonic media

(640 mOsM) for 24 hrs. In both osmotic conditions, the cells

were exposed to anoxia (0, 8 or 16 hours at 37uC) as described

above. Lysis reagent (CCLR) was added into each culture vessel.

The attached cells were scraped and centrifuged to

12,000 rpm615 seconds, and the supernatant was transferred to

a new tube. Luciferase activity was measured with the Luciferase

Assay System (Promega, Madison, WI) using the Biotex Lumi-

nometer. Luciferase activity was expressed in relative light units

(RLU) per mg of total cell protein.

Lactic Dehydrogenase (LDH) activity
The reaction velocity was determined by a decrease in absorbance

at 340 nm resulting from the oxidation of NADH using the

Spectrophotometer: GeneQuantTM 1300 (GE Healthcare). One

unit causes the oxidation of one micromole of NADH per minute at

25uC and pH 7.3. Into 0.9 ml of reaction mix [Tris?HCl, (0.2 M,

pH 7.3), NADH (6.6 mM, pH 7.3) and Sodium pyruvate (30 mM,

pH 7.3)] was added 0.1 ml of appropriately diluted sample and

recorded the DA340/min from initial linear portion. The results

were expressed as % of LDH released.

Western Blot Analysis
Total protein was measured using the BCA Protein Assay Kit,

(Pierce, Rockford, IL). Cortex and medulla kidney sections from

one half kidney were homogenized with an Ultra-Turrax

homogenizer in lysis buffer containing 50 mMTris-HCl,

pH 8.0, 150 mM NaCl, 1% Triton X-100, protease inhibitor

(Complete Mini, Roche Applied Science, Indianapolis, IN), and

phosphatase inhibitor cocktails (Phosphatase Inhibitor Cocktails 1

& 2, Sigma, St. Louis, MO). Tissue homogenates were then

centrifuged (13,0006 g, 10 min) and the supernatant was stored

(280uC) for SDS_PAGE and Western blot analysis. Proteins

were separated on 7.5 or 10% Tris-Glycine gels and transferred

to nitrocellulose membranes (Invitrogen, Carlsbad, CA). Western

blot analysis was performed according to standard conditions

[19]. In brief, after blocking nonspecific binding, membranes

were incubated with rabbit anti-NFAT5 (NFAT5) (Affinity Bio

Reagents, Golden, CO), goat anti-AR (Santa Cruz Biotechnol-

ogy, Santa Cruz, CA), rabbit anti-tubulin (Cell Signalling), rabbit

anti-cleaved Caspase-3 (Asp175) (Cell Signalling), mouse anti-

M30 CytoDEATH (ROCHE), rabbit anti-ATM (cell signalling),

rabbit anti-phospho ATM (cell signalling), rabbit anti-p110a
(Cell signalling), rabbit anti-AKT (Cell signalling), rabbit anti-

phospho-AKT-308 (Cell signalling) or mouse anti-HIF-1a
(Abcam) antibody overnight at 4uC. After washing with 0.1%

Tween-20 in PBS, blots were incubated with the appropriate

horseradish peroxidase (HRP)-conjugated secondary antibody for

1 hour at room temperature. Proteins were detected using an

enhanced chemiluminescence technique (PerkinElmer, Life Sci-

ences, Boston, MA). The blots were scanned and densitometric

analysis was performed using the public domain NIH Image

program v1.61 (US National Institutes of Health, http://rsb.info.

nih.gov/nih-image).

Fluorescence microscopy
First passage rat IMCD cells were grown in 8-well Chamber-

Slides (Lab-Tek, Nunc). After 24 hours of culture in isotonic

(300 mOsM) media, the tissue culture slides were incubated for

2 hrs in anoxia (O2 replaced by N2, Heracell 150i CO2

incubator; Thermo Scientific). After this time the culture medium

was quickly removed, the fixing reagent was added (100% of cold

methanol) and cells were stored overnight at 220uC. Then, the

cells were washed, incubated in the presence of blocking solution

(1 hour, room temperature) and incubated with anti-NFAT5

antibody (1 hour, room temperature) (Affinity BioReagents,

Golden, CO). After washing, the secondary antibody was added

(1 hour Alexa 488-Green, 1:200 dilution, Invitrogen). Nuclei

were stained with Hoechst 33258 (Sigma). The slides were

mounted and NFAT5 cellular distribution was analyzed by

fluorescence microscopy using an Olympus BX61WI upright

microscope with an Olympus DSU spinning disk unit. Images

were recorded with the cooled charge-coupled device video

camera (SIS-FVT2, OLYMPUS) and analyzed using the imaging

software (CellM&CellR, OLYMPUS).

Immunohistochemical analysis and tissue damage
determination

Immunohistochemical studies in paraplast-embedded sections

were carried out by tissue processing according to previously

described methods. Briefly, tissue sections were dewaxed, rehy-

drated, rinsed in 0.05 M tris-phosphate-saline (TPS) buffer

(pH 7.6) and incubated with rabbit anti-NFAT5 antibody (Affinity

BioReagents, Golden, CO) overnight at 22uC. Afterwards,

sections were washed three times for 5 minutes each, followed

by 30 minute incubation at 22uC with the corresponding

secondary antibody and with the peroxidase-antiperoxidase

(PAP) complex. Immunoreactive signals were revealed using

3,39-diaminobenzidine 0.1% (wt/vol) and 0.03% (vol/vol) hydro-

gen peroxide solution. Periodic acid-Schiff (PAS) staining was used

to determine tissue damage.

Real Time PCR
Total RNA was isolated using TRIzol (GIBCO, Life Sciences)

as per manufacturer instructions. RNA concentration was

determined by spectrophotometry and integrity of the RNA was

assessed by agarose gel electrophoresis. cDNA was prepared from

total RNA (0.5 mg) using a reverse transcription system (random

hexamers, Improm II Reverse Transcriptase System; Promega).

PCR was performed on 8 ng and 80 ng cDNA samples per 20:l

reaction in triplicate for each experiment (GoTaq Flexi DNA

polymerase, Promega). Amplicons were detected for Real-Time

Fluorescence Detection (Rotor-Gene Q, Qiagen). Primers used to

qPCR were to aldose reductase (AR) were 59-ATTCGTCCAC-

CACAGCTTCAGACT-39 and 59- AGCAATGAGGA-

CATGGCCACTCTA-39; NFAT5 59-TTCATCTCATTGCT-

CAGCG-39 and 59-GGGAGAAGATCATAGACAGATTC-39;

HIF-1a 59-ACCTCTGGACTTGCCTTTC-39 and 59-

TTTTTCTTGTCGTTCGCGC-39. and 18S (housekeeping) 59-

TTAGAGTGTTCAAAGCAGGCCCGA-39 and 59-

TCTTGGCAAATGCTTTCGCTCTGG-39. The detection sys-

tem records the number of PCR cycles (Ct) required to produce an

amount of product equal to a threshold value, which is a constant.

From the Ct values, we calculated the relative mRNA abundance

in each experimental condition, and values were normalized to the

relative abundance of each transcript in tissue from paired sham

animals, as described [19].

Statistical Analysis
Data are expressed as average 6 SEM. Values from different

groups were assessed with the parametric Student’s t-test when

NFAT5 Is Activated by Hypoxia

PLoS ONE | www.plosone.org 9 July 2012 | Volume 7 | Issue 7 | e39665



comparing two groups and Anova for multiple comparisons with a

post-hoc Fisher’s test when comparing more than two groups. The

significance level was p,0.05.
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