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Abstract

In mammals, cadmium is widely considered as a non-genotoxic carcinogen acting through a methylation-dependent

epigenetic mechanism. Here, the effects of Cd treatment on the DNA methylation patten are examined together with
its effect on chromatin reconfiguration in Posidonia oceanica. DNA methylation level and pattern were analysed in

actively growing organs, under short- (6 h) and long- (2 d or 4 d) term and low (10 mM) and high (50 mM) doses of Cd,

through a Methylation-Sensitive Amplification Polymorphism technique and an immunocytological approach,

respectively. The expression of one member of the CHROMOMETHYLASE (CMT) family, a DNA methyltransferase,

was also assessed by qRT-PCR. Nuclear chromatin ultrastructure was investigated by transmission electron

microscopy. Cd treatment induced a DNA hypermethylation, as well as an up-regulation of CMT, indicating that de

novo methylation did indeed occur. Moreover, a high dose of Cd led to a progressive heterochromatinization of

interphase nuclei and apoptotic figures were also observed after long-term treatment. The data demonstrate that Cd
perturbs the DNA methylation status through the involvement of a specific methyltransferase. Such changes are

linked to nuclear chromatin reconfiguration likely to establish a new balance of expressed/repressed chromatin.

Overall, the data show an epigenetic basis to the mechanism underlying Cd toxicity in plants.

Key words: 5-Methylcytosine-antibody, cadmium-stress condition, chromatin reconfiguration, CHROMOMETHYLASE,

DNA-methylation, Methylation- Sensitive Amplification Polymorphism (MSAP), Posidonia oceanica (L.) Delile.

Introduction

In the Mediterranean coastal ecosystem, the endemic

seagrass Posidonia oceanica (L.) Delile plays a relevant role

by ensuring primary production, water oxygenation and

provides niches for some animals, besides counteracting

coastal erosion through its widespread meadows (Ott, 1980;

Piazzi et al., 1999; Alcoverro et al., 2001). There is also

considerable evidence that P. oceanica plants are able to

absorb and accumulate metals from sediments (Sanchiz
et al., 1990; Pergent-Martini, 1998; Maserti et al., 2005) thus

influencing metal bioavailability in the marine ecosystem.

For this reason, this seagrass is widely considered to be

a metal bioindicator species (Maserti et al., 1988; Pergent

et al., 1995; Lafabrie et al., 2007). Cd is one of most

widespread heavy metals in both terrestrial and marine

environments.

Although not essential for plant growth, in terrestrial

plants, Cd is readily absorbed by roots and translocated into

aerial organs while, in acquatic plants, it is directly taken up

by leaves. In plants, Cd absorption induces complex changes

at the genetic, biochemical and physiological levels which

ultimately account for its toxicity (Valle and Ulmer, 1972;

Sanitz di Toppi and Gabrielli, 1999; Benavides et al., 2005;

Weber et al., 2006; Liu et al., 2008). The most obvious
symptom of Cd toxicity is a reduction in plant growth due to

an inhibition of photosynthesis, respiration, and nitrogen

metabolism, as well as a reduction in water and mineral

uptake (Ouzonidou et al., 1997; Perfus-Barbeoch et al., 2000;

Shukla et al., 2003; Sobkowiak and Deckert, 2003).

At the genetic level, in both animals and plants, Cd

can induce chromosomal aberrations, abnormalities in
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Abstract

Phytoparasitic nematodes secrete an array of effector proteins to modify selected recipient plant cells into elaborate

and essential feeding sites. The biological function of the novel 30C02 effector protein of the soybean cyst

nematode, Heterodera glycines, was studied using Arabidopsis thaliana as host and the beet cyst nematode,
Heterodera schachtii, which contains a homologue of the 30C02 gene. Expression of Hg30C02 in Arabidopsis did not

affect plant growth and development but increased plant susceptibility to infection by H. schachtii. The 30C02

protein interacted with a specific (AT4G16260) host plant b-1,3-endoglucanase in both yeast and plant cells, possibly

to interfere with its role as a plant pathogenesis-related protein. Interestingly, the peak expression of 30C02 in the

nematode and peak expression of At4g16260 in plant roots coincided at around 3–5 d after root infection by the

nematode, after which the relative expression of At4g16260 declined significantly. An Arabidopsis At4g16260 T-DNA

mutant showed increased susceptibility to cyst nematode infection, and plants that overexpressed At4g16260 were

reduced in nematode susceptibility, suggesting a potential role of host b-1,3-endoglucanase in the defence
response against H. schachtii infection. Arabidopsis plants that expressed dsRNA and its processed small

interfering RNA complementary to the Hg30C02 sequence were not phenotypically different from non-transformed

plants, but they exhibited a strong RNA interference-mediated resistance to infection by H. schachtii. The collective

results suggest that, as with other pathogens, active suppression of host defence is a critical component for

successful parasitism by nematodes and a vulnerable target to disrupt the parasitic cycle.

Key words: Arabidopsis thaliana, At4g16260, Heterodera schachtii, nematode secretions, PR protein, RNAi.

Introduction

The soybean cyst nematode, Heterodera glycines, is a micro-

scopic worm and an obligate endoparasite of host plant
roots, and is the most damaging pathogen of soybeans grown

in the USA (Niblack et al., 2006; Wrather and Koenning,

2006). Cyst nematode second-stage juveniles (J2) hatch from

eggs, penetrate host plant roots behind the root tip, and

migrate intracellularly through the root cortex to the vascular
cylinder (Wyss and Zunke, 1986). When the nematodes reach

the vascular tissue, they transform selected root cells into a

specialized feeding site called the syncytium, which becomes

Abbreviations: DIG, digoxygenin; GFP, green fluorescent protein; J2, second-stage juveniles; p.i., post-infection; PR, pathogenesis-related; RNAi, RNA interference;
SE, standard error; siRNA, small interfering RNA; WT, wild type; YFP, yellow fluorescent protein.
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the permanent food source for the nematodes as they develop

through subsequent sedentary life stages. Syncytium forma-

tion includes profound changes in host root cells including

DNA endoreduplication, disappearance of large vacuoles,

proliferation of organelles, peripheral cell-wall thickening

and ingrowths, and targeted cell-wall dissolution between

adjacent plant cells to allow syncytium expansion via cellular

fusion (Jones, 1981; Endo, 1991; Grundler et al., 1997).
Cyst nematodes secrete effector proteins through their

stylet (a hollow, protrusible oral spear) to induce and main-

tain the syncytium (Hussey, 1989; Williamson and Hussey,

1996; Davis et al., 2000, 2008; Gheysen and Mitchum,

2011). The effector proteins originate in three elaborate

secretory gland cells within the nematode oesophagus, and

effector synthesis and secretion are developmentally regu-

lated throughout the parasitic cycle (Wyss and Zunke, 1986;
Hussey, 1989; Davis et al., 2008). Functional genomics ap-

proaches have identified multiple putative effector-encoding

‘parasitism genes’ that are expressed within the oesophageal

gland cells of H. glycines (Gao et al., 2001, 2003; Wang

et al., 2001). While some cyst nematode parasitism genes

encode proteins with database matches such as those

encoding cell-wall-modifying enzymes, the majority of these

identified parasitism genes have no database orthologues
(Davis et al., 2008; Gheysen and Mitchum, 2011) and may

encode effector proteins that are unique to cyst nematodes.

As cyst nematodes are obligate biotrophs embedded within

host roots and cannot currently be genetically engineered or

routinely used in forward genetic assays, analyses of the

functions of their novel parasitism genes remains a challenge.

The use of Arabidopsis thaliana as the test plant species for

investigations of nematode parasitism gene function,
however, has provided a wealth of genetic resources on the

host side of the interaction that has enabled considerable

progress in such functional studies (Wang et al., 2005; Huang

et al., 2006b; Hewezi et al., 2008, 2010; Patel et al., 2010;

Wang et al., 2010; Lee et al., 2011; Replogle et al., 2011). As

A. thaliana is not a host for H. glycines, the closely related

beet cyst nematode, Heterodera schachtii (Subbotin et al.,

2001), provides an excellent surrogate, as it can infect the
roots of Arabidopsis (Sijmons et al., 1991). Several studies

have demonstrated that H. schachtii possesses many of the

same parasitism genes as H. glycines with an almost identical

nucleotide and predicted amino acid sequence (Patel et al.,

2008; Sindhu et al., 2009; Lee et al., 2011; Wang et al., 2011).

Coupled with functional analyses in Arabidopsis, the RNA

interference (RNAi) technology developed in the nematode

Caenorhabditis elegans (Fire et al., 1998) has been adapted to
provide host plant-derived silencing of target phytonematode

parasitism gene transcripts via ingested dsRNA from trans-

formed host plants (Huang et al., 2006a; Patel et al., 2008,

2010; Sindhu et al., 2009). Some target plant proteins that

interact with secreted nematode effector proteins have also

been identified through yeast two-hybrid analyses and have

led to further functional characterization in plants for their

roles in plant–nematode interactions (Huang et al., 2006b;
Hewezi et al., 2008, 2010; Rehman et al., 2009; Patel et al.,

2010; Lee et al., 2011). In the present study, the function of

a novel cyst nematode parasitism gene initially identified as

30C02 (Gao et al., 2003) was investigated using A. thaliana as

a model plant host and H. schachtii where appropriate. The

results suggested that the 30C02 effector protein is essential

for successful plant parasitism by cyst nematodes and inter-

acts with a plant b-1,3-endoglucanase to potentially suppress

plant defence.

Materials and methods

Nematode culture and infection assays

Cyst nematodes of H. schachtii and H. glycines were propagated
on the roots of cabbage plants (Brassica oleracea var. capitata)
and soybean plants (Glycine max cv. Lee 74) grown in soil,
respectively. Eggs were collected from crushed cysts as described
previously for other cyst nematode species (Goellner et al., 2001).
Meloidogyne incognita (root-knot nematodes) were propagated in
soil-grown tomato plants (Solanum lycopersicum cv. Rutgers) and
eggs were extracted as described previously (Hussey and Barker,
1973). All nematode eggs were hatched over water at 28 �C on
Baermann pans for 48 h, after which the hatched pre-parasitic
second-stage juveniles (pre-J2s) were collected and surface steril-
ized for 10 min in sterilization solution (0.004% mercuric chloride,
0.004% sodium azide, 0.002% Triton X-100) followed by three
washes with sterile distilled water. Mixed parasitic stages of
H. schachtii and H. glycines were collected from within the roots
of cabbage and soybean plants, respectively, by root blending and
sieving as described by Ding et al. (1998). Nematode infection
assays and data collection were performed as described previously
(Hamamouch et al., 2011). For analysis of nematode infection
rate, cysts (for beet cyst nematode) and galls (for root-knot
nematodes) developed in wild-type (WT) and transgenic plants
were counted 3–4 weeks post-infection (p.i.), respectively, using a
dissecting microscope, and the mean and standard error (SE) of
20 replicates per treatment were calculated. Statistical differences
in the mean (n¼20) were determined by paired t-test with an alpha
level of 0.05 using SAS software (Cary, NC).

DNA gel blot analysis

Extraction of H. schachtii and H. glycines genomic DNA was
performed as described by Patel et al. (2010). Genomic DNA
(5 lg) was digested overnight at 37 �C with EcoRI, separated by
0.7% agarose gel electrophoresis, and transferred by capillarity
(Sambrook et al., 1989) on to a positively charged nylon membrane
(GE Healthcare Biosciences, NJ). Genomic DNA isolated from
M. incognita and WT A. thaliana (Col-0) plants was used as negative
controls. A digoxygenin (DIG)-labelled probe was synthesized using
a PCR DIG Probe Synthesis kit (Roche Applied Science) and
Hg30C02 cDNA (GenBank accession no. JF896103) as template.
Hybridization of the probe to the target sequence(s) was performed
at 42 �C, and subsequent washes and detection were carried out
following the manufacturer’s instructions (Roche Applied Science;
Indianapolis, IN). To visualize hybridization signals, the membrane
was exposed to Lumi-Film chemiluminescent detection film (Roche
Diagnostics, Indianapolis, IN) for 1–2 min (Fig. 1).

Isolation of expressed 30C02 and sequence analysis

H. schachtii and H. glycines mRNAs were extracted from mixed
parasitic stages of each nematode species using a Dynabeads
mRNA DIRECT kit (Invitrogen; Carlsbad, CA) and treated
with DNase using a Turbo DNA-free kit (Ambion; Austin, TX)
according to the manufacturer’s instructions. cDNA synthesis
of 30C02 was conducted using SuperScript II reverse transcrip-
tase (Invitrogen), amplified using a 30C02-specific (Gao et al.,
2003) primer pair (5#-ATGAGGAAACTTCCATTCTTGC-3# and
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5#-GTGTTCTGCTGGTGAAATGC-3#), and cloned into pGEM-
T vector for sequencing. Alignments of Hs30C02 (GenBank acces-
sion no. JF896102) and Hg30C02 (JF896103) cDNA and predicted
amino acid sequences (Fig. 2), and predictions of a signal peptide
for secretion, were performed using the Clustal W (Thompson
et al., 1994) and SIGNAL P 3.0 (Bendtsen et al., 2004) programs,
respectively. Specimens of each individual parasitic stage of
H. schachtii were identified under a microscope and collected for
RNA extraction and quantitative RT-PCR (qRT-PCR) assays as
described below.

30C02 mRNA in situ hybridization in nematode specimens

In situ hybridization within nematode specimens was performed as
described previously (de Boer et al., 1999) using mixed parasitic
stages of H. schachtii. Hg30C02-specific primers were used to
synthesize DIG-labelled sense (negative control) and antisense
cDNA probes. Hybridization signals within the nematodes were
detected with alkaline phosphatase-conjugated anti-DIG antibody,
and the treated specimens were observed by light microscopy.

Molecular cloning and vector construction

Given the nearly identical predicted amino acid sequences between
Hs30C02 and Hg30C02 expressed in the parasitic stages of both
nematode species (Fig. 2), the cDNA of Hg30C02 (JF896103) was
used for all subsequent expression vector constructions. The 492
bp cDNA of Hg30C02 was excised from the pGEM-T Easy vector
by digestion with SacII and SacI, and subcloned into pBC plasmid
digested with SacII and SacI. The 35S promoter was excised from
pBI121 using HindIII and BamHI, and then subcloned into pBC
plasmid upstream of the 30C02 coding sequence. The identity,
orientation, and junctions of the resulting 35S::30C02 construct
were confirmed by PCR and sequencing. The 35S::GUS gene of
pBI121 plasmid (Chen et al., 2003) was digested with HindIII and
SacI, and replaced with the 35S::30C02 construct resulting in the
pBI-30C02 vector.
The full-length cDNA of the Arabidopsis b-1,3-endoglucanase

(At4g16260) encoding a protein that interacted with Hg30C02 was
amplified using the forward 5#-TAGGATCCATGACCACG-
TTATTCCTCC-3# and reverse 5#-TAGAGCTCTCACTCAACC-
GCCGTA-3# primer containing BamHI and SacI sites, respectively.
The amplified b-1,3-endoglucanase cDNA was cloned in the pBI121
plasmid between the BamHI and SacI sites, resulting in the pBI-
b-1,3-endoglucanase vector.
For RNAi vectors, full-length Hg30C02 was isolated from

pGEM-T Easy by EcoRI restriction digestion and subcloned in
the antisense orientation in pHANNIBAL vector (Wesley et al.,
2001) digested with EcoRI enzyme. The sense strand of 30C02 was
amplified using the primers 5#-ATAAGCTTTGAGGAAACTTCC-
ATTCTTG-3# and 5#-ATTCTAGAGGTGAAATGCGTTTTTCC-
3#, which introduced HindIII and XbaI restriction sites (underlined),
and cloned into pHANNIBAL. Both sense and antisense strands of
30C02 were under the control of a single 35S promoter. An RNAi
vector containing the sense and antisense strands of green fluorescent
protein (GFP) was used as a control. 30C02-RNAi and GFP RNAi
constructs produced in pHANNIBAL were isolated by restriction
digestion with NotI and cloned into the pART27 binary vector
(Gleave, 1992) for subsequent Agrobacterium and plant transforma-
tion, resulting in pART27-30C02 and pART27-GFP, respectively.

Generation of transgenic Arabidopsis plants

The binary vectors pART27-30C02, pART27-GFP, pBI-30C02,
pBI-b-1,3-endoglucanase were introduced into Agrobacterium
tumefaciens strain GV3101 via electroporation and verified by
PCR. A. thaliana plants (ecotype Columbia) were transformed with
A. tumefaciens containing the gene construct using the floral dipping
method (Clough and Bent, 1998) and seeds were selected on MS
medium (Murashige and Skoog, 1962), supplemented with 50 mg
l�1 of kanamycin. Segregation analyses identified homozygous lines
and PCR analysis confirmed the presence of the gene constructs in
the genome of the transformed plants. The Arabidopsis b-1,
3-endoglucanse T-DNA mutant line (Salk_031479) was obtained

H.shachtii para-30C02          MRKLPFLLLFSACCYLQRKEVYFAEKNRKKNSSSSEQKTQRRNRGYGRSR 
H.glycines para-30C02          MRKLPFLLLFSACCYLQRKEVYFAEKNRKKNSSSSEQKTQRRNRGYGRSR 
                              ************************************************** 

H.shachtii para-30C02          TFSNGNGMYGQSNGFSNGGFGGSSGYSNSGRSNSFPNGGFGGSSGFSSMG 
H.glycines para-30C02          TFSNGNGMYGQSNGFSNGRFGGSSVYSNSGRSNSFPNGGFGGSSGFSSMG 
                              ****************** ***** ************************* 

H.shachtii para-30C02          HNSGGLHGFGSGPPAGGYGYGGGFGGRK 
H.glycines para-30C02          HNSGGLHGFGSGPPSGGYGYGSGFGGRK 
                              ************** ****** ****** 

Fig. 2. A 98% predicted amino acid sequence identity between the 30C02 protein expressed in the parasitic life stages (within host

plant roots) of both H. schachtii (JF896102) and H. glycines (JF896103), was determined using the Clustal W program (Thompson et al.,

1994); the underlined sequence represents the predicted secretion signal peptide motif (Bendtsen et al., 2004). Identical amino acids are

indicated by asterisks.

Fig. 1. Genomic DNA digested with EcoRI, separated by agarose

gel electrophoresis and hybridized on gels blots with a full-length

Hg30C02 (JF896103) DIG-labelled cDNA probe. BCN, beet cyst

nematode (H. schachtii); SCN, soybean cyst nematode (H. glycines);

RKN, root-knot nematode (M. incognita); AT, A. thaliana. At least

five copies of 30C02 are present in H. schachtii and a single copy

is present in H. glycines. No hybridization signal was detected in

M. incognita or A. thaliana genomic DNA. M, DIG-labelled DNA

marker.
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from the Arabidopsis Biological Resource Center and propagated to
homozygosity.

RNA isolation and quantitative RT-PCR

Total RNA from Arabidopsis roots was isolated using an RNeasy
Plant Mini kit (Qiagen; Valencia, CA) following the manufac-
turer’s instructions. Prior to RT-PCR, total RNA was treated with
RNase-free DNase I (Ambion) to eliminate any contaminating
genomic DNA. First-strand cDNA was synthesized from 2–3 lg of
total RNA using SuperScript II reverse transcriptase (Invitrogen)
and oligo-dT18 primers following the manufacturer’s instructions.
The RT-PCR was run for 35 cycles and consisted of 94 �C for
2 min, 56 �C for 1 min, and 72 �C for 1 min. The cycles were
preceded by a 94 �C denaturation period for 4 min and followed
by a 72 �C final extension period for 10 min.
All qRT-PCR runs were performed in a DNA Engine Mx3000P

(Agilent Technologies; Santa Clara, CA). A single 20 ll PCR
included 13 Brilliant II SYBR Green qPCR Master Mix (Agilent
Technologies), 2 ll of cDNA template and 5 lM of each forward
and reverse primer. The PCR cycling parameters were set at 95�C
for 10 min, followed by 40 cycles of 95�C for 30 s, 60�C for 30 s,
and 72 �C for 45 s. Dissociation melting-curve analyses, in which
all products generated during the qPCR amplification reaction
were melted at 95�C for 1 min, annealed at 55�C for 30 s, and
subjected to gradual increases in temperature, were conducted to
discount the effects of primer–dimer formation and contamination.
The qRT-PCRs were performed in triplicate and the negative
controls included water and mRNA extracted from the nematodes
to check for DNA contamination in the analysed samples. All
qRT-PCR samples were normalized against the Arabidopsis actin-8
gene (GenBank accession no. ATU42007) or the H. schachtii
nematode actin gene (GenBank accession no. AY443352), as appro-
priate. The fold change relative to control plants was calculated
according to the 2�DDCT method (Livak and Schmittgen, 2001).
A paired t-test with an alpha level of 0.05 was used to compare
relative transcript level means using the statistical software package
of SAS (Cary, NC). Reactions were repeated at least three times,
and a representative result was displayed for individual assays. The
sequences of the primers used in the qRT-PCR are available in
Supplementary Table S1 (in JXB online) and Hamamouch et al.
(2011).

Small-RNA sequencing and analysis from RNAi plants

Total RNA was isolated from a pool of Arabidopsis seedling roots
from three independently transformed lines (L2-6, L1-5, and L6-4)
containing the Hg30C02 RNAi construct. Library preparation was
performed according to the Illumina Small RNA Version 1.5
Sample Prep kit and sequencing by synthesis using the Illumina
GAIIx at the Keck Center of the University of Illinois (Tuteja
et al., 2009) to obtain 11.2 million 40 nt reads. After trimming the
3# adapter sequence (ATCTCGTATGCCGTCTTCTGCTTG) and
retaining reads greater than 16 nt, the sequences were compared to
obtain the unique sequences and the number of occurrences of
each distinct sequence. Alignments of small RNAs to the 492 bp
Hg30C02 sequence were performed using Bowtie (Langmead et al.,
2009).

Protein interaction assays

The MATCHMAKER yeast two-hybrid system II (Clontech; CA)
was used to identify interacting plant and nematode proteins. The
cDNA (JF896103) encoding the mature peptide of 30C02 without
the predicted nematode signal peptide was cloned in frame with
the GAL4-binding domain of pGBKT7 and expressed as bait to
screen an A. thaliana root cDNA library constructed in the GAL4
activation domain of pGADT7 from mRNA of Arabidopsis root
tissues at 3, 7, and 10 d after H. schachtii infection (Hewezi et al.,
2008). Positive yeast two-hybrid matings were selected on a series

of selective media as described in the protocol of the MATCH-
MAKER yeast two-hybrid system II and subjected to subsequent
co-transformation of isolated clones to validate positive protein–
protein interactions.

Bifluorescence complementation of the 30C02 and b-1,
3-endoglucanase interaction

Bifluorescence complementation analyses followed the procedure
developed by Citovsky et al. (2006) to demonstrate protein inter-
actions within plant cells. The Hg30C02 cDNA without the signal
peptide was PCR amplified using the following forward primer
(5#-TACTCGAGTGCAACGGAAGGAAGTATATTTCGC-3#)
and reverse primer (5#-GAAGCTTCTAAAAAAGTGTTCTG-
CTGGTGAA-3#) containing XhoI and HindIII restriction sites
(underlined), respectively, and cloned into XhoI and HindIII sites
of pSAT4-cEYFPC1B to generate pSAT4-cEYFPC1B-30C02.
Meanwhile, the full-length beta-1,3-endoglucanase cDNA without
signal peptide was PCR amplified using forward primer (5#-
TACTCGAGTGGAATCAGTAGGTGTATGCTATGG-3#) and
(5#-GAAGCTTTCACTCAACCGCCGTACCGTCT-3#) reverse
primer containing XhoI and HindIII restriction sites (underlined),
respectively, and cloned into XhoI and HindIII sites of pSAT4-
nEYFPC1 to generate pSAT4-cEYFPC1B-b-1,3-endoglucanase.
Tungsten particle (M10; Sylvania Chemicals/Metals; Towanda,
PA) preparation and DNA precipitation on particles were
performed as described previously (Vain et al., 1993). DNA-coated
tungsten particles were bombarded by biolistics into onion
epidermal cells at 60 p.s.i. at 16 cm distance using a particle inflow
gun (Finer et al., 1992). Bombarded tissues were incubated at room
temperature overnight before assessing protein interactions as
yellow fluorescent protein (YFP) signals within onion cells. Bright-
field and fluorescence images were observed using a Motic AE31
microscope (Motic Instruments; Richmond, BC, Canada) with an
appropriate filter to observe YFP fluorescence, and images were
taken using a SPOT digital camera (Diagnostic Instruments;
Sterling Heights, MI).

Results

30C02 exists in the H. schachtii genome

A probe derived from Hg30C02 was DIG-labelled and

hybridized in a DNA gel blot to EcoRI-digested genomic
DNA from H. schachtii and H. glycines. DIG-labelled

Hg30C02 hybridized to a single band of about 5 kb in the

H. glycines genome and to at least five DNA fragments

ranging from 0.7 to 6.0 kb in the H. schachtii genome

(Fig. 1). No Hg30C02 hybridization signal was detected in

the genome of the root-knot nematode M. incognita or in

WT A. thaliana.

Isolation of the expressed H. schachtii 30C02 gene and
sequence analysis

Primer sequences designed from the coding region of the

original H. glycines 30C02 gene (Gao et al., 2003) were used

in RT-PCR to successfully amplify cDNA of Hg30C02

(JF896103) and a cDNA orthologue from H. schachtii,
Hs30C02 (JF896102), using RNA extracted from mixed

parasitic stages of H. glycines and H. schachtii, respectively.

Sequence analyses of 20 independent cDNA clones found no

polymorphisms within Hs30C02 expressed in mixed parasitic

stages of H. schachtii, despite the apparent existence of

4 of 13 | Hamamouch et al.3686  |  Hamamouch et al.



multiple family members observed on DNA gel blots.

Expressed Hs30C02 (JF896102) contained a predicted open

reading frame of 128 aa with a predicted mass of 13.46 kDa.

Signal P 3.0 (Bendtsen et al., 2004) predicted a signal peptide

for Hs30C02 between position 16 (leucine) and 17 (gluta-

mine) (Fig. 2), indicating that the proteins may be targeted

for secretion outside the nematode gland cell into plant cells,

a characteristic of phytoparasitic nematode effector proteins
(Davis et al., 2008). Protein domain searches did not identify

any motif that could predict the function of 30C02, nor

was 30C02 identified in the root-knot nematode M.

incognita and Meloidogyne hapla genomes (Abad et al.,

2008; Opperman et al., 2008). Comparison of Hs30C02

and Hg30C02 nucleotide sequences indicated that the two

cDNA sequences shared 99% nucleotide identity (data not

shown) and 98% predicted amino acid identity (Fig. 2).
Thus, Hs30C02 and Hg30C02 expressed in parasitic stages

were considered to be homologues, allowing Hg30C02 to

be used for functional analyses in the H. schachtii–

Arabidopsis pathosystem.

Developmental expression of 30C02 within H. schachtii

Localized expression of 30C02 transcripts specifically within
the single dorsal oesophageal gland secretory cell of dif-

ferent parasitic stages of H. glycines has been confirmed pre-

viously (Gao et al., 2003) and was identical in H. schachtii

(Fig. 3A). The developmental expression of 30C02 during

H. schachtii pre-parasitic and parasitic stages was quantified

here using qRT-PCR. Hs30C02 mRNA was detected at

maximum level in late (3–5 d p.i.) parasitic J2s and reduced

in expression in later sedentary stages (Fig. 3B), suggesting

a primary role of 30C02 during the early stages of nematode

parasitism.

Expression of 30C02 in Arabidopsis increases
susceptibility to H. schachtii

To gain a first insight into the effect of 30C02 in host plants,

Hg30C02 was constitutively expressed in Arabidopsis plants
under the control of the cauliflower mosaic virus 35S

promoter with and without the predicted nematode signal

peptide sequence. The presence of the signal peptide should

target the protein to the extracellular space of the plant cells

(lines L6-3 and L13-12), whereas removal of the signal

peptide should localize 30C02 within the plant cell cytoplasm

(lines L1-5 and L2-1). The presence of expressed Hg30C2

transcripts in the transformed Arabidopsis lines was con-
firmed by RT-PCR analysis (Fig. 4A). Phenotype analysis

of transgenic plants indicated that Hg30C02 expression

had no apparent effect on plant growth and develop-

ment (data not shown). However, plants that expressed

Hg30C02 with or without the nematode predicted signal

peptide were significantly (P<0.05) more susceptible to

H. schachtii infection than WT, as evidenced by an

increase in the number of developed cyst nematode adult
females (Fig. 4B). Transgenic Arabidopsis plants that

constitutively expressed Hg30C02 were also infected with

a different sedentary phytoparasitic nematode species, M.

incognita (root-knot nematode), and showed no significant

difference in the infection level when compared with WT

plants (Fig. 4C). These data suggested that the secreted

30C02 effector protein specifically promotes host suscepti-

bility to infection by cyst nematodes.

Fig. 3. Expression of the gene encoding the 30C02 effector protein in cyst nematodes. (A) Micrograph of a mRNA in situ hybridization of

a DIG-labelled probe of Hg30C02 specifically within the single enlarged dorsal oesophageal gland cell of a cyst nematode third-stage

juvenile (J3) that was excised from a host root. (B) Quantitative expression of Hs30C02 within the developmental life stages of the beet

cyst nematode H. schachtii determined by qRT-PCR. The relative fold-change values were calculated using the 2�DDCT method (Livak

and Schmittgen, 2001) and represent changes in mRNA level in nematode pre-parasitic J2 (pre-J2), late parasitic J2 (late J2), J3, and J4

relative to that of eggs (pre-J2). The H. schachtii actin gene (AY443352) was used as an internal control to normalize gene expression

levels for all samples.
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Hg30C02 specifically interacts with a plant b-1,
3-endoglucanase

To identify host protein(s) that interacted with 30C02, full-

length Hg30C02 without the signal peptide was used as

a bait in yeast two-hybrid assays to screen a cDNA prey

library prepared from mRNA of Arabidopsis roots that had

been infected with H. schachtii (Hewezi et al., 2008). Yeast

two-hybrid assays identified a specific Arabidopsis b-1,
3-endoglucanase (AT4G16260) as an interacting partner

with Hg30C02. The AT4G16260 b-1,3-endoglucanse had

the structure and activity of a pathogenesis-related (PR)

protein (Mahalingam et al., 2003; Doxey et al., 2007;

Lashbrook and Cai, 2008). The physical interaction between

full-length AT4G16260 b,1-3-endoglucanase–GAL4 and

Hg30C02 was confirmed in yeast cells grown on selective

medium (Fig. 5A) and subsequent co-transformation assays
of independent clones isolated from the matings.

To test whether this protein–protein interaction could

occur within a plant cell, bimolecular fluorescence comple-

mentation assays (Citovsky et al., 2006) were performed.

Hg30C02 and AT4G16260 b-1,3-endoglucanase without

signal peptides were separately fused to the N-terminal and

C-terminal halves of YFP, respectively, and co-expressed in

onion epidermal cells after biolistic transformation. The

interaction between the 30C02 and b-1,3-endoglucanase
proteins reconstituted the activity of YFP in the cytoplasm

of transformed onion cells (Fig. 5B, C).

To further investigate potential pathways that may have

been affected by the expression of Hg30C02 in plants, and

that may underlie the observed increased susceptibility to

H. schachtii of Arabidopsis that expressed Hg30C02, we
used qRT-PCR to measure the transcript levels of At4g16260,

a representative set (Hamamouch et al., 2011) of genes that

encode PR proteins (PR1, PR2, PR3, PR4, PR5, and

PDF1.2), PAD4, which is required for synthesis of the

phytoalexin camalexin, and isochorismate synthase, which

is required for salicylic acid synthesis. Neither At4g16260

nor any of the PR genes monitored exhibited a significant

quantitative transcriptional change in transgenic plants that
constitutively expressed Hg30C02 compared with WT plants

(data not shown).

Expression of the At4g16260 b-1,3-endoglucanase
gene during H. schachtii infection

To examine the expression level of AT4G16260 b-1,
3-endoglucanase during infection by H. schachtii, we used

Fig. 4. Constitutive expression of Hg30C02 in transgenic A. thaliana increases plant susceptibility to infection by the beet cyst nematode

H. schachtii. (A) RT-PCR confirmed the expression of Hg30C02 without signal peptide in transgenic Arabidopsis lines L1-5 and L2-1

compared with WT control, and RT-PCR amplification of expressed Hg30C02 with signal peptide from transgenic lines L6-3 and L13-12

in the absence (–RT) and presence (+RT) of reverse transcriptase, respectively. (B) A significant (*, P<0.05) increase in the mean number

of H. schachtii females per plant was observed in the roots of transgenic Arabidopsis lines that expressed Hg30C02 compared with

females developed on the WT control plants. (C) No significant (P<0.05) difference in root infection (gall number) by the root-knot

nematode M. incognita was observed in roots of the same Hg30C02 transgenic Arabidopsis lines compared with WT plants.
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qRT-PCR to measure the transcript levels of At4g16260

b-1,3-endoglucanase in the roots of Arabidopsis plants at 5,

9, and 14 d after nematode infection. We observed that

expression of At4g16260 was increased at 5 d p.i. and

decreased thereafter (Fig. 6A). However, this analysis

reflected the whole root (and possibly systemic) response

and did not reflect changes at the nematode feeding sites.

To address this question, we used qRT-PCR to measure the
transcript levels of At4g16260 in excised nematode feeding

sites at 5, 9, and 14 d p.i. The results indicated that

expression of the At4g16260 b-1,3-endoglucanase gene

increased significantly to a maximum at 5 d p.i. and was

downregulated by 9 and 14 d p.i. (Fig. 6B), suggesting that

during the early stages of nematode infection, the plant

increased expression of AT4G16260 b-1,3-endoglucanase as

a potential defence response.

The role of AT4G16260 b-1,3-endoglucanase in
nematode infection

To investigate the role of AT4G16260 b-1,3-endoglucanase
in H. schachtii parasitism of Arabidopsis roots, homozygous

transgenic Arabidopsis plants that constitutively expressed

the At4g16260 b-1,3-endoglucanase cDNA and a homozy-

gous Arabidopsis b-1,3-endoglucanase At4g16260 T-DNA

mutant line (Salk_031479) that does not express the b-1,
3-endoglucanase were assayed for infection by H. schachtii.

Constitutive overexpression of the At4g16260 cDNA was

confirmed by RT-PCR, and the homozygous At4g16260

T-DNA mutant line (Salk_031479) was confirmed by geno-

mic PCR of the T-DNA insert (data not shown). The results

indicated that plants that overexpressed the At4g16260

b-1,3-endoglucanase cDNA were less susceptible to nematode

Fig. 5. Protein–protein interactions of Hs30C02 with the Arabidopsis b-1,3-endoglucanase (AT4G16260) in yeast and onion cells.

(A) Yeast two-hybrid interaction between Hg30C02 and AT4G16260 Arabidopsis b-1,3-endoglucanase visualized by differential growth

on non-selective medium (SD/–Trp/–Leu) and on selective medium (SD/–DQO). Only yeast cells containing the b-1,3-endoglucanase
prey plus the 30C02 bait (upper right) or the positive control (+C) interaction of CV40 plus LamC (upper left) grew on the selective

medium. No interaction of the Arabidopsis b-1,3-endoglucanase with the empty vector control (–C1) or LamC (–C2), or interaction of

30C02 with empty vector control (–C3), was detected on the selective medium. (B) The interaction between Hg30C02 and AT4G16260

Arabidopsis b-1,3-endoglucanase proteins within a transformed onion epidermal cell visualized by bifluorescence complementation.

(C) A bright-field image of the onion epidermal cells presented in (B). The images in (B) and (C) were taken 24 h after transformation of

onion cells by particle bombardment. (This figure is available in colour at JXB online.)

Nematode effector interacts with plant b-1,3-endoglucanase | 7 of 13Nematode effector interacts with plant β-1,3-endoglucanase  |  3689



infection and had fewer developed cyst females than WT

plants (Fig. 7A). In contrast, the At4g16260 b-1,3-endogluca-
nase T-DNA knockout line exhibited increased susceptibility

to H. schachtii infection compared with WT plants (Fig. 7B).

Transgenic plants that overexpressed At4g16260 b-1,3-endo-
glucanase and T-DNA knockout lines did not show any

apparent phenotypic variation compared with WT plants.

Host-derived RNAi of Hg30C02

To examine whether 30C02 was critical for H. schachtii

parasitism, plant host-derived RNAi (reviewed by Gheysen

and Vanholme, 2007; Rosso et al., 2009) was used to silence

expression of the Hg30C02 parasitism gene within the nema-

tode, and the subsequent effect on nematode parasitism was

evaluated. Arabidopsis lines harbouring the Hg30C02 RNAi

constructs were confirmed for constitutive expression of the

30C02 dsRNA using RT-PCR amplification of the PDK

intron (Fig. 8A) present in the pHANNIBAL vector (Wesley

et al., 2001). No plant morphological differences were

observed between transgenic Arabidopsis 30C02-RNAi lines

and the non-transformed control plants or plants trans-

formed with an RNAi (dsRNA) construct of GFP (a non-
nematode gene). Transgenic plants that expressed RNAi

constructs were inoculated with H. schachtii, and at 3–4

weeks post-inoculation, a decrease of up to 92% in the

number of females was observed in Hg30C02 dsRNA-

expressing lines compared with the control plants (Fig. 8B),

indicating that 30C02 is an essential effector protein for

parasitism by cyst nematodes.

Fig. 6. Relative expression of At4g16260 b-1,3-endoglucanase in WT (Col-1) Arabidopsis roots peaked at 5 d after infection by the beet

cyst nematode H. schachtii. (A) qRT-PCR of At4g16260 b-1,3-endoglucananse in whole WT Arabidopsis root systems at 5, 9, and 14

d p.i. (dpi) after infection with H. schachtii. (B) Expression of At4g16260 b-1,3-endoglucananse in H. schachtii feeding sites (syncytia)

excised from whole roots at the same time points. The relative fold-change values were calculated using the 2�DDCT method (Livak and

Schmittgen, 2001) and represent changes in mRNA level relative to 0 d p.i. The A. thaliana actin-8 gene (ATU42007) was used as an

internal control to normalize gene expression levels for all samples.

Fig. 7. Effect of At4g16260 b-1,3-endoglucanase overexpression in transgenic Arabidopsis and an At4g16260 T-DNA knockout mutant

on H. schachtii infection of Arabidopsis roots. (A) Two transgenic Arabidopsis lines that constitutively overexpressed (OE) At4g16260

showed significantly reduced infection by H. schachtii. (B) An At4g16260 T-DNA knockout mutant (Salk_031479) showed enhanced

susceptibility to H. schachtii. Constitutive overexpression of the At4g16260 cDNA was confirmed by RT-PCR, and the homozygous

At4g16260 T-DNA mutant line (Salk_031479) was confirmed by genomic PCR of the T-DNA insert (data not shown). Data are presented

as means 6SE. Mean values that were significantly different (P<0.05) from WT as determined by paired t-test are denoted by asterisks.
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To relate the observed response of nematodes on 30C02

RNAi plants to the production of corresponding small

interfering RNA (siRNA), the 30C02 small-RNA profile in

roots of 30C02 RNAi plants was assayed using Illumina

sequencing by the method of Tuteja et al. (2009). Of 11.2

million raw sequence reads, 1298 unique small-RNA seq-

uences with lengths of 19–25 nt and a total abundance

of 39 522 occurrences could be aligned to the 492 bp
Hg30C02 sequence with 100% identity (Fig. 9A). The 21 nt

class formed 75% of the total small RNAs that matched

the 30C02 target (Fig. 9B). As shown in Fig. 9A, these

sequences matched both the positive and negative strands,

as typically found for siRNAs generated from dsRNA by

the RNAi pathway, similar to findings in other systems

(de Paoli et al., 2009; Tuteja et al., 2009). The abundance

of siRNA concentration was relatively even across the
span of the Hg30C02 coding sequence, with only a few

foci demonstrating a modest increase in relative siRNA

accumulation (Fig. 9A).

Discussion

Cyst nematodes employ an array of effector proteins to

invade and induce feeding sites in host plant roots (Davis
et al., 2008; Gheysen and Mitchum, 2011). These proteins

are produced within the nematode oesophageal gland cells

and contain predicted signal peptides for secretion from the

gland cells into host root cells via the nematode stylet. The

Hg30C02 parasitism gene of H. glycines encodes a putative

novel effector protein with a predicted signal peptide for

secretion into host cells (Gao et al., 2003). A DNA gel blot

assay confirmed the presence of several potential 30C02

family members in the H. schachtii genome, but only a single

form of 30C02 was expressed in the dorsal oesophageal gland

secretory cell of the parasitic stages of both H. schachtii and

H. glycines. Expressed Hs30C02 (JF896102) shared 98%

predicted amino acid identity with Hg30C02 (JF896103).

Thus, the two were considered as homologues and the

Arabidopsis–H.schachtii pathosystem could therefore be used

to study the role of Hg30C02 in nematode parasitism. The

spike in expression of 30C02 in parasitic cyst nematode J2 at

3–5 d p.i. suggested a primary role of this effector protein in

the early stages on the host–parasite interaction as the

feeding site is established.

Constitutive expression of the 30C02 gene in Arabidopsis

plant did not produce any observable effect on host root or

shoot growth, but it rendered plants more susceptible to

infection by H. schachtii. The expressed 30C02 gene had no

effect on parasitism by the root-knot nematode M. incognita,

suggesting that 30C02 has a specific role in cyst nematode

feeding site formation. Increased host susceptibility to

H. schachtii infection following overexpression of nematode

parasitism genes has been documented in previous studies
(Hewezi et al., 2008, 2010; Patel et al., 2010), suggesting that

an excess of some effector proteins can enhance a compatible

host–parasite interaction. Modulation of plant stress

responses (Patel et al., 2010) and defence responses (Hewezi

et al., 2010) have been implicated in nematode parasitic

success in the plants that overexpress specific cyst parasitism

genes. In a previous study, we showed that expression levels

of PR1, PR2, and PR5, which are often used as markers for
salicylic acid-dependent systemic acquired resistance,

increased in Arabidopsis roots at 9 d after infection with

H. schachtii, while expression level of PR3, PR4, and

PDF1.2, which are commonly used as markers for character-

ization of jasmonate-dependent defence responses, did not

change (Hamamouch et al., 2011). The expression level of

any of these PR genes did not change in roots of plants that

overexpressed Hg30C02. Similarly, expression of PAD4 and
ISC, which are involved in synthesis of the phytoalexin

camalexin and salicylic acid, respectively, did not change in

plants that overexpressed 30C02. These observations sug-

gested that the 30C02 effector protein may target the activity

of plant proteins involved in the host response, rather than

the direct expression of host defence genes.

Fig. 8. Effect of Arabidopsis-derived RNAi of 30C02 on H. schachtii parasitism. (A) RT-PCR of the single-stranded PDK intron (Wesley

et al., 2001) of the hairpin 30C02 dsRNA was used to confirm expression of 35S::Hg30C02 dsRNA and 35S::GFP dsRNA (not shown)

constructs in the roots of three independent transgenic Arabidopsis lines (L6-4, L2-6, and L1-5). Results are shown for RT-PCR without

(-RT) or with (+RT) reverse transcriptase. (B) Transgenic Arabidopsis lines that expressed 30C02 dsRNA showed significant resistance to

H. schachtii infection, as evidenced by the low number of females per plant developed in transgenic plants at 3 weeks post-inoculation

compared with the plants that expressed the GFP dsRNA control construct. Bars indicate means 6SE (n¼24). Asterisks represents

a significant difference (t-test, P<0.05) compared with the GFP RNAi control.
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In fact, yeast two-hybrid and bifluorescence complemen-

tation assays revealed that 30C02 specifically interacts with
Arabidopsis AT4G16260 b-1,3-endoglucanase at the protein

level. b-1,3-Endoglucanases are a class of hydrolytic enzyme

that catalyse the cleavage of 1,3-b-D-glucosidic linkages in

b-1,3-glucans (Lashbrook and Cai, 2008). They have received

a considerable amount of attention due to their role in plant

pathogen defence (van Loon et al., 2006). As members of the

PR2 group of PR proteins, b-1,3-endoglucanases are induced
by pathogen infection and play an active role in hydrolysing
b-1,3-glucan, a major structural component of fungal cell

walls (Leubner-Metzger and Meins, 1999). For phytopara-

sitic nematodes, plant b-1,3-glucan deposition (callose) has

been detected around the nematode stylet, syncytial cell walls

and neighbouring plant cell walls (Hussey et al., 1992;

Grundler et al., 1997). The AT4G16260 endoglucanase is

active in cell-wall expansion in etiolated hypocotyls of

Arabidopsis (Irshad et al., 2008) and may play a similar role

in developing syncytial cell walls. It is also possible that the

nematode interacts with AT4G16260 b-1,3-endoglucanase
to control callose formation or to limit the generation of

signal molecules that may function as elicitors of defence

responses. The highest levels of 30C02 expression in the

nematode coincided with the highest levels of At4g16260

b-1,3-endoglucanase expression during the plant–nematode

interaction, suggesting a developmental mechanism for in-

creased levels of 30C02 protein to counter the effects of

increased AT4G16260 to promote successful parasitism in
the early stages (3–5 d p.i.) of infection by cyst nematodes.

Studies have shown that expression of b-1,3-endoglucanase
genes increases following attacks by several fungal pathogens

(Doxey et al., 2007), oomycete (Mahalingam et al., 2003) and

bacteria (Mahalingam et al., 2003). Microarray analysis of

Arabidopsis endoglucanases expressed in response to patho-

gens indicated that the At4g16260 b-1,3-endoglucanase
identified in this study displayed the most significant response

Fig. 9. Representation of abundance and alignment of siRNAs generated in Arabidopsis roots of plants transformed with the 30C02

RNAi constructs. (A) Counts and positions of all small RNAs with lengths of 19–25 nt that had a 100% match to either the positive (+) or

negative (–) strands of the 492 bp 30C02 coding sequence are shown. Note the relatively even abundance of +/– siRNAs along the

entire 30C02 coding sequence. Data represent the pooled small-RNA populations from the three independently transformed

35S::Hg30C02 dsRNA plant lines (L2-6, L1-5, and L6-4) used in Fig. 8. Small-RNA sequencing data from the roots of Arabidopsis lines

transformed with other constructs, but not 30C02, served as controls and contained very few sequences with 100% matches when

aligned to the 30C02 sequences, indicating no significant similarity of 30C02 to the naturally occurring small RNAs in Arabidopsis

seedling roots. (B) Abundance of each 30C02 small-RNA sequence with sizes of 19–25 nt showing a predominance of 21 nt small RNAs

generated in the roots of the pooled 35S::Hg30C02 dsRNA Arabidopsis lines L2-6, L1-5, and L6-4. (This figure is available in colour at

JXB online.)
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to fungal pathogens and therefore was most likely to play

a defence role (Doxey et al., 2007). The specific plant b-1,
3-endoglucanase affected and its timing of expression appear

to be critical considerations, however, with respect to the

plant–nematode interaction described here. The At3g57260

b-1,3-endoglucanse (PR2) gene was recently found to spike

in expression at 9 d after infection of Arabidopsis roots by

H. schachtii (Hamamouch et al., 2011), but, as mentioned
above, expression of that same PR2 gene was not influenced

here by 30C02 overexpression in plants. Although upregu-

lated at 5 d p.i., expression of the (30C02-interacting)

At4g16260 b-1,3-endoglucanase was greatly reduced in roots

by 9 d after infection with H. schachtii, especially within

syncytia. This latter finding is further supported by micro-

array analysis of Arabidopsis genes expressed following

infection by H. schachtii, which indicated that the expression
level of the At4g16260 b-1,3-endoglucanase gene is down-

regulated in the syncytium by 15 d p.i. (Szakasits et al., 2009).

Reduced infection by H. schachtii in Arabidopsis plants

that overexpressed At4g16260 b-1,3-endoglucanase, and

conversely, increased susceptibility to H. schachtii in the

At4g16260 b-1,3-endoglucanase T-DNA knockout line in-

dicated that this host b-1,3-endoglucanase is an important

component of host plant response to H. schachtii. The
ability to silence expression of the gene encoding the 30C02-

interacting protein on the nematode side presented further

evidence that the function of this effector may be important

to nematode parasitic success. Investigations of plant host-

derived RNAi targeted to selected cyst nematode parasitism

genes have reported both reduced nematode infection levels

and silencing of the target transcript in the nematode

(Huang et al., 2006a; Patel et al., 2008, 2010; Sindhu et al.,
2009). In this study, Arabidopsis-derived RNAi targeted

against the Hs30C02 gene strongly reduced infection by

H. schachtii, suggesting that the 30C02 gene and its product

play an essential role in plant parasitism by cyst nematodes.

The abundance and diversity of the small-RNA population

generated in the roots of Arabidopsis plants transformed

with the 30C02 RNAi construct are consistent with siRNA

phenomena that have been shown to have physiological
effects in planta, including transgenic petunia lines that

exhibit co-suppression (de Paoli et al., 2009) and naturally

occurring downregulation of seed coat colour in soybean

(Tuteja et al., 2009).

In conclusion, we have demonstrated a specific interac-

tion of the cyst nematode 30C02 effector protein with the

Arabidopsis AT4G16260 b-1,3-endoglucanase, and have

shown that silencing of nematode 30C02 or an increase in
expression of At4g16260 significantly reduces plant root

infection by cyst nematodes (and vice versa). These data

suggest that cyst nematodes act at two levels to suppress

the potentially defence-related effects of plant b-1,
3-endoglucanase by: (i) introducing 30C02 into host cells to

physically interact with AT4G16260 b-1,3-endoglucanase to
neutralize its activity in the early stages of parasitism; and

(ii) directly or indirectly reducing the expression of
At4g16260 in nematode feeding sites in the later stages of

infection to promote successful plant parasitism.

Supplementary data

Supplementary data are available at JXB online.

Supplementary Table S1. Forward and reverse primers

used in quantitative real-time RT-PCR to assess 30C02 gene

expression in the beet cyst nematode H. schachtii, expression

of selected A. thaliana genes, and internal actin controls to
normalize gene expression.
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