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Abstract

In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent

epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with
its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in

actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 mM) and high (50 mM) doses of Cd,

through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach,

respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase,

was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron

microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de

novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of

interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd
perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are

linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin.

Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.

Key words: 5-Methylcytosine-antibody, cadmium-stress condition, chromatin reconfiguration, CHROMOMETHYLASE,

DNA-methylation, Methylation- Sensitive Amplification Polymorphism (MSAP), Posidonia oceanica (L.) Delile.

Introduction

In the Mediterranean coastal ecosystem, the endemic

seagrass Posidonia oceanica (L.) Delile plays a relevant role

by ensuring primary production, water oxygenation and

provides niches for some animals, besides counteracting

coastal erosion through its widespread meadows (Ott, 1980;

Piazzi et al., 1999; Alcoverro et al., 2001). There is also

considerable evidence that P. oceanica plants are able to

absorb and accumulate metals from sediments (Sanchiz
et al., 1990; Pergent-Martini, 1998; Maserti et al., 2005) thus

influencing metal bioavailability in the marine ecosystem.

For this reason, this seagrass is widely considered to be

a metal bioindicator species (Maserti et al., 1988; Pergent

et al., 1995; Lafabrie et al., 2007). Cd is one of most

widespread heavy metals in both terrestrial and marine

environments.

Although not essential for plant growth, in terrestrial

plants, Cd is readily absorbed by roots and translocated into

aerial organs while, in acquatic plants, it is directly taken up

by leaves. In plants, Cd absorption induces complex changes

at the genetic, biochemical and physiological levels which

ultimately account for its toxicity (Valle and Ulmer, 1972;

Sanitz di Toppi and Gabrielli, 1999; Benavides et al., 2005;

Weber et al., 2006; Liu et al., 2008). The most obvious
symptom of Cd toxicity is a reduction in plant growth due to

an inhibition of photosynthesis, respiration, and nitrogen

metabolism, as well as a reduction in water and mineral

uptake (Ouzonidou et al., 1997; Perfus-Barbeoch et al., 2000;

Shukla et al., 2003; Sobkowiak and Deckert, 2003).

At the genetic level, in both animals and plants, Cd

can induce chromosomal aberrations, abnormalities in
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Abstract

Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are

model species with a suite of resources available to help dissect the mechanism underlying plant–aphid interactions.

A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid
species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and

compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in

A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis

using a recombinant inbred line (RIL) population (n¼114) from a cross between A17 and A20 revealed that one locus,

which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of

aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for

PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass

reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant’s tolerance response
to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the

QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking

insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control.

Key words: Antibiosis, antixenosis, EPG, herbivory, hypersensitive response, necrosis, phloem, sap-sucking insect.

Introduction

Aphids and other sap-sucking insects cause significant yield

losses in agriculture globally by ingesting phloem sap and

transmitting viruses, and damage may also be caused by the

plant’s response to various elicitors injected by feeding

aphids. Therefore, a better understanding of the physiological

and genetic basis of plant–aphid interactions is of impor-

tance for effective control of aphids. Resistance to aphids

and other sap feeders is frequently controlled by major

dominant or semi-dominant genetic loci that, in three

specific cases, are known to be homologues of classical
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resistance (R) genes conditioning pathogen resistance (Rossi

et al., 1998; Dogimont et al., 2007; Wroblewski et al., 2007).

It is hypothesized that R gene products enable the plant host

to recognize specific, aphid-derived molecules (effectors) and

mount a defence response against the pathogens. Aphids

have evolved highly specific mouthparts termed stylets to

navigate through the cuticle, epidermis, and mesophyll to

establish a feeding site in the phloem sieve elements
(Tjallingii, 2006; Will et al., 2009). The aphid saliva that is

injected by stylets into the phloem or surrounding host tissues

is likely to contain the effectors that are recognized by

R proteins (Hogenhout and Bos, 2011).

To date, two aphid resistance genes have been isolated

and characterized: Mi-1 from tomato conferring resistance

to the potato aphid (Macrosiphum euphorbiae; Rossi et al.,

1998) and Vat from melon to the cotton-melon aphid (Aphis
gossypii; Dogimont et al., 2007). Both resistance genes

belong to the coiled-coil nucleotide-binding site-leucine-rich

repeat (CC-NBS-LRR) class of R genes. The Ra gene in

lettuce, which confers resistance to the lettuce root aphid

(Pemphigus bursarius L.), has been shown through reverse

genetics to be a member of this same family, contained

somewhere within a large R gene cluster (Wroblewski et al.,

2007). Furthermore, aphid resistance has been mapped to
R gene clusters in cereals (Liu et al., 2005; Sotelo et al.,

2009), legumes (Githiri et al., 1996; Yang et al., 2004;

Klingler et al., 2005, 2007; Kim et al., 2010), apple (Cevik

and King, 2002), and lettuce (Eenink et al., 1982). R gene-

mediated aphid resistance often includes multiple resistance

mechanisms, including relatively better plant growth and

reproduction despite aphid infestation (tolerance), deter-

rence of aphid settlement (antixenosis), or the complete or
partial repression of aphid growth and reproduction (antibi-

osis; Smith, 2005). However, R gene-mediated resistance to

aphids (often used in monocultured crops) can be overcome

by newly evolved aphid biotypes as seen in lettuce, melon,

soybean, and wheat (McCreight, 2008; Chen et al., 2009;

Randolph et al., 2009; Dogimont et al., 2010; Michel et al.,

2010). The use of a combination of R genes and/or

quantitative basal resistance loci could provide a practical
and sustainable strategy to solve the problem of resistance

breakdown by new biotypes (Palloix et al., 2009).

Quantitative trait loci (QTLs) associated with aphid

resistance have been identified in a limited number of crops,

where distinct QTLs control specific aspects of plant

resistance to aphids (e.g. antibiosis, antixenosis, or plant

tolerance). In alfalfa, multiple QTLs that originated from

distinct donor plants have been identified with additive
effects on pea aphid (Acyrthosiphon pisum; PA) tolerance

(Julier et al., 2004). In barley, three QTLs collectively

explain 59% of the phenotypic variation for Russian wheat

aphid (Diuraphis noxia) antibiosis (Mittal et al., 2008).

Furthermore, in sorghum, distinct QTLs effecting either

antibiosis or tolerance to greenbug (Schizaphis graminum)

biotypes I and K have been identified (Agrama et al., 2002;

Wu and Huang, 2008). Apart from the major resistance
gene Vat in melon, four additive QTLs had a major effect

on cotton-melon aphid resistance. These included separate

QTLs affecting antixenosis and antibiosis (Boissot et al.,

2010). In soybean, two QTLs controlling soybean aphid

(Aphis glycines) antibiosis were detected both under glass-

house conditions and in field trials (Zhang et al., 2009).

The model legume Medicago truncatula is a host to

multiple aphid species including the model aphid PA, and

has emerged as an effective model system for the study of

the genetic and molecular basis of aphid resistance. Single
dominant loci controlling resistance to bluegreen aphid

(BGA; Acyrthosiphon kondoi), spotted alfalfa aphid (SAA;

Therioaphis trifolii); and PA in M. truncatula cv. Jester

have been mapped to CC-NBS-LRR-rich regions on

chromosome 3 of M. truncatula (Klingler et al., 2005, 2007;

Gao et al., 2008). Resistance to BGA in Jester is conferred

by AKR (Acyrthosiphon kondoi resistance), which conditions

antibiosis, antixenosis, and tolerance, with the resistance
being phloem based (Klingler et al., 2005). In the case of

PA, the situation in M. truncatula appears more complex,

stemming from the fact that PA is a genetically diverse

species with several different biotypes with different prefer-

ential legume plant affiliations and distinct levels of damage

on host plants (Birkle and Douglas, 1999; Bournoville et al.,

2000). PA resistance in M. truncatula to an Australian

biotype is mediated by a resistance gene independent from
AKR termed APR (Acyrthosiphon pisum resistance) (Guo

et al., 2009). The resistance to PA shares similarities with

BGA resistance in that resistance involves a combination of

antibiosis and antixenosis and is also phloem mediated

(Gao et al., 2008; Guo et al., 2009). Furthermore, a single

dominant gene for resistance against a European PA bio-

type, termed RAP1 (resistance to Acyrthosiphon pisum 1),

has also been identified in the M. truncatula cv. Jemalong
A17 (Stewart et al., 2009).

In addition to the monogenic and relatively pronounced

aphid resistance described above, there are other forms of

aphid resistance found in M. truncatula accessions. While

M. truncatula cv. A17 contains the RAP1 locus against a

European PA biotype, it also confers moderate resistance

against BGA and the Australian PA biotype (Klingler et al.,

2009; Stewart et al., 2009). A hallmark of A17’s response to
the feeding of PA and BGA is the presence of necrotic flecks

surrounding the aphid’s feeding site, conferred by AIL

(aphid-induced lesions) for the European biotype (Stewart

et al., 2009) and AIN (Acyrthosiphon-induced necrosis) for

both BGA and the Australian PA biotype (Klingler et al.,

2009). In previous studies, AIL did not provide resistance to

the European PA biotype (Stewart et al., 2009), while the

AIN locus co-segregated with the reduction of aphid colony
for BGA but not for the Australian PA biotype, based on

a limited number (24) of recombinant inbred lines (RILs)

tested for PA (Klingler et al., 2009).

Both M. truncatula and PA are model species, with a suite

of genomic and molecular resources having been generated

(http://www.medicago.org; http://genouest.org/Insect/Aphid

Base/IAGC; Mutti et al., 2006; Town, 2006; IAGC, 2010;

Carolan et al., 2011), which provide unique opportunities to
dissect resistance-associated mechanisms underlying both

sides of plant–aphid interactions. In the current study, the
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moderate resistance to the Australian PA biotype in the

M. truncatula line A17 was characterized in detail and

compared with the highly susceptible M. truncatula line A20

and the more resistant M. truncatula line Jester by using both

choice and no-choice assays, and the electrical penetration

graph (EPG) technique. It was found that the moderate PA

resistance in A17 involved both antiobiosis and tolerance and

that resistance was phloem based. QTL analysis using a RIL
population from a cross between A17 and A20 revealed that

the AIN locus also contributes to PA antibiosis and that

separate, unlinked loci are responsible for plant tolerance

against either PA or BGA.

Materials and methods

Plants and aphids

Two genotypes of M. truncatula were the primary focus of this
study: A17 and A20. A RIL population derived from these
genotypes was generated previously (Klingler et al., 2009) and used
in this study for QTL analysis to identify loci important in aphid–
plant interactions. Additionally, Jester, a line closely related to A17
but more resistant to PA and BGA than A17, was used as a control
to compare the degree of resistance (Klingler et al., 2005; Gao et al.,
2008). Seeds were germinated and plants grown as described by
Klingler et al. (2009). The aphid species used were PA and BGA
collected in Western Australia (Gao et al., 2007). PA and BGA were
reared on faba bean (Vicia faba) and subterranean clover (Trifolium
subterraneum), respectively, as described by Gao et al. (2007).

PA performance when confined on individual plants

Plants were grown in individual 0.9 litre pots in a greenhouse
under natural light, and 12 replicate plants of each accession were
randomly arranged. Three weeks after sowing, the largest trifoliate
leaf was infested with a cohort of 10 early-instar nymphs of PA for
which the weight was recorded, and caged with a mesh bag. Four
days after infestation, the number and weight of the surviving
aphids on each plant were recorded. The mean relative growth rate
(MRGR) was calculated using the formula described in Gao et al.
(2007) and this experiment is referred to as the ‘short-term
experiment’. The Tukey HSD test (JMP 7.0 software; SAS
Institute Inc.) was used to evaluate differences between lines in
MRGR and aphid survivorship
To evaluate the response of the plant lines to the high infestation

pressure in a long-term experiment, two apterous adult aphids were
confined to a 2-week-old plant and the aphids were left to grow and
reproduce for 9 d or 15 d on the caged plant. The aphids were
confined to a seedling by placing the plant inside a transparent plastic
bottle modified with a cut-off base and two large mesh-covered
ventilation holes. The plants were grown in separate 0.9 litre pots. At
9 and 15 days post-infestation (dpi), the bottles were removed, the
aphids were brushed off from each plant, and the aphid colony fresh
weight for each plant was recorded. For both time points, 12
replicates were used and the t-test with JMP 7.0 software was used
to compare the differences between A17 and A20 for each time point.

Plant damage and PA performance when allowed to move freely

among plants

To assess the performance of PA and plant damage caused by
aphids, 2-week-old seedlings of M. truncatula lines A17, A20, and
Jester grown in separate 0.9 litre pots were infested with two
apterous adult aphids. The aphids were allowed to develop,
reproduce, and move freely among plants. The experiment
included three biological replicates per accession. Aphid population

build-up and feeding damage on plants were assessed at 3 d
intervals from the third day up to 21 dpi using a scale from 1 to 5
and 0 to 5, respectively. For the aphid population build-up, the
rating scale was as follows: 1¼early instar nymphs present;
2¼early and late instar nymphs and adults spread on most stems;
3¼aphids spread on all stems and new trifoliate leaves; 4¼high
density of aphids on all stems and 50–80% trifoliate leaves covered
with aphids; 5¼plants overwhelmed by aphids with >80% covered.
For feeding damage on plants, the scale was as follows: 0¼no
visual damage; 1¼slight leaf curl, yellow spots; 2¼yellowing leaves,
curling leaves; 3¼some leaves dying, others yellowing; 4¼approx-
imately 50% leaves browning off or dying; 5¼dead.

Host selection behaviour

A17 and A20 were tested for host selection by PA alatae in a growth
chamber. The experiment was set up according to Klingler et al.
(2005). Two plants of each accession were randomly placed in the
cage so that one plant occupied each of the four corners. Pots were
spaced so that no leaves touched other plants. Fifty PA alatae were
released at the platform above the plant in the centre of the each
cage. Six cages representing six replicates were set up. Settling of
aphids on each plant was recorded at 3, 6, 24, 48, 72, and 96 h after
release. Paired t-test (JMP 7.0 software; SAS Institute Inc.) was used
to measure the preference of settled alatae at each time point.

Aphid feeding behaviour

The feeding behaviour of PA on A17 and A20 was investigated by
the direct-current EPG technique (Tjallingii, 1988). When plants were
3–4 weeks old, a single apterous adult PA was placed on a new fully
expanded trifoliate leaf and monitored for 8 h as described by
Klingler et al. (2005). The EPG output was recorded and analysed
with Probe 3.0 (Wageningen, The Netherlands, www.epgsystems.eu).
Sixteen biological replicates were included for each accession. EPG
waveforms were scored by waveform pattern and auto power spectra
[which present the waveform frequency (Hz) versus the relative
magnitude with a maximum of 1, which provide a major character-
istic of waveform identity]. The acquired data were further analysed
by the tool based on Microsoft Excel� Workbook developed by
Sarria et al. (2009). The parameters measured in this work included:
the total duration of the pathway phase (C); total duration of xylem
ingestion (G); total duration of salivation (E1); total duration of
phloem ingestion (E2); the derailed stylet (F); total duration of non-
penetration (np); and total duration of extracellular salivation (E1e).
The Mann–Whitney U-test using the software SPSS 13.0 for
Windows was used for the data analysis.

Genetic analysis of plant–aphid interactions

The original F6 A173A20 genetic map was constructed using a set
of 89 simple sequence repeat (SSR) markers based on 114 RILs,
using the Multipoint v1.2 software according to Kamphuis et al.
(2008), for a RIL selfing population instead of an F2 population.
The genotype data for the 114 RIL are provided in Supplementary
Table S1 available at JXB online. In Table S1, linkage groups
(LGs) 4 and 8 are grouped together due to the presence of
a reciprocal translocation in A17 (Kamphuis et al., 2007). The
genetic map spans a total of 445.3 cM with an average distance of
4.79 cM between markers. The LGs of the genetic maps presented
are similar in length to previously published maps (Thoquet et al.,
2002; Choi et al., 2004; Mun et al., 2006; Kamphuis et al., 2008),
and the 89 markers appear to be evenly distributed across the eight
LGs. Small quantities of the A173A20 RIL population seed are
available upon request. The phenotypes for PA and BGA
resistance of the F7 RILs were investigated with a subset of 87
and 93 RILs, respectively. Twelve randomized complete blocks
were used with one repeat of each RIL as well as the parents
randomly assigned. Six blocks were infested with PA and six
blocks were used as uninfested controls. For BGA, 12 replicates
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from each RIL along with 12 replicates from each parent were
divided into two groups, one group for infestation and the other
for the non-infested control. Within each group, the six replicate
genotypes were arranged in a completely randomized design as
described previously by Klinger et al. (2009).
For PA, one group of seedlings was infested with two apterous

adults 15 d after sowing, including an uninfested control group. At
17 dpi, the aphids were collected and the plants were cut off at the
soil level. Aphid biomass, plant biomass, and symptoms such as
necrosis were recorded. For BGA, 18 d after sowing, six
individuals per RIL family were infested with two adult apterous
BGA and six individuals were not infested (i.e. the controls). At 19
dpi, the aphids and plants were harvested and assessed in the same
manner as in the PA experiment.
The QTL analysis was performed with the software package

MultiQTL v2.5 using the general interval mapping and marker
restoration options for a RIL-selfing population as described by
Lichtenzveig et al. (2006). Using a LOD score of 3 as the minimal
threshold for further analysis, the hypotheses that a single locus or
two-linked loci have an effect on resistance to aphids were tested.

Results

PA performance in no-choice and choice experiments

Previous studies showed evidence that A17 is relatively
resistant compared with A20, but more susceptible than

Jester, to the Australian PA biotype (Klingler et al., 2005,

2009; Gao et al., 2008). To characterize the PA resistance in

A17 further, the MRGR and survivorship of PA on A17,

A20, and Jester in a confined leaf cage were compared. In

this short-term (4 d) experiment, no significant differences

were found in survivorship of the nymphs infested on the

different M. truncatula accessions (Fig. 1A). However, the
cohorts of PA nymphs showed intermediate MRGR on A17

compared with the susceptible line A20 and the resistant

line Jester (Fig. 1B). To compare the antibiotic effect of

genotypes under high infestation pressure for a long period,

whole-plant cages were used to confine two PA adults to

individual plants. At 9 dpi the fresh weight of the PA

colony was lower on A17, but not significantly different

from A20, whereas by 15 dpi the PA colony fresh weight
was significantly lower on A17 compared with A20 (Fig. 2).

In a choice experiment, adult aphids and their progeny

were allowed to move freely among different plants. Plant

damage and aphid population build-up were assessed in

a time-course experiment of 21 d. As shown in Fig. 3, 6 dpi

with two PA adults per plant, the aphids reproduce and

colonize A20 plants, building up larger aphid populations

(mean score¼3.5) at a higher rate than in A17 and Jester

plants where the populations are smaller (mean score¼2.5 and

1.7, respectively). On A20, aphid populations reached a peak
(mean score¼4.5) at 12 dpi. At this stage, A20 plants were

starting to wilt and collapse due to the high aphid pressure.

With the collapse of A20, aphids migrated to the nearby

healthier plants. At 15 dpi, the aphid population on A17

reached a peak (mean score¼4.6) and most A20 plants had

succumbed to the PA infestation. With the death of A20

plants, and A17 plants now starting to show severe damage

symptoms, aphids moved to Jester and caused the highest
density of aphids on Jester at 18 dpi (mean score¼3.7). At this

stage, A17 showed significantly more stunting, wilting, and

leaf curling compared with the resistant Jester.

PA displays no host preference between A17 and A20

Antixenosis indicates the presence of plant morphological

or chemical factors that adversely affect arthropod behav-

iour, resulting in the selection of an alternative host plant

(Smith, 2005). It had previously been reported that PA

showed a preference for A17 over the more resistant Jester,

Fig. 1. Survivorship (A) and mean relative growth rates (B) of cohorts of PA on three different M. truncatula accessions (Jester, A17, and

A20). Each value represents the mean and standard error of 12 biological replicates. Means labelled with a different letter are significantly

different (Tukey HSD test, P < 0.05).

Fig. 2. PA colony growth on A17 and A20 observed at 9 days

post-infestation (dpi) and 15 dpi in a no-choice test. Values are the

mean and standard error of 12 biological replicates. Means

labelled with * for M. truncatula line A17 are significantly different

from those for line A20 (P < 0.05).
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suggesting that antixenosis is involved in Jester’s resistance

to PA (Gao et al., 2008). In order to determine whether

antixenosis is involved in the moderate resistance to PA in

A17 relative to the highly susceptible A20, a cohort of PA

alatae were quickly dispersed from the releasing platform to

allow a choice between the susceptible A20 and the resistant

A17 plants. The average number of settled alatae increased

on both A17 and A20 accessions up to 24 h after aphid
release. Despite a trend towards more PA alatae settling on

A20, there was no significant difference between the

resistant A17 and susceptible A20 plants in settling behav-

iour over the course of the experiments, suggesting that

antixenosis does not play a significant role in the resistance

to PA in A17 (Supplementary Fig. S1 at JXB online).

Resistance in A17 is phloem mediated

The EPG technique was used to record PA feeding behaviour

on the resistant A17 and susceptible A20. EPG is a robust

tool to discern activities of aphid stylets as well as locations in

plant tissue in real time, including salivation into sieve
elements and passive uptake of phloem sap (Tjallingii and

Hogen-Esch, 1993). As shown in Fig. 4, the proportions of

time that tethered apterae spent outside the plant (np,

non-penetration) or contacting xylem (G) did not differ

significantly between A17 and A20. On A17, aphids spent

significantly more time than on A20 penetrating between cells

en route to the vascular tissue (C, pathway phase) (P < 0.05)

and salivating (E1) into the phloem (P < 0.05). However, the

proportion of time that aphids spent on A17 ingesting phloem

sap was significantly lower than on A20 (P < 0.05) (Fig. 4).

On A17, extracellular salivation (E1e) occurred substan-

tially more frequently than on A20 (P < 0.05). Thirteen out

of 16 E1e periods happened after E1 in A17 plants, while

there were only two periods of E1e in A20 plants.

Furthermore, on A17, aphids showed significantly less
sustained phloem sap ingestion (sustained E2 waveform

longer than 10 min) than A20 (P < 0.05).

The genetic basis of resistance to PA and BGA in
M. truncatula A17

All the 47 F2:7 families that harboured an A17 allele in the

AIN region displayed necrotic flecks at the site of PA

infestation, confirming the previous results gained from

a smaller RIL population (Klingler et al., 2009).

To determine the role of the AIN locus in the PA resistance,

QTL analysis was performed using the aphids’ fresh weight
data. This analysis identified a highly significant locus with

a LOD score of 4.5 explaining 23% of aphid fresh weight

(AFW; Fig. 5A; Table 1) on chromosome 3 (LG3). The AFW

QTL spans across the region in which the AIN locus resides

(Fig. 5A). For BGA, the aphid biomass was measured

previously as aphid dry weight for 93 RILs (Klingler et al.,

2009). QTL analysis on these data confirmed a major, highly

significant locus with a LOD score of 35.3 explaining 87% of
the phenotype for BGA dry weight (ADW) in the region

containing AIN (Fig. 5B; Table 2). The AIN locus is thus the

major locus controlling BGA antibiosis, consistent with

previous results (Klingler et al., 2009).

Table 1. Features of the QTLs associated with the resistance

response to pea aphid (PA) in the A173A20 M. truncatula RIL

population

Trait LOD LG Position PEVa Response mean Effectb

AFWc 4.5 3 11.1 (9.1) 0.23 (0.07) 0.134 (0.003) –0.024(0.005)

RPDWd 3.9 5 21.7 (18.2) 0.22 (0.07) 0.513 (0.014) –0.11(0.022)

a Proportion of explained variability.
b The estimated effect; a positive value represents the effect of the

A17 allele and a negative value represents the effect of the A20 allele.
c Mean aphid fresh weight (g).
d Relative reduction of plant dry weight caused by PA.

Table 2. Features of the QTLs associated with the resistance

response to bluegreen aphid (BGA) in the M. truncatula A173A20

RIL population

Trait LOD LG Position PEVa Response mean Effectb

ADWc 35.3 3 8.5 (1.1) 0.87 (0.04) 0.015 (0.001) –0.016(0.001)

RPDWd 6.2 3 43.2 (7.1) 0.33 (0.09) 0.465 (0.012) –0.12(0.023)

a Proportion of explained variability.
b The estimated effect; a positive value represents the effect of the

A17 allele and a negative value represents the effect of the A20 allele.
c Mean aphid fresh weight (g).
d Relative reduction of plant dry weight caused by PA.

Fig. 3. Mean aphid population score (A) and mean plant damage

score (B) for M. truncatula lines Jester, A17, and A20 over a 21 d

period following PA infestation. Values are the mean and standard

error of three biological replicates.
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To determine whether plant tolerance plays a role in the

resistance phenotypes of A17 to PA and BGA, the mean

plant dry weight of the control and aphid-infested plants

was recorded to determine the relative reduction in plant

dry weight caused by aphid infestation. For PA tolerance,

a single QTL for relative reduction of plant dry weight

(RPDW) with a LOD score of 3.9 and a proportion of

explained variability (PEV) of 22% was mapped to
chromosome 5 (LG5; Fig. 5A; Table 1). For BGA tolerance,

a QTL for RPDW (LOD¼6.2) with a PEV of 33% was

identified on chromosome 3 (LG3) which was independent

from that of BGA dry weight (ADW; Fig. 5B; Table 2).

There are thus unlinked loci controlling plant tolerance (e.g.

reduction in plant dry weight) in A17 for BGA and PA

infestation and, for both aphids, these loci are also inde-

pendent of the loci involved in aphid resistance (antibiosis).

Discussion

In the present study the moderate resistance to an Australian

biotype of PA in the M. truncatula accession A17 was

characterized and the genetic basis of the resistance to both
PA and BGA in this accession was dissected. The results

suggest that antibiosis is involved in A17’s resistance to

the Australian biotype of PA. The antibiosis of A17 to the

Australian biotype of PA is different from its response to

the European PA biotype PS01 which showed a negative

MRGR on A17 with lethality of aphids as early as 48 h

post-infestation (Stewart et al., 2009). The Australian PA’s

response to A17 appears to be distinct from that of another
European biotype, LL01, in that LL01 has a much higher

MRGR after 2 d compared with the Australian biotype

after 4 d (Stewart et al., 2009). There thus appears to be

three distinct forms of PA resistance in M. truncatula A17.

In the host selection experiments between the resistant A17

and the susceptible A20 with alatae of PA, significant differ-

ences in the settling behaviour were not observed, although

the repeated experiments showed a lower number of alatae

settling on A17 after 3 h and a lower aphid population on

A17 than on the susceptible A20 at the early stage of PA

infestation. This is in contrast to the observations seen for

choice experiments between Jester and A17, where a significant
difference in settling behaviour was observed 24 h post-alatae

release (Gao et al., 2008). It therefore appears that antixenosis

does not play a significant role in the resistance phenotype

observed in A17 to the Australian PA biotype.

The EPG results showed that PA spent significantly more

time salivating into the phloem sap and significantly less

time ingesting phloem sap (the E2 waveform) on A17 plants

than on A20 plants (Fig. 4). The longer duration of E1
salivation with shorter duration of phloem sap ingestion on

A17 suggested that PA secreted more saliva into the sieve

elements possibly to counter a plant defence response such

as the plugging of sieve pores (Will and van Bel, 2006; Will

et al., 2007, 2009). Furthermore, aphids on A17 showed

significantly less sustained phloem sap ingestion (sustained

E2 waveform longer than 10 min) than on A20; 10 min is

a threshold often used as an indicator of phloem acceptance
(Tjallingii, 2006). Deterrence compound(s) present in the

phloem sap of A17 could explain the difference in sustained

phloem sap ingestion between A17 and A20. Alternatively,

frequent extracellular salivation (E1e) following the watery

salivation (E1) in A17 generally indicates cell collapse

(Tjallingii, 2006), which could be a symptom of cell death

induced by recognition of effectors in the saliva of PA. This

hypothesis is supported by the presence of localized necrotic
flecks resembling a hypersensitive response (HR) surround-

ing the feeding site of PA in A17.

A17 is relatively resistant to both BGA and PA compared

with A20, and A17 showed AIN lesions which resemble

Fig. 4. The percentage of time PA spent in various activities on A17 or A20 during an 8 h exposure to the host plants. Watery salivation

in phloem (E1) indicates that aphids are injecting watery saliva into the sieve element; phloem ingestion (E2) indicates that aphids are

ingesting the phloem sap; extracellular salivation (E1e) indicates watery salivation at the extracellular voltage level (note: because of the

low values for Ele, the numbers were used instead of bars); xylem ingestion (G) indicates stylet penetration of tracheary elements; the

derailed stylet (F) indicates penetration difficulties of stylets; pathway phase (C) indicates mostly intramural probing activities between

mesophyll or parenchyma cells; non-penetration (np) indicates that stylets are outside the plant. Values are the mean and standard error

of 16 biological replicates. Means labelled with * are significantly different (t-test; P < 0.05).
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a HR at the site of infestation by both BGA and PA.

Genetic analysis using a RIL population between A17 and
A20 showed that this phenotype in response to BGA and

PA was controlled by a semi-dominant locus termed AIN

(Klingler et al., 2009), and the analysis of additional RILs

carried out in this study further confirmed these findings.

The RIL population and associated genotyping data

presented here should be a valuable tool for the wider

M. truncatula community given that the parents were used

by the M. truncatula genome consortium to generate the F2

reference genetic map and they segregate for various

phenotypes such as pigmentation of leaves, pod shape, and

the ability to establish nitrogen-fixing nodules with the

ecotype-specific Sinorhizobium meliloti strains Rm41 and

NRG247 (Simsek et al., 2007). Thus, this population was

also used to identify QTLs involved in the resistance

response to Rhizoctonia solani (J.P. Anderson, J. Lichtenzveig,

and K.B. Singh, unpublished results).
Several QTLs have been identified for aphid antibiosis

(Mittal et al., 2008; Stoeckli et al., 2008; Zhang et al., 2009,

2010), but only a few studies have shown distinct QTLs for

antibiosis and tolerance, such as in melon to cotton-melon

aphid (Boissot et al., 2010) and in sorghum to greenbug

(Agrama et al., 2002; Wu and Huang, 2008).

QTL analysis on the PA biomass data revealed a signifi-

cant QTL with a modest effect on aphid fresh weight
(AFW) explaining 23% of the phenotype and spanning the

AIN region (Fig. 5; Table 1). This modest effect could

explain why previous findings using a limited set of 24 RILs

of the same population by Klingler et al. (2009) concluded

that AIN does not have an effect on PA biomass. In contrast

the AIN locus is strongly associated with a reduction in BGA

weight (Fig. 5; Table 1; Klingler et al., 2009). Interestingly,

the AIL locus, which also conditions a necrotic fleck pheno-

type resembling a HR to a European PA biotype PS01 in

A17, has been mapped to the same region on chromosome 3

(Stewart et al., 2009). The AIL locus did not have an effect
on PS01 biomass, but rather the effect was mediated by two

loci on chromosomes 3 and 6 termed RAP1 and RAP2,

respectively. These previous experiments with the AIL or

AIN locus differed from the current study in that pea aphids

in the previous experiments were not allowed access to more

than a single plant. It remains to be determined if the AIN

phenotype to both aphid species is controlled either by the

same gene or by two tightly linked genes.
The AIN locus resides in a region containing a cluster of

paralogous genes of the NBS-LRR family (Klingler et al.,

2009). Therefore, one or more family members may control

aphid biomass by mediating antibiosis and a localized HR

response following aphid attack. Under the leading models for

R protein function, a protein encoded by a single gene such as

AIN may ‘guard’ (monitor) a single effector target protein (or

a ‘decoy’ protein) that is recognized and targeted for
manipulation by effectors from different Acyrthosiphon species

or biotypes (Dangl and Jones, 2001; van der Hoorn and

Kamoun, 2008). Variation in the effectiveness of AIN against

PA and BGA might then be explained by differences in

binding affinities of the species-specific or biotype-specific

effectors toward the same target protein and/or the AIN

protein. Alternatively, different NBS-LRR genes in the same

or adjacent clusters may recognize separate operative targets
(or similar proteins acting as decoys) of distinct effectors from

the different species and biotypes in the genus Acyrthosiphon.

Isolation of the AIN gene will help to determine whether the

same gene controls aphid-induced necrosis by BGA and PA

and whether AIN plays a role in reducing the biomass of

either BGA or the Australian PA biotype.

For both PA and BGA, the loci controlling relative

reduction of plant biomass (RPDW) following aphid in-
festation were mapped to a position unlinked to AIN and

antibiosis (Fig. 5). Plant biomass reduction was probably

due to the nutrient loss caused by the aphids and the

redirection of resources to induce a defence response as seen

in other plant–aphid interactions (Edwards and Singh,

2006; Howe and Jander, 2008). Several QTLs have been

identified for aphid antibiosis (Mittal et al., 2008; Stoeckli

et al., 2008; Zhang et al., 2009, 2010), but only a few studies
have shown distinct QTLs for antibiosis and tolerance, such

as in melon to cotton-melon aphid (Boissot et al., 2010) and

in sorghum to greenbug (Agrama et al., 2002; Wu and

Huang, 2008). Separate loci for antibiosis and relative

reduction of plant biomass suggest the independent genetic

control of antibiosis and tolerance in A17. This mode of

inheritance provides an opportunity to dissect two types of

insect resistance simultaneously in one system.
Furthermore, the QTL termed RPDW for PA and BGA

was mapped to different chromosomes for each species

Fig. 5. Genetic map positions of QTLs involved in resistance to

PA (A) and BGA (B) based on phenotype data for 87 and 93

individuals of a recombinant inbred line (RIL) population of

A173A20, respectively. Interval distances are listed in centiMorgans.

The genomic locations of the QTLs are depicted on the right of

a linkage group (LG), with standard deviations depicted by lines on

either side. AFW, pea aphid fresh weight; RPDW, relative reduction

of plant dry weight; ADW, bluegreen aphid dry weight.
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(Fig. 5). The different positions of QTLs mediating RPDW

caused by the closely related aphids PA and BGA suggest

that A17 has distinct genetic interactions with different

Acyrthosiphon spp. The relative reduction of plant biomass

following PA infestation is partially explained by a QTL on

the short arm of chromosome 5 in A17, whereas the relative

reduction of plant biomass following BGA is influenced by

a QTL on the long arm of chromosome 3 in the same region
where PA resistance genes RAP1 (Stewart et al., 2009) and

APR (Guo et al., 2009; unpublished data) reside. This raises

the possibility that the R gene cluster containing RAP1 and

APR might also harbour a gene that contributes to resistance

to BGA in terms of plant tolerance. This could explain how

PA resistance was retained in generating the M. truncatula cv.

Jester even though the breeding programme only selected for

BGA and spotted alfalfa aphid resistance in Jester (Hill,
2000), since the APR locus co-segregates with the BGA

RPDW QTL. The M. truncatula cv. Jester is closely related to

A17 and harbours the major resistance genes AKR (for BGA

resistance) and APR (for PA resistance). Further studies will

help to elucidate whether the identified QTLs in A17 for

BGA antibiosis and tolerance play a role in the resistance

phenotype observed in Jester and whether there are inter-

actions between AKR and these loci.
With the frequent breakdown of single dominant R genes

in extensively monocultured agricultural systems, it is impor-

tant to pyramid multiple resistance genes into the crops with

major R genes to help inhibit the occurrence of new virulent

biotypes. Plant tolerance does not affect the growth and

reproduction of insects. Thus, it could not exert selection

pressure on the appearance of new biotypes as antibiosis and

antixenosis can, but it can help limit the damage these pests
cause to crops. However, it has been a great challenge to

separate tolerance from antibiosis and antixenosis and

accurately quantify the effect of tolerance (Smith, 2005). In

the present study, both the aphid colony biomass on each

plant and the relative plant biomass reduction caused by

aphid infestation were investigated in a RIL population. For

both PA and BGA, separate loci for those two traits were

identified. This will facilitate marker-assisted breeding of
M. truncatula with tolerance to aphids and potentially other

closely related Medicago species. The identification of distinct

loci involved in resistance to the model aphid PA and its

close relative of the same genus, BGA, in a model plant make

this a powerful system to study plant defence against sap-

sucking insects as well as R gene specificity and evolution.

Supplementary data

Supplementary data are available at JXB online.

Figure S1. Settling of pea aphid alatae in a choice test

conducted in a growth chamber.

Table S1. The A173A20 recombinant inbred line pop-
ulation genotype data
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