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Abstract
Pain, itch, heat, cold, and touch represent different percepts arising from somatosensory input.
How stimuli give rise to these percepts has been debated for over a century. Recent work supports
the view that primary afferents are highly specialized to transduce and encode specific stimulus
modalities. However, cross-modal interactions (e.g. inhibition or exacerbation of pain by touch)
support convergence rather than specificity in central circuits. We outline how peripheral
specialization together with central convergence could enable spinal microcircuits to combine
inputs from distinctly specialized, co-activated afferents and to modulate the output signals thus
formed through computations like normalization. These issues will be discussed alongside recent
advances in our understanding of microcircuitry in the superficial dorsal horn.

Introduction
Pain normally serves to alert us to danger. This is exemplified by people with congenital
insensitivity to pain, many of whom succumb to minor injuries or disease because they fail
to notice health problems normally evidenced by pain [1]. Pain without overt injury is,
however, far more common. Such pain can often be traced back to damage to or dysfunction
of the nervous system and is termed “neuropathic” [2]. Unlike nociceptive pain in which
noxious stimulation is appropriately perceived as painful, neuropathic pain is associated
with mechanical allodynia (pain caused by innocuous touch) and, paradoxically, with
hypoesthesia (reduced touch sensation) [3]. Such perceptual anomalies provide valuable
insight into how sensory information is processed and what impact that processing has on
perception.

Other somatosensory percepts include touch, itch, heat and cold. Many believe that each
percept is evoked by stimuli representing distinct (sub)modalities, but the neural signals
elicited by different modalities often interact [4–9]. Interactions can be unmasked by careful
experimentation (e.g. innocuous cooling can elicit pain, but that pain is typically inhibited
by touch [9]) and become more obvious under pathological conditions (e.g. mechanical
allodynia). These cross-modal interactions suggest that somatosensory percepts are
synthesized from the combination of neural signals representing multiple modalities rather
than on the basis of signals representing any one modality.
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Comparison with other sensory systems is revealing: We see an entire rainbow of colors
based on the relative activation of three types of cone photoreceptors (trichromacy) [10], and
we tend to smell odorant combinations (configural odor perception) rather than the
component odorants (elemental odor perception) despite exquisitely specialized olfactory
receptor cells [11]. In both cases, as in somatosensation, primary receptor cells transduce
specific features of the physical stimulus but we tend to perceive something more synthetic
because of subsequent neural processing. Despite this, cross-modal interactions in the
somatosensory system are often considered a design fault (i.e. cross-talk between labeled
lines) rather than a potentially important design feature. However, processing enabled by
cross-modal interactions could, for instance, help disambiguate stimulus quality and
intensity, the same way that comparing the relative activation of cones with different
spectral sensitivities disambiguates the color and intensity of light [10].

Before delving into spinal microcircuits, we will follow a top-down approach to establish
the importance of central pain processing. Then, following a bottom-up approach, we will
consider how spinal microcircuits could implement that processing. Given that spinal
microcircuits have been the focus of several recent reviews [12**,13**,14–18], we have
emphasized theoretical aspects of pain processing and their relation to microcircuit function
in the hope of providing a different perspective on this topic.

Pain theories
Several physiological theories of pain have been developed and can be divided into three
groups [for detailed history, see 19,20,21]. According to intensity theory, pain occurs when
non-specific cells are activated very strongly. This theory denies peripheral specialization
(and, for that reason, has been ruled out) but emphasizes the importance of convergence
onto and summation by spinal neurons [22], and thus shares some similarities with pattern
theory (see below).

According to specificity theory, pain is subserved by cells activated uniquely by noxious
stimulation, i.e. nociceptive-specific (NS) cells. For specificity to be maintained throughout
the neuraxis, postsynaptic cells in the “pain pathway” receive input exclusively from
presynaptic NS cells and are de facto NS. The neural signal conveyed via this labeled line
evokes pain upon arrival at some decoder. Other somatosensory percepts are evoked via
separate labeled lines. A critical prediction of this theory is that the specificity that exists
peripherally (i.e. in primary afferents) is maintained centrally (i.e. in spinal neurons).

According to pattern theory, perception depends on the relative activation of different types
of primary afferents – a spatial pattern at the population level [23] or, as we propose to refer
to it, a combinatorial code. A combinatorial rate code is distinct from temporally patterned
spiking at the single cell level [e.g. 24], but the term “pattern” has caused confusion in this
regard. Nevertheless, spatiotemporally patterned input to spinal circuits is likely to be
important, especially given differential conduction velocities among primary afferents.
Sensory interaction theory [25] and gate control theory [4*], both of which constitute pattern
theories, as well as more recent work [5,26,27*,28**], have all stressed interactions between
co-activated inputs. Describing labeled lines as interacting [e.g. 29*,30], despite the inherent
self-contradiction, reflects an ongoing effort to reconcile seemingly discrepant observations.

From primary afferent activation to pain – the case for central pain
processing

There is unequivocal evidence that primary afferents are specialized to detect certain stimuli
[31], e.g. nociceptors detect noxious input. This does not mean that afferents are specialized
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to evoke certain percepts. Noxious stimulation activates nociceptors and it evokes pain, but
pain is not necessarily evoked via (and only via) nociceptor activation. Nociceptor activation
and pain are correlated because they share a common cause – noxious stimulation. This
suggests but does not prove causation although most everyone, including us, would concede
that nociceptor activation normally evokes pain. Causation is supported by microstimulation
studies in humans, which showed that activating single afferents evokes somatosensory
percepts consistent with the receptive properties of the afferent [32]. The important points,
explained below, are (1) that nociceptor activation does not always evoke pain, and (2) that
pain can be evoked independent of nociceptor activation.

With regard to the first point, consider that a given stimulus does not always evoke the same
percept. For example, capsaicin can evoke pain or itch depending on how it is applied –
punctate application evokes itch [33]. This has been suggested to occur because the
peripheral endings of “itch” neurons reach more superficial layers of the skin than other
neurons [30], the idea being that “itch” neurons achieve their specificity through a
combination of transducer phenotype and anatomy (and that itch is suppressed by pain if/
when deeper “pain” fibers are activated). An alternative explanation, consistent with the
anomalous percepts elicited by punctate thermal stimulation [27*,34], is that cutaneous
stimuli are normally distributed (i.e. not punctate) and thus activate multiple afferents, the
exact combination of which dictates the evoked sensation. Indeed, hair follicles are each
innervated by multiple types of low-threshold mechanoreceptors (LTMRs), which means
mechanical stimulation invariably co-activates more than one type of afferent [28**]. Also,
the fact that temperature sensation can be qualitatively altered by differentially blocking
conduction in Aδ-cold fibers (relative to thermosensitive C fibers) [7,35] supports the link
between afferent co-activation and perception.

With regard to the second point, consider that noxious stimulation, although crucial for
normal (i.e. nociceptive) pain, is neither necessary nor sufficient to evoke pain. “Pain
signals” can originate centrally, as in central neuropathic pain [36], and peripherally
generated “pain signals” can be blocked centrally, as in episodic analgesia [37]. This raises
an important point: There is nothing innate to primary afferent nociceptors that endows
them, and only them, with the capacity to evoke pain. In apparent contradiction to this, it has
been shown in mice that ablating C fibers expressing the G protein-coupled receptor Mrgprd
reduces sensitivity to noxious mechanical stimulation without affecting thermal sensitivity,
whereas pharmacologically ablating a non-overlapping set of fibers expressing TRPV1
reduces sensitivity to noxious heat without affecting mechanical sensitivity [38]. Those data
could be taken to suggest that the former cell type is necessary for mechanical pain whereas
the latter is necessary for thermal pain; however, that necessity is true only under certain
conditions. For instance, myelinated afferents [39,40,41*] and possibly C-LTMRs [42, but
see 43] (neither of which express Mrgprd) contribute to mechanical pain under neuropathic
conditions [see also 44] and innocuous temperatures can evoke burning pain without
activating TRPV1-expressing neurons (see above). Inability of the primary afferents
involved in mechanical allodynia and anomalous temperature sensation to normally evoke
pain exemplifies how other factors, like downstream microcircuit function and co-activated
inputs, are important for perception.

In brief, somatosensory afferents are specialized to encode certain modalities and intensities
of stimulation. There is, however, no one-to-one relationship between afferent activation and
perception, contrary to what labeled lines predict. Instead, numerous observations speak to
the importance of central processing and suggest that co-activated inputs converge and
interact within spinal circuits. We will focus on circuits in the superficial dorsal horn
(laminae I and II) because of their established importance in pain processing and because
they are better understood than those in deeper laminae.
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Dorsal horn circuitry
Input

Sensory information is conveyed to the spinal cord dorsal horn via primary afferents.
Different types of primary afferents terminate in different laminae (Fig. 1) [45]. Large
myelinated fibers also send collaterals into the dorsal columns. Apart from sensory input, the
spinal dorsal horn also receives descending modulation including serotonergic fibers from
the nucleus raphe magnus, noradrenergic fibers from the locus coeruleus, and GABAergic
fibers from the rostral ventromedial medulla [for review see 12].

Intrinsic components
Projection neurons (see Output) comprise as few as 5% of all neurons in lamina I of rat
lumbar segments [46] and lamina II contains no projection neurons, meaning local
interneurons predominate. About one third are GABAergic based on immunocytochemistry
[47], and a subset of those co-express glycine, but the majority are excitatory, consistent
with paired recordings [48, but see 49]. The neuronal population is, to say the least,
heterogeneous [50–54] (Fig. 2). This heterogeneity reflects the distinct ways in which
different spinal neurons process information [55,56,57*]. Inclusion within the same circuit
of single-spiking neurons that behave as near-optimal coincidence detectors (comparable to
those in the auditory midbrain [e.g. 58]) and tonic-spiking neurons that behave as
diametrically opposite integrators is intriguing, but the implications for somatosensory
processing await further investigation. Below, we highlight our current knowledge of spinal
circuitry. For comprehensive reviews, see [12**,13**,14–18].

Using transgenic mice that express GFP selectively in (subsets of) GABAergic neurons,
intrinsic spiking patterns of inhibitory neurons have been identified [59–62,63*] and include
tonic-, transient- (phasic-) and single-spiking [e.g. 62]. The same genetic tools have not been
used to target excitatory interneurons but immunocytochemical studies provide interesting
correlations; for instance, Kv4 channels (responsible for the A-type potassium current) are
not co-expressed with GABA [64,65] and are thus present in excitatory interneurons and
some projection neurons [66]. The A-type current is associated with several spiking patterns
including delayed-, gap-, single- and reluctant-spiking [50,52–54,67]. Delayed-spiking can
be accounted for by the inactivation kinetics of the A-type potassium current, whereas
single-spiking is accounted for by a separate, noninactivating low-threshold potassium
current [57]; gap- and reluctant-spiking arise from interactions between those two currents
(unpublished observations; SR and SAP). However, tonic- and transient-spiking patterns
have also been described in excitatory interneurons [48] which, given the patterns observed
in inhibitory interneurons (see above), suggests there is no simple electrophysiological way
of delineating excitatory neurons from inhibitory neurons. Notably, Kv4.2 has been shown
to play an important role in pain plasticity [68]. Protein kinase C γ, which is expressed in a
subset of excitatory interneurons [69], also plays an important role in neuropathic pain [70].

By combining immunocytochemistry and electrophysiology, Todd and colleagues have
shown that inhibitory neurons comprise mostly islet, central and vertical morphologies with
mostly tonic spiking, whereas excitatory neurons comprise mostly radial and vertical
morphologies with various spiking patterns associated with A-type current (see above) plus
central morphology associated with transient spiking [52*]. This is generally consistent with
paired recording work by Perl and colleagues (Fig. 3). Tonic-spiking islet cells inhibit
transient-spiking central cells [49]. Transient-spiking central cells excite delayed-spiking
vertical cells, which in turn excite lamina I projection neurons [71]. Tonic-spiking central
cells form reciprocal inhibitory connections with tonic-spiking islet cells and also inhibit
vertical and possibly transient-spiking central cells [63*]. In general, excitatory connections
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tend to depress whereas inhibitory connections facilitate [72]. The two types of inhibitory
interneurons receive different C fiber input [63*] and are differentially modulated by
serotonin [73]. Opposite effects of noradrenaline on inhibitory interneurons have been
reported [73,74]. Yoshimura and colleagues have shown that islet and central cells (both
putative inhibitory interneurons) receive monosynaptic excitation uniquely via C fibers
(although the former also receive polysynaptic Aδ) and GABAergic inhibition, whereas
radial and vertical cells (both putative excitatory interneurons) receive monosynaptic C and
Aδ input and mixed GABA/glycinergic inhibition [75*]. Excitatory neurons selectively
receive input from TRPA1-expressing C fibers [76]. Notably, all cell types except islet cells
receive monosynaptic input from Mrgprd-expressing C fibers [77*], which are purportedly
critical for mechanical nociception (see From primary afferent activation to pain – the case
for central pain processing). A subset of inhibitory neurons also receive Aβ input [78].
Overall, it appears that most dorsal horn cell types receive convergent input from multiple
types of primary afferents.

Output
A subset of neurons in all laminae except lamina ll send projections to supraspinal targets
including the thalamus and brainstem [79,80], with some neurons innervating more than one
projection site [for review see 12]. Lamina I projection neurons constitute a large fraction of
the spinothalamic tract, conveying information related to pain, itch and temperature. This
cell population includes NS neurons (responsive to pinch and/or noxious heat) [81] as well
as COLD neurons (responsive to innocuous cooling and inhibited by warming) and HPC
neurons (responsive to heat, pinch and cold) [82]. Itch-specific neurons (i.e. selectively
activated by histamine) have also been described [83, but see 84]. Notably, however, dorsal
horn neurons have inhibitory receptive fields (mapped by innocuous peripheral stimulation)
that are larger than their excitatory receptive fields ([85–87]. Moreover, the excitatory
receptive field can expand and contract rapidly [88], suggesting that it is dynamically
regulated by microcircuit function rather than being hard-wired [see also 89]. Furthermore,
lamina I NS cells become responsive to innocuous stimulation after nerve injury, and this
can be acutely reproduced by experimental manipulations [90*]. These data demonstrate
that pre-existing polysynaptic pathways carrying low-threshold input to “NS” lamina I
neurons can be unmasked [see also 91,92,93]. In short, the dynamic multi-modal tuning of
spinal projection neurons demonstrates the importance of microcircuit function and argues
against labeled lines. Please note that evidence against labeled lines does not equate with
evidence against peripheral specialization – this misappropriation has caused too much
confusion not to be mentioned here.

Microcircuits and putative computations
The emerging picture is one of spinal circuits composed of numerous excitatory and
inhibitory interneurons that (i) have diverse intrinsic coding properties, (ii) receive different
patterns of primary afferent input, (iii) connect preferentially to other spinal cell types, and
(iv) are differentially modulated. Despite these advances, we are still a long way from
understanding exactly how spinal circuits contribute to pain processing. Here, in the hopes
of stimulating more research in this direction, we speculate on how microcircuits could
implement some simple but potentially important computations.

Figure 4 contrasts the input-output transformation that could be implemented by different
circuit motifs. Pure labeled lines, represented by motif 1, do not interact, meaning input a
gives output A and input b gives output B regardless of whether inputs a and b are co-
activated. By comparison, co-activation of multiple inputs is important in motifs 2–5. Motif
2 shows lateral inhibition between the top and bottom pathways; in this scenario, only the
optimally activated pathway will relay output if weak (non-optimal) excitation is
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overpowered by inhibition [94]. Inclusion of reciprocal inhibition (i.e. between inhibitory
interneurons; not shown) could improve categorization [95]. In motif 3, co-activated inputs
converge onto a common inhibitory interneuron whose inhibition is therefore proportional to
the net input; in this scenario, each output is normalized by total input [96]. In effect, motifs
2 and 3 allow ratios of different inputs to be calculated. Notably, inhibition may not be
evident except through its modulation of concurrent excitation, meaning interactions
between pathways are likely to be overlooked unless multiple inputs are co-activated. In
experiments, co-activation is typically avoided by using stimuli designed to isolate
individual inputs. This reductionist tendency may seriously limit our understanding given
that realistic stimuli are likely to be complex, and thus conducive to co-activating multiple
inputs which could then interact.

In motifs 2 and 3, output in each pathway is scaled by activity in the neighboring pathway
but it is not qualitatively altered – one could argue that the pathways still qualify as labeled
lines. Motif 4 shows the subtle way in which labeling can be compromised by cross-
excitation. Input b (without a) will give output B in the bottom pathway and could excite the
top pathway polysynaptically, but polysynaptic excitation will not be evident if B*/B′ is
subliminal. Under pathological conditions, B*/B′ may become supraliminal, in which case
the top pathway will respond to input b. Even under normal conditions, co-activation of
inputs a and b may render input B*/B′ supraliminal; thus, cross-modal interaction would
only be (normally) evident when co-activating inputs a and b. It is not clear how such
mixing could be useful, but it does seem to occur, as evidenced by mechanical allodynia
induced by disinhibition. Motif 5 shows convergent input onto an excitatory interneuron that
behaves as a coincidence detector (e.g. single-spiking neuron). Because such a neuron
requires simultaneous input from both pathways, it can multiply its input firing rates [97] or
implement a logical AND operation, thus enabling its output (which represents the
conjunction of inputs) to “color” the regular output of each pathway. This last example
highlights the importance of intrinsic cell properties. To continue that theme, consider that
normalization is best implemented by inhibitory interneurons that behave as integrators (e.g.
tonic-spiking neurons). Our postulated connection between spiking pattern and cell types
(i.e. inhibitory vs. excitatory interneuron) is consistent with available data (see Dorsal horn
circuitry).

Conclusions
Like in other sensory systems, primary somatosensory afferents are specialized to encode
elemental stimulus features. According to specificity theory, the initial neural representation
should remain unchanged as the signal passes to postsynaptic neurons along a labeled line,
implying a one-to-one relationship between stimulation, primary afferent activation, and
perception – evidence does not support this. The same peripheral specialization that is cited
as supporting specificity theory (without due regard for exclusive synaptic connectivity to
central neurons) is also required for the combinatorial coding proposed here – spinal
microcircuits could not calculate the relative activation of different types of primary
afferents if the primary afferent population was homogeneous. Such computations require an
array of variably specialized afferents and some degree of central convergence. Both
requirements seem to be fulfilled.

For now, we can only speculate that spinal microcircuits carry out computations that are
known to be important in other sensory systems but which, to date, have attracted little
attention in the context of pain processing. Identifying those computations and determining
how spinal microcircuits implement them will require much more work, but we are moving
closer. What is clear is that information processing by spinal microcircuits is important for
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how we perceive somatosensory stimuli and that improper processing can produce
debilitating perceptual anomalies like mechanical allodynia.
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Highlights

• Primary somatosensory afferents are specialized to detect different modalities
and intensities of stimulation.

• Signals carried by different types of primary afferents converge in the dorsal
horn of the spinal cord.

• Central convergence compromises central specificity but enables cross-modal
interactions.

• Spinal circuits may exploit convergence to transform input signals (representing
elemental stimulus features) into output signals that are more closely related to
perception.
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Figure 1. Afferent termination patterns in the spinal dorsal horn
Primary afferents are routinely categorized as Aβ (thickly myelinated), Aδ (thinly
myelinated), and C (unmyelinated) fibers based on conduction velocity, and can be further
divided according to their responsiveness to different modalities and intensities of
stimulation. The spinal dorsal horn is divided into laminae (indicated along left margin).
Different types of afferents terminate in different laminae. HTMR, high-threshold
mechanoreceptor. LTMR, low-threshold mechanoreceptor. Modified from [45].
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Figure 2. Classification of neurons in the superficial dorsal horn
Left column shows sample spiking patterns elicited by current injection into the cell body.
Right column shows cartoon representation of differences in dendritic morphology.
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Figure 3. Circuitry in the superficial dorsal horn
Summary of what is currently known about synaptic input to and connectivity between
different types of spinal neurons based primarily on paired recording data [49,63,71,73].
Notably, ref. 63 reports that tonic central cells receive input from TRPM8-expressing C
fibers (which have fast conduction velocities relative to other C fibers) whereas ref 49
reports that islet cells receive fast C fiber input (relative to transient central cells); this figure
depicts the former results, which are arguably more definitive. Also, this figure does not
depict input from Mrgprd-expressing C fibers to all cell types other than islet cells [77],
input from TRPA1-expressing C fibers to excitatory interneurons [76], or input from Aβ
fibers onto some inhibitory interneurons [78], not to mention the full extent of polsynaptic
connections.
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Figure 4. Putative microcircuits and their computational role
Motif 1: Pure labeled lines do not interact, meaning input a gives output A in the top
pathway and input b gives output B in the bottom pathway even when inputs a and b are co-
activated. Motif 2: Opponency is implemented by lateral inhibition, meaning output A is
modulated by inhibition B′ and output B is modulated by inhibition A′ if inputs a and b are
co-activated. Motif 3: Normalization is implemented when inputs a and b converge (perhaps
via an excitatory interneuron; not shown) on an inhibitory interneuron whose output A′+B′
modulates outputs A and B. Motif 4: Mixing is implemented by an excitatory interneuron
relaying excitation B* to the top circuit, which, if combined with polysynaptic inhibition B′,
would give output (A+B*)/B′. This is the first example in which two letters occur in the
numerator of the output, which is to say that the labeled line has been corrupted. Motif 5:
Coloring is implemented when an excitatory interneuron’s output C indicates that input a
and b have occurred together. Output C thus gives context to, or “colors”, outputs A and B.
In this example, the excitatory interneuron must behave as a coincidence detector. See text
for additional discussion.
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